1
|
Lin FX, Gu HY, He W. MAPK signaling pathway in spinal cord injury: Mechanisms and therapeutic potential. Exp Neurol 2025; 383:115043. [PMID: 39522804 DOI: 10.1016/j.expneurol.2024.115043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 10/30/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
Spinal cord injury (SCI) is a severe disabling injury of the central nervous system that can lead to motor, sensory, and autonomic dysfunction below the level of the injury. According to its pathophysiological process, SCI can be divided into primary injury and secondary injury. Currently, multiple therapeutic strategies have been proposed to alleviate secondary injury and overcome the occurrence of neurodegenerative events. Although current treatment modalities have achieved varying degrees of success, they cannot effectively intervene or treat its pathological processes, which may be due to the complex treatment and protection mechanisms involved. Research has confirmed that signaling pathways play a crucial role in the pathological processes of SCI and the mechanisms of neuronal recovery. Mitogen-activated protein kinase (MAPK) signaling pathway plays a crucial role in neuronal differentiation, growth, survival and axon regeneration after central nervous system injury. Meanwhile, the MAPK signaling pathway is an important pathway closely related to the pathological processes of SCI. The MAPK signaling pathway is abnormally activated after SCI, and inhibiting the activity of MAPK pathway can effectively inhibit inflammation, oxidative stress, pain and apoptosis to promote the recovery of nerve function after SCI. Based on the role of the MAPK pathway in SCI, it may be a potential therapeutic target. This article summarizes the role and mechanism of MAPK pathway in SCI, and discusses the shortcomings and shortcomings of MAPK pathway in SCI field, as well as the potential challenges of targeting MAPK pathway in SCI treatment strategies. This article aims to elucidate the mechanism of the MAPK pathway in SCI to emphasize the role of targeting the MAPK pathway in the treatment of SCI, providing a theoretical basis for the MAPK pathway as a potential therapeutic target for SCI treatment.
Collapse
Affiliation(s)
- Fei-Xiang Lin
- Department of Spine Surgery, Ganzhou People's Hospital, 16 Meiguan Avenue, Ganzhou 341000, Jiangxi Province, PR China; Department of Spine Surgery, The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou Hospital-Nanfang Hospital, Southern Medical University), 16 Meiguan Avenue, Ganzhou 341000, Jiangxi Province, PR China
| | - Hou-Yun Gu
- Department of Spine Surgery, Ganzhou People's Hospital, 16 Meiguan Avenue, Ganzhou 341000, Jiangxi Province, PR China; Department of Spine Surgery, The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou Hospital-Nanfang Hospital, Southern Medical University), 16 Meiguan Avenue, Ganzhou 341000, Jiangxi Province, PR China
| | - Wei He
- Department of Spine Surgery, Ganzhou People's Hospital, 16 Meiguan Avenue, Ganzhou 341000, Jiangxi Province, PR China; Department of Spine Surgery, The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou Hospital-Nanfang Hospital, Southern Medical University), 16 Meiguan Avenue, Ganzhou 341000, Jiangxi Province, PR China.
| |
Collapse
|
2
|
Shang Z, Shi W, Fu H, Zhang Y, Yu T. Identification of key autophagy-related genes and pathways in spinal cord injury. Sci Rep 2024; 14:6553. [PMID: 38504116 PMCID: PMC10951339 DOI: 10.1038/s41598-024-56683-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/09/2024] [Indexed: 03/21/2024] Open
Abstract
Spinal cord injury (SCI) can cause a range of functional impairments, and patients with SCI have limited potential for functional recovery. Previous studies have demonstrated that autophagy plays a role in the pathological process of SCI, but the specific mechanism of autophagy in this context remains unclear. Therefore, we explored the role of autophagy in SCI by identifying key autophagy-related genes and pathways. This study utilized the GSE132242 expression profile dataset, which consists of four control samples and four SCI samples; autophagy-related genes were sourced from GeneCards. R software was used to screen differentially expressed genes (DEGs) in the GSE132242 dataset, which were then intersected with autophagy-related genes to identify autophagy-related DEGs in SCI. Subsequently, the expression levels of these genes were confirmed and analyzed with gene ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG). A protein-protein interaction (PPI) analysis was conducted to identify interaction genes, and the resulting network was visualized with Cytoscape. The MCODE plug-in was used to build gene cluster modules, and the cytoHubba plug-in was applied to screen for hub genes. Finally, the GSE5296 dataset was used to verify the reliability of the hub genes. We screened 129 autophagy-related DEGs, including 126 up-regulated and 3 down-regulated genes. GO and KEGG pathway enrichment analysis showed that these 129 genes were mainly involved in the process of cell apoptosis, angiogenesis, IL-1 production, and inflammatory reactions, the TNF signaling pathway and the p53 signaling pathway. PPI identified 10 hub genes, including CCL2, TGFB1, PTGS2, FN1, HGF, MYC, IGF1, CD44, CXCR4, and SERPINEL1. The GSE5296 dataset revealed that the control group exhibited lower expression levels than the SCI group, although only CD44 and TGFB1 showed significant differences. This study identified 129 autophagy-related genes that might play a role in SCI. CD44 and TGFB1 were identified as potentially important genes in the autophagy process after SCI. These findings provide new targets for future research and offer new perspectives on the pathogenesis of SCI.
