1
|
Chen L, Tang J, Chang Y, Hang D, Ji J, Chen G. SMURF1 leads to the β-catenin signaling-mediated progression of esophageal squamous carcinoma by losing PATZ1-induced CCNG2 transcription. Biochem Pharmacol 2024; 232:116688. [PMID: 39617210 DOI: 10.1016/j.bcp.2024.116688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 11/10/2024] [Accepted: 11/28/2024] [Indexed: 12/16/2024]
Abstract
Cyclin G2 (CCNG2), a known inhibitor of cell cycle progression, has been identified as a suppressor for the canonical β-catenin pathway. This study explores the impact of CCNG2 on β-catenin activity and malignant characteristics of esophageal squamous cell carcinoma (ESCC) cells, and the mechanism behind CCNG2 dysregulation. In ESCC tissues and cells, CCNG2 was under-expressed and associated with poor clinical outcomes, whereas β-catenin showed an opposite trend. Inducing CCNG2 overexpression in ESCC cells led to a reduction in β-catenin levels, which in turn suppressed proliferation, cell cycle progression, migration, invasion, stemness, and tumorigenesis. Additionally, it enhanced the cytotoxicity and proliferation of T cells in co-culture systems. However, these beneficial effects were negated by the Wnt signaling agonist BML-284. Furthermore, PATZ1 was found as a transcription factor promoting CCNG2 transcription. However, the PATZ1 protein in ESCC cells was degraded by SMURF1. Silencing of SMURF1 restored CCNG2 expression and inhibited β-catenin, thereby suppressing the malignant phenotype of ESCC cells and reducing T cell exhaustion. Yet, these effects were blocked by further silencing of PATZ1. In summary, this research demonstrates that SMURF1 activates β-catenin signaling by suppressing the PATZ1/CCNG2 axis, thereby promoting the progression of ESCC.
Collapse
Affiliation(s)
- Lingling Chen
- Department of Gastroenterology, Pudong New Area People's Hospital, Shanghai 201299, PR China
| | - Jie Tang
- Department of Gastroenterology, Jiangwan Hospital, Hongkou District, Shanghai 200434, PR China
| | - Yunli Chang
- Department of Gastroenterology, Pudong New Area People's Hospital, Shanghai 201299, PR China
| | - Dongyun Hang
- Department of Gastroenterology, Pudong New Area People's Hospital, Shanghai 201299, PR China
| | - Jieru Ji
- Department of Gastroenterology, Pudong New Area People's Hospital, Shanghai 201299, PR China.
| | - Guoyu Chen
- Department of Gastroenterology, Pudong New Area People's Hospital, Shanghai 201299, PR China.
| |
Collapse
|
2
|
Hao Y, Song T, Wang M, Li T, Zhao C, Li T, Hou Y, He H. Dual targets of lethal apoptosis and protective autophagy in liver cancer with periplocymarin elicit a limited therapeutic effect. Int J Oncol 2023; 62:44. [PMID: 36825592 PMCID: PMC9946806 DOI: 10.3892/ijo.2023.5492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 01/27/2023] [Indexed: 02/25/2023] Open
Abstract
Cardiac glycosides (CGs) are candidate anticancer agents that function by increasing [Ca2+]i to induce apoptotic cell death in several types of cancer cells. However, new findings have shown that the anti‑cancer effects of CGs involve complex cell‑signal transduction mechanisms. Hence, exploring the potential mechanisms of action of CGs may provide insight into their anti‑cancer effects and thus aid in the selection of the appropriate CG. Periplocymarin (PPM), which is a cardiac glycoside, is an active ingredient extracted from Cortex periplocae. The role of PPM was evaluated in HepG2 cells and xenografted nude mice. Cell proliferation, real‑time ATP rate assays, western blotting, cell apoptosis assays, short interfering RNA transfection, the patch clamp technique, electron microscopy, JC‑1 staining, immunofluorescence staining and autophagic flux assays were performed to evaluate the function and regulatory mechanisms of PPM in vitro. The in vivo activity of the PPM was assessed using a mouse xenograft model. The present study demonstrated that PPM synchronously activated lethal apoptosis and protective autophagy in liver cancer, and the initiation of autophagy counteracted the inherent pro‑apoptotic capacity and impaired the anti‑cancer effects. Specifically, PPM exerted a pro‑-apoptotic effect in HepG2 cells and activated macroautophagy by initiation of the AMPK/ULK1 and mTOR signaling pathways. Activation of macroautophagy counteracted the pro‑apoptotic effects of PPM, but when it was combined with an autophagy inhibitor, the anti‑cancer effects of PPM in mice bearing HepG2 xenografts were observed. Collectively, these results indicated that a self‑limiting effect impaired the pro‑apoptotic effects of PPM in liver cancer, but when combined with an autophagy inhibitor, it may serve as a novel therapeutic option for the management of liver cancer.