Collapse
Affiliation(s)
- Zhen Shang
- Medical Department of Qingdao University, Qingdao, 266000, China
| | - Weipeng Shi
- Medical Department of Qingdao University, Qingdao, 266000, China
| | - Haitao Fu
- Department of Orthopedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Yingze Zhang
- Department of Orthopedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China.
- Shandong Institute of Traumatic Orthopedics, Qingdao, 266000, China.
| | - Tengbo Yu
- Department of Orthopedic Surgery, Qingdao Municipal Hospital, Qingdao, 266000, China.
- Institute of Sports Medicine and Health, Qingdao University, Qingdao, 266000, China.
- Department of Orthopedic Surgery, Qingdao Hospital, University of Health and Rehabilitation Sciences, Qingdao, 266000, China.
| |
Collapse
|
3
|
Zeng H, Cheng L, Lu DZ, Fan S, Wang KX, Xu LL, Cai B, Zhou MW, Wang JW. Unbiased multitissue transcriptomic analysis reveals complex neuroendocrine regulatory networks mediated by spinal cord injury-induced immunodeficiency. J Neuroinflammation 2023; 20:219. [PMID: 37775760 PMCID: PMC10543323 DOI: 10.1186/s12974-023-02906-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 09/26/2023] [Indexed: 10/01/2023] Open
Abstract
BACKGROUND Spinal cord injury (SCI), which causes loss of sensory and motor function in the body below the level of injury, is a devastating disease of the central nervous system. SCI leads to severe secondary immunosuppression, called SCI-induced immunodeficiency syndrome (SCI-IDS), which is characterized by increased susceptibility to infection and further exacerbates neurological dysfunction. Several studies have suggested that SCI-IDS is an independent risk factor for poor neurological prognosis. SCI-IDS predominantly occurs following injury above the T5 levels and eventually leads to systemic immune failure, possibly via the sympathetic-adrenal medullary axis and the hypothalamic‒pituitary‒adrenal (HPA) axis. However, the mechanism remains unclear. METHODS AND OBJECTIVES The concentrations of adrenocorticotropic hormone and cortisol in plasma, as well as changes in sympathetic activity (blood pressure and catecholamine levels in plasma), were assessed in rats in the high-level (T3) spinal cord injury (T3-SCI) group and the low-level (T10) spinal cord injury (T10-SCI) group. Second, the differential regulation of the gene network between the sympathetic-adrenal medullary axis and the HPA axis was explored by histology and multitissue transcriptomics, and the neuroendocrine-immune network associated with SCI-IDS was further elucidated. RESULTS The spleen and thymus gland, which are secondary immune organs, were significantly atrophied in rats in the T3-SCI group, and the white pulp of the spleen was significantly atrophied. The level of cortisol, which is mediated by the adrenal glands, was markedly elevated, but norepinephrine levels were markedly decreased. There was no difference in adrenocorticotropic hormone expression between any of the groups. The transcriptome analysis results showed that the downregulated differentially expressed genes (DEGs) in the T3-SCI group were enriched in the GO term immunoregulation, indicating that splenic immune function was markedly impaired after high-level SCI. The upregulated DEGs in the hypothalamus (hub genes: Nod2, Serpine1, Cebpb, Nfkbil1, Ripk2, Zfp36, Traf6, Akap8, Gfer, Cxcl10, Tnfaip3, Icam1, Fcgr2b, Ager, Dusp10, and Mapkapk2) were significantly enriched in inflammatory pathways, and the downregulated genes (hub genes: Grm4, Nmu, P2ry12, rt1-bb1, Oprm1, Zfhx2, Gpr83, and Chrm2) were enriched in pathways related to inhibitory Gi-mediated G protein-coupled receptor (Gi-GPCR) neurons and neuropeptide changes. The upregulated genes in the adrenal glands (hub genes: Ciart, per2, per3, cry1, and cry2) were enriched in cortisol secretion and circadian rhythm changes, and the downregulated genes (hub genes: IL7r, rt1-bb, rt1-bb1, rt1-da, rt1-ba, cd74, cxcr3, vcam1, ccl5, bin1, and IL8) were significantly enriched in MHC-mediated immune responses. CONCLUSIONS To explore the possible mechanism underlying SCI-IDS, this study assessed the differential regulation of the gene network associated with neuroendocrine immunity after SCI. Progressive neuroinflammation spreads after injury, and neurotransmission through Gi-mediated G protein-coupled receptors in the HPA axis and neuropeptide production by the hypothalamus are inhibited. Disruption of the connection between the hypothalamus and the adrenal glands causes autonomous regulation of the adrenal glands, disturbance of circadian rhythm and finally hypercortisolemia, leading to general suppression of peripheral adaptive immunity. Neuraxial nerve inflammation caused by SCI persists indefinitely, blocking nerve repair; persistent system-wide immunosuppression in the periphery results in increased susceptibility to infection, leading to poor neurological prognosis.
Collapse
Affiliation(s)
- Hong Zeng
- Department of Rehabilitation Medicine, Shanghai Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 500 Quxi Road, Shanghai, 200011 China
- Department of Orthopedic Surgery, Shanghai Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011 China
| | - Li Cheng
- Department of Rehabilitation Medicine, Shanghai Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 500 Quxi Road, Shanghai, 200011 China
| | - De-zhi Lu
- School of Medicine, Shanghai University, Shanghai, 200444 China
| | - Shuai Fan
- Department of Rehabilitation Medicine, Shanghai Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 500 Quxi Road, Shanghai, 200011 China
| | - Ke-xin Wang
- Department of Rehabilitation Medicine, Shanghai Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 500 Quxi Road, Shanghai, 200011 China
| | - Li-li Xu
- Department of Rehabilitation Medicine, Shanghai Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 500 Quxi Road, Shanghai, 200011 China
| | - Bin Cai
- Department of Rehabilitation Medicine, Shanghai Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 500 Quxi Road, Shanghai, 200011 China
| | - Mou-wang Zhou
- Department of Rehabilitation Medicine, Peking University Third Hospital, 49 North Garden Road, Beijing, 100191 China
| | - Jin-wu Wang
- Department of Orthopedic Surgery, Shanghai Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011 China
| |
Collapse
|
4
|
Cabrera-Aldana EE, Balderas-Martínez YI, Velázquez-Cruz R, Tovar-y-Romo LB, Sevilla-Montoya R, Martínez-Cruz A, Martinez-Cordero C, Valdés-Flores M, Santamaria-Olmedo M, Hidalgo-Bravo A, Guízar-Sahagún G. Administration of Tamoxifen Can Regulate Changes in Gene Expression during the Acute Phase of Traumatic Spinal Cord Injury. Curr Issues Mol Biol 2023; 45:7476-7491. [PMID: 37754256 PMCID: PMC10529143 DOI: 10.3390/cimb45090472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/28/2023] Open
Abstract
Traumatic spinal cord injury (SCI) causes irreversible damage leading to incapacity. Molecular mechanisms underlying SCI damage are not fully understood, preventing the development of novel therapies. Tamoxifen (TMX) has emerged as a promising therapy. Our aim was to identify transcriptome changes in the acute phase of SCI and the effect of Tamoxifen on those changes in a rat model of SCI. Four groups were considered: (1) Non-injured without TMX (Sham/TMX-), (2) Non-injured with TMX (Sham/TMX+), (3) injured without TMX (SCI/TMX-), and (4) injured with TMX (SCI/TMX+). Tamoxifen was administered intraperitoneally 30 min after injury, and spinal cord tissues were collected 24 h after injury. Clariom S Assays Array was used for transcriptome analysis. After comparing Sham/TMX- versus SCI/TMX-, 708 genes showed differential expression. The enriched pathways were the SCI pathway and pathways related to the inflammatory response. When comparing SCI/TMX- versus SCI/TMX+, only 30 genes showed differential expression, with no pathways enriched. Our results showed differential expression of genes related to the inflammatory response after SCI, and Tamoxifen seems to regulate gene expression changes in Ccr2 and Mmp12. Our study contributes data regarding the potential value of tamoxifen as a therapeutic resource for traumatic SCI during the acute phase.
Collapse
Affiliation(s)
- Eibar E. Cabrera-Aldana
- Department of Genomics Medicine, National Institute of Rehabilitation (INR), Calzada Mexico-Xochimilco 289, Arenal de Guadalupe, Mexico City 14389, Mexico; (E.E.C.-A.); (M.V.-F.); (M.S.-O.)