Collapse
Affiliation(s)
- Yuanyuan Hao
- College of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, P.R. China,Hebei Yiling Chinese Medicine Research Institute, Shijiazhuang, Hebei 050035, P.R. China,New Drug Evaluation Center, Shijiazhuang Yiling Pharmaceutical Co., Ltd, Shijiazhuang, Hebei 050035, P.R. China
| | - Tao Song
- College of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, P.R. China,Hebei Yiling Chinese Medicine Research Institute, Shijiazhuang, Hebei 050035, P.R. China,New Drug Evaluation Center, Shijiazhuang Yiling Pharmaceutical Co., Ltd, Shijiazhuang, Hebei 050035, P.R. China
| | - Mingye Wang
- College of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, P.R. China
| | - Tongtong Li
- College of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, P.R. China
| | - Chi Zhao
- Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Ting Li
- Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, P.R. China
| | - Yunlong Hou
- College of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, P.R. China,Hebei Yiling Chinese Medicine Research Institute, Shijiazhuang, Hebei 050035, P.R. China,New Drug Evaluation Center, Shijiazhuang Yiling Pharmaceutical Co., Ltd, Shijiazhuang, Hebei 050035, P.R. China,Correspondence to: Professor Yunlong Hou, College of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, 3 Xingyuan Road, Shijiazhuang, Hebei 050200, P.R. China, E-mail:
| | - Hongjiang He
- Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, P.R. China,Professor Hongjiang He, Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, Heilongjiang 150081, P.R. China, E-mail:
| |
Collapse
|
3
|
Jiang Y, Qian HY. Transcription factors: key regulatory targets of vascular smooth muscle cell in atherosclerosis. Mol Med 2023; 29:2. [PMID: 36604627 PMCID: PMC9817296 DOI: 10.1186/s10020-022-00586-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 12/05/2022] [Indexed: 01/07/2023] Open
Abstract
Atherosclerosis (AS), leading to gradual occlusion of the arterial lumen, refers to the accumulation of lipids and inflammatory debris in the arterial wall. Despite therapeutic advances over past decades including intervention or surgery, atherosclerosis is still the most common cause of cardiovascular diseases and the main mechanism of death and disability worldwide. Vascular smooth muscle cells (VSMCs) play an imperative role in the occurrence of atherosclerosis and throughout the whole stages. In the past, there was a lack of comprehensive understanding of VSMCs, but the development of identification technology, including in vivo single-cell sequencing technology and lineage tracing with the CreERT2-loxP system, suggests that VSMCs have remarkable plasticity and reevaluates well-established concepts about the contribution of VSMCs. Transcription factors, a kind of protein molecule that specifically recognizes and binds DNA upstream promoter regions or distal enhancer DNA elements, play a key role in the transcription initiation of the coding genes and are necessary for RNA polymerase to bind gene promoters. In this review, we highlight that, except for environmental factors, VSMC genes are transcriptionally regulated through complex interactions of multiple conserved cis-regulatory elements and transcription factors. In addition, through a series of transcription-related regulatory processes, VSMCs could undergo phenotypic transformation, proliferation, migration, calcification and apoptosis. Finally, enhancing or inhibiting transcription factors can regulate the development of atherosclerotic lesions, and the downstream molecular mechanism of transcriptional regulation has also been widely studied.