| | - Yalbi I. Balderas-Martínez
- Laboratorio de Biología Computacional, Instituto Nacional de Enfermedades Respiratorias, Ismael Cosío Villegas, Calz. de Tlalpan 4502, Belisario Domínguez Secc 16, Tlalpan, Mexico City 14080, Mexico;
| | - Rafael Velázquez-Cruz
- Genomics of Bone Metabolism Laboratory, National Institute of Genomic Medicine (INMEGEN), Periférico Sur 4809, Arenal Tepepan, Mexico City 14610, Mexico;
| | - Luis B. Tovar-y-Romo
- Department of Molecular Neuropathology, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito Exterior s/n, Mexico City 04510, Mexico;
| | - Rosalba Sevilla-Montoya
- Reproductive Research and Perinatal Health Department, National Institute of Perinatology, Montes Urales 800, Lomas de Virreyes, Mexico City 11000, Mexico;
| | - Angelina Martínez-Cruz
- Department of Experimental Surgery, Proyecto Camina, A.C. 4430 Calz. Tlalpan, Mexico City 14050, Mexico;
| | - Claudia Martinez-Cordero
- Regional Hospital of High Specialty of the Bajio, Blvd. Milenio 130, Col. San Carlos la Roncha, León 37660, Guanajuato, Mexico;
| | - Margarita Valdés-Flores
- Department of Genomics Medicine, National Institute of Rehabilitation (INR), Calzada Mexico-Xochimilco 289, Arenal de Guadalupe, Mexico City 14389, Mexico; (E.E.C.-A.); (M.V.-F.); (M.S.-O.)
| | - Monica Santamaria-Olmedo
- Department of Genomics Medicine, National Institute of Rehabilitation (INR), Calzada Mexico-Xochimilco 289, Arenal de Guadalupe, Mexico City 14389, Mexico; (E.E.C.-A.); (M.V.-F.); (M.S.-O.)
| | - Alberto Hidalgo-Bravo
- Department of Genomics Medicine, National Institute of Rehabilitation (INR), Calzada Mexico-Xochimilco 289, Arenal de Guadalupe, Mexico City 14389, Mexico; (E.E.C.-A.); (M.V.-F.); (M.S.-O.)
| | - Gabriel Guízar-Sahagún
- Research Unit for Neurological Diseases, Instituto Mexicano del Seguro Social, 330 Avenida Cuauhtémoc, Mexico City 06720, Mexico
| |
Collapse
|
5
|
The Role of Tumor Necrosis Factor Following Spinal Cord Injury: A Systematic Review. Cell Mol Neurobiol 2023; 43:925-950. [PMID: 35604578 DOI: 10.1007/s10571-022-01229-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 05/03/2022] [Indexed: 11/03/2022]
Abstract
Pre-clinical studies place tumor necrosis factor (TNF) as a central player in the inflammatory response after spinal cord injury (SCI), and blocking its production and/or activity has been proposed as a possible treatment option after SCI. This systematic review provides an overview of the literature on the temporal and cellular expression of TNF after SCI and clarifies the potential for its therapeutic manipulation in SCI. A systematic search was performed in EMBASE (Ovid), MEDLINE (Ovid), and Web of Science (Core Collection). The search terms were the MeSH forms of tumor necrosis factor and spinal cord injury in the different databases, and the last search was performed on February 3, 2021. We found twenty-four articles examining the expression of TNF, with most using a thoracic contusive SCI model in rodents. Two articles described the expression of TNF receptors in the acute phase after SCI. Twenty-one articles described the manipulation of TNF signaling using genetic knock-out, pharmaceutical inhibition, or gain-of-function approaches. Overall, TNF expression increased rapidly after SCI, within the first hours, in resident cells (neurons, astrocytes, oligodendrocytes, and microglia) and again in macrophages in the chronic phase after injury. The review underscores the complexity of TNF's role after SCI and indicates that TNF inhibition is a promising therapeutic option. This review concludes that TNF plays a significant role in the inflammatory response after SCI and suggests that targeting TNF signaling is a feasible therapeutic approach.
Collapse
|
6
|
Ni WF, Zhou KL, Zhang HJ, Chen YT, Hu XL, Cai WT, Wang XY. Functions and mechanisms of cytosolic phospholipase A 2 in central nervous system trauma. Neural Regen Res 2023; 18:258-266. [PMID: 35900400 PMCID: PMC9396495 DOI: 10.4103/1673-5374.346460] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
7
|
The role of PI3K/Akt signalling pathway in spinal cord injury. Biomed Pharmacother 2022; 156:113881. [DOI: 10.1016/j.biopha.2022.113881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 10/13/2022] [Accepted: 10/13/2022] [Indexed: 11/18/2022] Open
|
8
|
Zeng Z, Li M, Jiang Z, Lan Y, Chen L, Chen Y, Li H, Hui J, Zhang L, Hu X, Xia H. Integrated transcriptomic and metabolomic profiling reveals dysregulation of purine metabolism during the acute phase of spinal cord injury in rats. Front Neurosci 2022; 16:1066528. [PMID: 36507345 PMCID: PMC9727392 DOI: 10.3389/fnins.2022.1066528] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/01/2022] [Indexed: 11/24/2022] Open
Abstract
Introduction Spinal cord injury (SCI) results in drastic dysregulation of microenvironmental metabolism during the acute phase, which greatly affects neural recovery. A better insight into the potential molecular pathways of metabolic dysregulation by multi-omics analysis could help to reveal targets that promote nerve repair and regeneration in the future. Materials and methods We established the SCI model and rats were randomly divided into two groups: the acute-phase SCI (ASCI) group (n = 14, 3 days post-SCI) and the sham group with day-matched periods (n = 14, without SCI). In each group, rats were sacrificed at 3 days post-surgery for histology study (n = 3), metabolome sequencing (n = 5), transcriptome sequencing (n = 3), and quantitative real-time polymerase chain reaction (n = 3). The motor function of rats was evaluated by double-blind Basso, Beattie, and Bresnahan (BBB) Locomotor Scores at 0, 1, 2, 3 days post-SCI in an open field area. Then the transcriptomic and metabolomic data were integrated in SCI model of rat to reveal the underlying molecular pathways of microenvironmental metabolic dysregulation. Results The histology of the microenvironment was significantly altered in ASCI and the locomotor function was significantly reduced in rats. Metabolomics analysis showed that 360 metabolites were highly altered during the acute phase of SCI, of which 310 were up-regulated and 50 were down-regulated, and bioinformatics analysis revealed that these differential metabolites were mainly enriched in arginine and proline metabolism, D-glutamine and D-glutamate metabolism, purine metabolism, biosynthesis of unsaturated fatty acids. Transcriptomics results showed that 5,963 genes were clearly altered, of which 2,848 genes were up-regulated and 3,115 genes were down-regulated, and these differentially expressed genes were mainly involved in response to stimulus, metabolic process, immune system process. Surprisingly, the Integrative analysis revealed significant dysregulation of purine metabolism at both transcriptome and metabolome levels in the acute phase of SCI, with 48 differential genes and 16 differential metabolites involved. Further analysis indicated that dysregulation of purine metabolism could seriously affect the energy metabolism of the injured microenvironment and increase oxidative stress as well as other responses detrimental to nerve repair and regeneration. Discussion On the whole, we have for the first time combined transcriptomics and metabolomics to systematically analyze the potential molecular pathways of metabolic dysregulation in the acute phase of SCI, which will contribute to broaden our understanding of the sophisticated molecular mechanisms of SCI, in parallel with serving as a foundation for future studies of neural repair and regeneration after SCI.
Collapse
Affiliation(s)
- Zhong Zeng
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China,Ningxia Key Laboratory of Stem Cell and Regenerative Medicine, General Hospital of Ningxia Medical University, Yinchuan, China,School of Clinical Medicine, Ningxia Medical University, Yinchuan, China,Ningxia Key Laboratory of Craniocerebral Diseases, Ningxia Medical University, Yinchuan, China
| | - Mei Li
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China,Ningxia Key Laboratory of Stem Cell and Regenerative Medicine, General Hospital of Ningxia Medical University, Yinchuan, China,School of Clinical Medicine, Ningxia Medical University, Yinchuan, China,Ningxia Key Laboratory of Craniocerebral Diseases, Ningxia Medical University, Yinchuan, China
| | - Zhanfeng Jiang
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China,Ningxia Key Laboratory of Stem Cell and Regenerative Medicine, General Hospital of Ningxia Medical University, Yinchuan, China,School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Yuanxiang Lan
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China,Ningxia Key Laboratory of Stem Cell and Regenerative Medicine, General Hospital of Ningxia Medical University, Yinchuan, China,School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Lei Chen
- Department of Neurosurgery, The First People’s Hospital of Shizuishan, Shizuishan, China
| | - Yanjun Chen
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China,Ningxia Key Laboratory of Stem Cell and Regenerative Medicine, General Hospital of Ningxia Medical University, Yinchuan, China,School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Hailiang Li
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, China,Ningxia Key Laboratory of Craniocerebral Diseases, Ningxia Medical University, Yinchuan, China
| | - Jianwen Hui
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China,Ningxia Key Laboratory of Stem Cell and Regenerative Medicine, General Hospital of Ningxia Medical University, Yinchuan, China,School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Lijian Zhang
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Hebei University, Baoding, China
| | - Xvlei Hu
- Department of Neurosurgery, Shanxi Provincial People’s Hospital, Taiyuan, China
| | - Hechun Xia
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China,Ningxia Key Laboratory of Stem Cell and Regenerative Medicine, General Hospital of Ningxia Medical University, Yinchuan, China,*Correspondence: Hechun Xia,
| |
Collapse
|
9
|
The Provenance, Providence, and Position of Endothelial Cells in Injured Spinal Cord Vascular Pathology. Cell Mol Neurobiol 2022; 43:1519-1535. [PMID: 35945301 DOI: 10.1007/s10571-022-01266-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 07/21/2022] [Indexed: 11/03/2022]
Abstract
Endothelial cells (ECs) and pericytes are present in all blood vessels. Their position confers an important role in controlling oxygen and nutrient transportation to the different organs. ECs can adopt different morphologies based on their need and functions. Both ECs and pericytes express different surface markers that help in their identification, but heterogeneity and overlapping between markers among different cells pose a challenge for their precise identification. Spatiotemporal association of ECs and pericytes have great importance in sprout formation and vessel stabilization. Any traumatic injury in CNS may lead to vascular damage along with neuronal damage. Hence, ECs-pericyte interaction by physical contact and paracrine molecules is crucial in recovering the epicenter region by promoting angiogenesis. ECs can transform into other types of cells through endothelial-mesenchymal transition (EndMT), promoting wound healing in the epicenter region. Various signaling pathways mediate the interaction of ECs with pericytes that have an extensive role in angiogenesis. In this review, we discussed ECs and pericytes surface markers, the spatiotemporal association and interaction of ECs-pericytes, and signaling associated with the pathology of traumatic SCI. Linking the brain or spinal cord-specific pathologies and human vascular pathology will pave the way toward identifying new therapeutic targets and developing innovative preventive strategies. Endothelial-pericyte interaction strategic for formation of functional neo-vessels that are crucial for neurological recovery.