Collapse
Affiliation(s)
- Yu Jiang
- grid.506261.60000 0001 0706 7839Center for Coronary Heart Disease, Department of Cardiology, Fu Wai Hospital, National Center for Cardiovascular Diseases of China, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Rd, Beijing, 100037 China
| | - Hai-Yan Qian
- grid.506261.60000 0001 0706 7839Center for Coronary Heart Disease, Department of Cardiology, Fu Wai Hospital, National Center for Cardiovascular Diseases of China, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Rd, Beijing, 100037 China
| |
Collapse
|
4
|
Liu L, Gao J, Xing X, Jiang M, Liu Q, Wang S, Luo Y. Cyclin G2 in macrophages triggers CTL-mediated antitumor immunity and antiangiogenesis via interferon-gamma. J Exp Clin Cancer Res 2022; 41:358. [PMID: 36566226 PMCID: PMC9789679 DOI: 10.1186/s13046-022-02564-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023] Open
Abstract
BACKGROUND IFN-γ is a key mediator of tumor immunity that can induce macrophage polarization to suppress tumor growth. Cyclin G2 functions as a tumor suppressor in various cancer cells; however, its role in macrophages remains unclear. This study aimed to investigate the role and underlying mechanisms of cyclin G2 in macrophages in vitro and in vivo. METHODS Mouse tumor models were used to determine the effect of cyclin G2 in macrophages on tumor growth in vivo following IFN-γ treatment. Immunohistochemistry staining, immunofluorescence staining and flow cytometry were used to evaluate the number of cytotoxic T lymphocytes (CTLs) and blood vessels in the mouse tumors. Moreover, the biological roles of cyclin G2 in macrophages with regard to CTL chemotaxis, cytotoxic function, and vascular endothelial cell tube formation were assessed using in vitro functional experiments. Immunoprecipitation (IP), real-time PCR, and enzyme-linked immunosorbent assays (ELISAs) were conducted to investigate the underlying mechanisms by which cyclin G2 regulates CTLs and vascular endothelial cells. RESULTS We found that cyclin G2 expression was upregulated in macrophages after IFN-γ treatment. Upregulated cyclin G2 inhibited lung and colon cancer growth by increasing the secretion of its downstream effector CXCL9, which promoted CTL chemotaxis and suppressed vascular endothelial cell tube formation. Moreover, cyclin G2 increased CXCL9 mRNA levels by promoting STAT1 nuclear translocation. In addition, cyclin G2 promoted the activation of the STAT1 signaling pathway, which was dependent on PP2Ac. CONCLUSIONS Cyclin G2 is upregulated by IFN-γ in macrophages, promotes the secretion of CXCL9 to increase CTL chemotaxis and inhibit angiogenesis to suppress tumor growth. Our findings suggest that targeting cyclin G2 could benefit future immunotherapy.
Collapse
Affiliation(s)
- Lu Liu
- The Research Center for Medical Genomics, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Science, China Medical University, No.77 Puhe Road, Shenyang North New Area, Liaoning Province, Shenyang, People's Republic of China
| | - Jinlan Gao
- The Research Center for Medical Genomics, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Science, China Medical University, No.77 Puhe Road, Shenyang North New Area, Liaoning Province, Shenyang, People's Republic of China
| | - Xuesha Xing
- The Research Center for Medical Genomics, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Science, China Medical University, No.77 Puhe Road, Shenyang North New Area, Liaoning Province, Shenyang, People's Republic of China
| | - Meixi Jiang
- The Research Center for Medical Genomics, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Science, China Medical University, No.77 Puhe Road, Shenyang North New Area, Liaoning Province, Shenyang, People's Republic of China
| | - Qi Liu
- The Research Center for Medical Genomics, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Science, China Medical University, No.77 Puhe Road, Shenyang North New Area, Liaoning Province, Shenyang, People's Republic of China
| | - Shusen Wang
- The Research Center for Medical Genomics, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Science, China Medical University, No.77 Puhe Road, Shenyang North New Area, Liaoning Province, Shenyang, People's Republic of China
| | - Yang Luo
- The Research Center for Medical Genomics, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Science, China Medical University, No.77 Puhe Road, Shenyang North New Area, Liaoning Province, Shenyang, People's Republic of China.