Collapse
|
10
|
NPC transplantation rescues sci-driven cAMP/EPAC2 alterations, leading to neuroprotection and microglial modulation. Cell Mol Life Sci 2022; 79:455. [PMID: 35904607 PMCID: PMC9338125 DOI: 10.1007/s00018-022-04494-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/07/2022] [Accepted: 07/17/2022] [Indexed: 11/17/2022]
Abstract
Neural progenitor cell (NPC) transplantation represents a promising treatment strategy for spinal cord injury (SCI); however, the underlying therapeutic mechanisms remain incompletely understood. We demonstrate that severe spinal contusion in adult rats causes transcriptional dysregulation, which persists from early subacute to chronic stages of SCI and affects nearly 20,000 genes in total tissue extracts. Functional analysis of this dysregulated transcriptome reveals the significant downregulation of cAMP signalling components immediately after SCI, involving genes such as EPAC2 (exchange protein directly activated by cAMP), PKA, BDNF, and CAMKK2. The ectopic transplantation of spinal cord-derived NPCs at acute or subacute stages of SCI induces a significant transcriptional impact in spinal tissue, as evidenced by the normalized expression of a large proportion of SCI-affected genes. The transcriptional modulation pattern driven by NPC transplantation includes the rescued expression of cAMP signalling genes, including EPAC2. We also explore how the sustained in vivo inhibition of EPAC2 downstream signalling via the intrathecal administration of ESI-05 for 1 week impacts therapeutic mechanisms involved in the NPC-mediated treatment of SCI. NPC transplantation in SCI rats in the presence and absence of ESI-05 administration prompts increased rostral cAMP levels; however, NPC and ESI-05 treated animals exhibit a significant reduction in EPAC2 mRNA levels compared to animals receiving only NPCs treatment. Compared with transplanted animals, NPCs + ESI-05 treatment increases the scar area (as shown by GFAP staining), polarizes microglia into an inflammatory phenotype, and increases the magnitude of the gap between NeuN + cells across the lesion. Overall, our results indicate that the NPC-associated therapeutic mechanisms in the context of SCI involve the cAMP pathway, which reduces inflammation and provides a more neuropermissive environment through an EPAC2-dependent mechanism.
Collapse
|
11
|
Li Y, Ritzel RM, Lei Z, Cao T, He J, Faden AI, Wu J. Sexual dimorphism in neurological function after SCI is associated with disrupted neuroinflammation in both injured spinal cord and brain. Brain Behav Immun 2022; 101:1-22. [PMID: 34954073 PMCID: PMC8885910 DOI: 10.1016/j.bbi.2021.12.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/29/2021] [Accepted: 12/18/2021] [Indexed: 10/19/2022] Open
Abstract
Whereas human spinal cord injury (SCI) is more common in men, the prevalence is growing in women. However, little is known about the effect of biological sex on brain dysfunction and injury mechanisms. To model the highest per capita rate of injury (ages between 16 and 30 years old) in humans, in the present study, young adult or a young/middle-aged male and female C57BL/6 mice were subjected to moderate contusion SCI. When mice were injured at 10-12-week-old, transcriptomic analysis of inflammation-related genes and flow cytometry revealed a more aggressive neuroinflammatory profile in male than females following 3 d SCI, ostensibly driven by sex-specific changes myeloid cell function rather than cell number. Female mice were generally more active at baseline, as evidenced by greater distance traveled in the open field. After SCI, female mice had more favorable locomotor function than male animals. At 13 weeks post-injury, male mice showed poor performance in cognitive and depressive-like behavioral tests, while injured female mice showed fewer deficits in these tasks. However, when injured at 6 months old followed by 8 months post-injury, male mice had considerably less inflammatory activation compared with female animals despite having similar or worse outcomes in affective, cognitive, and motor tasks. Collectively, these findings indicate that sex differences in functional outcome after SCI are associated with the age at onset of injury, as well as disrupted neuroinflammation not only at the site of injury but also in remote brain regions. Thus, biological sex should be considered when designing new therapeutic agents.
Collapse
Affiliation(s)
- Yun Li
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD, 21201 USA
| | - Rodney M. Ritzel
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD, 21201 USA
| | - Zhuofan Lei
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD, 21201 USA
| | - Tuoxin Cao
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD, 21201 USA
| | - Junyun He
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD, 21201 USA
| | - Alan I Faden
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD, 21201 USA,University of Maryland Center to Advance Chronic Pain Research, University of Maryland, Baltimore, MD, 21201 USA
| | - Junfang Wu
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD 21201, USA; University of Maryland Center to Advance Chronic Pain Research, University of Maryland, Baltimore, MD 21201, USA.
| |
Collapse
|
12
|
Wu X, Wei H, Wu JQ. Coding and long non-coding gene expression changes in the CNS traumatic injuries. Cell Mol Life Sci 2022; 79:123. [PMID: 35129669 PMCID: PMC8907010 DOI: 10.1007/s00018-021-04092-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 02/06/2023]
Abstract
Traumatic brain injury (TBI) and spinal cord injury (SCI) are two main central nervous system (CNS) traumas, caused by external physical insults. Both injuries have devastating effects on the quality of life, and there is no effective therapy at present. Notably, gene expression profiling using bulk RNA sequencing (RNA-Seq) and single-cell RNA-Seq (scRNA-Seq) have revealed significant changes in many coding and non-coding genes, as well as important pathways in SCI and TBI. Particularly, recent studies have revealed that long non-coding RNAs (lncRNAs) with lengths greater than 200 nucleotides and without protein-coding potential have tissue- and cell type-specific expression pattern and play critical roles in CNS injury by gain- and loss-of-function approaches. LncRNAs have been shown to regulate protein-coding genes or microRNAs (miRNAs) directly or indirectly, participating in processes including inflammation, glial activation, cell apoptosis, and vasculature events. Therefore, lncRNAs could serve as potential targets for the diagnosis, treatment, and prognosis of SCI and TBI. In this review, we highlight the recent progress in transcriptome studies of SCI and TBI and insights into molecular mechanisms.
Collapse
Affiliation(s)
- Xizi Wu
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
- Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, TX, 77030, USA
| | - Haichao Wei
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
- Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, TX, 77030, USA
| | - Jia Qian Wu
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
- Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, TX, 77030, USA.
- MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX, 77030, USA.
| |
Collapse
|
13
|
Da CM, Liao HY, Deng YS, Zhao GH, Ma L, Zhang HH. Transcription Factor SP2 Regulates Ski-mediated Astrocyte Proliferation In Vitro. Neuroscience 2021; 479:22-34. [PMID: 34687796 DOI: 10.1016/j.neuroscience.2021.10.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/24/2021] [Accepted: 10/11/2021] [Indexed: 10/20/2022]
Abstract
Transcription factors bind specific sequences upstream of the 5' end of their target genes to ensure proper spatiotemporal expression of the target gene. This study aims to demonstrate that the transcription factor SP2 regulates expression of the Ski gene, which has specific binding sites for SP2, and thus enables Ski to regulate astrocyte proliferation. The upstream regulation mechanism of astrocyte proliferation was explored to further regulate the formation of glial scar in specific time and space after spinal cord injury. JASPAR and UCSC databases were used to predict transcription factor binding and the threshold was gradually reduced to screen transcription factors upstream of Ski, leading to the identification of SP2. Next, we analyzed the correlation between the expression of SP2 and Ski in normal astrocytes and reactive astrocytes, as well as the changes in astrocyte proliferation. To confirm that SP2 regulates Ski during astrocyte proliferation, astrocytes were transfected siRNA targeting SP2 and then astrocyte proliferation were analyzed. Finally, a dual luciferase reporter assay and Chromatin immunoprecipitation (ChIP) assay confirmed that the promoter region of Ski contained a specific SP2 binding site. This is the first that SP2 has been identified and confirmed to play an important role in astrocyte proliferation by regulating Ski expression. These results may help identify novel targets for the treatment of spinal cord injury.