| |
Collapse
|
5
|
The role and mechanism of tetramethylpyrazine for atherosclerosis in animal models: A systematic review and meta-analysis. PLoS One 2022; 17:e0267968. [PMID: 35500001 PMCID: PMC9060352 DOI: 10.1371/journal.pone.0267968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 04/20/2022] [Indexed: 12/09/2022] Open
Abstract
Background Atherosclerosis(AS) is widely recognized as a risk factor for incident cardiovascular and cerebrovascular diseases. Tetramethylpyrazine (TMP) is the active ingredient of Ligusticum wallichii that possesses a variety of biological activities against atherosclerosis. Objective This systematic review and meta-analysis sought to study the impact of and mechanism of tetramethylpyrazine for atherosclerosis in animal models. Methods A systematic search was conducted of PubMed, Embase, Cochrane Library, Web of Science database, Chinese Biomedical (CBM) database, China National Knowledge Infrastructure (CNKI), WanFang data, and Vip Journal Integration Platform, covering the period from the respective start date of each database to December 2021. We used SYRCLE’s 10-item checklist and Rev-Man 5.3 software to analyze the data and the risk of bias. Results Twelve studies, including 258 animals, met the inclusion criteria. Compared with the control group, TMP significantly reduced aortic atherosclerotic lesion area, and induced significant decreases in levels of TC (SMD = ‐2.67, 95% CI -3.68 to -1.67, P < 0.00001), TG (SMD = ‐2.43, 95% CI -3.39 to -1.47, P < 0.00001), and LDL-C (SMD = ‐2.87, 95% CI -4.16 to -1.58, P < 0.00001), as well as increasing HDL-C (SMD = 2.04, 95% CI 1.05 to 3.03, P = 0.001). TMP also significantly modulated plasma inflammatory responses and biological signals associated with atherosclerosis. In subgroup analysis, the groups of high-dose TMP (≥50 mg/kg) showed better results than those of the control group. No difference between various durations of treatment groups or various assessing location groups. Conclusion TMP exerts anti-atherosclerosis functions in an animal model of AS mediated by anti-inflammatory action, antioxidant action, ameliorating lipid metabolism disorder, protection of endothelial function, antiplatelet activity, reducing the proliferation and migration of smooth muscle cells, inhibition of angiogenesis, antiplatelet aggregation. Due to the limitations of the quantity and quality of current studies, the above conclusions need to be verified by more high-quality studies. Trial registration number PROSPERO registration no.CRD42021288874.
Collapse
|
6
|
Li R, Zhang C, Xie F, Zhou X, Hu X, Shi J, Du X, Lin Z, Dong N. Protein Phosphatase 2A Deficiency in Macrophages Increases Foam Cell Formation and Accelerates Atherosclerotic Lesion Development. Front Cardiovasc Med 2022; 8:745009. [PMID: 35118139 PMCID: PMC8803755 DOI: 10.3389/fcvm.2021.745009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 12/27/2021] [Indexed: 11/13/2022] Open
Abstract
Protein phosphatase 2A (PP2A), a crucial serine/threonine phosphatase, has recently been reported to play an important role in cardiovascular disease. Previous studies have hinted that PP2A is involved in atherosclerosis formation, but the associated mechanisms remain poorly understood. In this study, we investigate the role of PP2A in the pathogenesis of atherosclerosis. In human atherosclerotic coronary arteries, we found that the expression and activity of PP2A decreased significantly when compared to non-atherosclerotic arteries. Additional experiments demonstrated that pharmacological inhibition of PP2A aggravated atherosclerosis of ApoE−/− mice. Considering the central role of macrophages in atherosclerosis, mice with conditional knockout of the PP2A-Cα subunit in myeloid cells were produced to investigate the function of PP2A in macrophages. Results showed that PP2A deficiency in myeloid cells aggravated atherosclerotic lesions in mice. in vitro experiments indicated that PP2A-deficient macrophages had an enhanced ability of lipid uptake and foam cell formation. Mechanistically, the deficiency of the PP2A in macrophages led to an increase in the phosphorylation level of p38, which contributed to the elevated expression of scavenger receptor CD36, a key factor involved in lipoprotein uptake. Our data suggest that PP2A participates in the pathophysiological process of atherosclerosis. The decrease of PP2A expression and activity in macrophages is a crucial determinant for foam cell formation and the initiation of atherosclerosis. Our study may provide a potential novel approach for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Rui Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chao Zhang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fei Xie
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xianming Zhou
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xingjian Hu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiawei Shi
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinling Du
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Xinling Du
| | - Zhiyong Lin
- Cardiology Division, Emory University School of Medicine, Atlanta, GA, United States
- Zhiyong Lin
| | - Nianguo Dong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Nianguo Dong
| |
Collapse
|