Collapse
Affiliation(s)
- Chao-Ming Da
- The Second Clinical Medical College of Lanzhou University, 82 Cuiying Men, Lanzhou 730030, PR China; Gansu Provincial Maternal and Child Health Hospital, 143Qilihe North Street, Lanzhou 730050, PR China
| | - Hai-Yang Liao
- The Second Clinical Medical College of Lanzhou University, 82 Cuiying Men, Lanzhou 730030, PR China
| | - Yin-Shuan Deng
- Gansu Provincial Maternal and Child Health Hospital, 143Qilihe North Street, Lanzhou 730050, PR China
| | - Guang-Hai Zhao
- The Second Clinical Medical College of Lanzhou University, 82 Cuiying Men, Lanzhou 730030, PR China; Gansu Provincial Maternal and Child Health Hospital, 143Qilihe North Street, Lanzhou 730050, PR China
| | - Lin Ma
- The Second Clinical Medical College of Lanzhou University, 82 Cuiying Men, Lanzhou 730030, PR China; Gansu Provincial Maternal and Child Health Hospital, 143Qilihe North Street, Lanzhou 730050, PR China
| | - Hai-Hong Zhang
- The Second Clinical Medical College of Lanzhou University, 82 Cuiying Men, Lanzhou 730030, PR China.
| |
Collapse
|
14
|
Liu W, Yu J, Wang YF, Shan QQ, Wang YX. Selection of suitable internal controls for gene expression normalization in rats with spinal cord injury. Neural Regen Res 2021; 17:1387-1392. [PMID: 34782586 PMCID: PMC8643046 DOI: 10.4103/1673-5374.327350] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
There is a lack of systematic research on the expression of internal control genes used for gene expression normalization in real-time reverse transcription polymerase chain reaction in spinal cord injury research. In this study, we used rat models of spinal cord hemisection to analyze the expression stability of 13 commonly applied reference genes: Actb, Ankrd27, CypA, Gapdh, Hprt1, Mrpl10, Pgk1, Rictor, Rn18s, Tbp, Ubc, Ubxn11, and Ywhaz. Our results show that the expression of Ankrd27, Ubc, and Tbp were stable after spinal cord injury, while Actb was the most unstable internal control gene. Ankrd27, Ubc, Tbp, and Actb were consequently used to investigate the effects of internal control genes with differing stabilities on the normalization of target gene expression. Target gene expression levels and changes over time were similar when Ankrd27, Ubc, and Tbp were used as internal controls but different when Actb was used as an internal control. We recommend that Ankrd27, Ubc, and Tbp are used as internal control genes for real-time reverse transcription polymerase chain reaction in spinal cord injury research. This study was approved by the Administration Committee of Experimental Animals, Jiangsu Province, China (approval No. 20180304-008) on March 4, 2018.
Collapse
Affiliation(s)
- Wei Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, China
| | - Jie Yu
- Department of Nursing, The Affiliated Hospital of Nantong University; Department of Clinical Medicine, Medical School of Nantong University, Nantong, Jiangsu Province, China
| | - Yi-Fan Wang
- Department of Clinical Medicine, Medical School of Nantong University, Nantong, Jiangsu Province, China
| | - Qian-Qian Shan
- Department of Radiotherapy and Oncology, The Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Ya-Xian Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
15
|
Wang Q, Liu L, Cao J, Abula M, Yimingjiang Y, Feng S. Weighted gene co-expression network analysis reveals that CXCL10, IRF7, MX1, RSAD2, and STAT1 are related to the chronic stage of spinal cord injury. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1248. [PMID: 34532385 PMCID: PMC8421925 DOI: 10.21037/atm-21-3586] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/05/2021] [Indexed: 01/23/2023]
Abstract
Background The process of spinal cord injury involves acute, subacute, and chronic stages; however, the specific pathological mechanism remains unclear. In this study, weighted gene co-expression network analysis (WGCNA) was used to clarify specific modules and hub genes that associated with SCI. Methods The gene expression profiles GEO Series (GSE)45006 and GEO Series (GSE)2599 were downloaded, and the co-expression network modules were identified by the WGCNA package. The protein-protein interaction (PPI) network and Venn diagram were constructed to identify hub genes. Quantitative real-time polymerase chain reaction (QRT-PCR) was used to quantify the degree of the top five candidate genes. Correlation analysis was also carried out between hub genes and immune infiltration. Results In total, 14,402 genes and seven modules were identified. The brown module was considered to be the most critical module for the chronic stage of SCI, which contained 775 genes that were primarily associated with various biological processes, including extracellular structure organization, lysosome, isoprenoid biosynthesis, response to nutrients, response to wounding, sulfur compound metabolic process, cofactor metabolic process, and ossification. Furthermore, C-X-C motif chemokine ligand 10 (CXCL10), myxovirus (influenza virus) resistance 1 (MX1), signal transducer and activator of transcription 1 (STAT1), interferon regulatory factor 7 (IRF7) and radical S-adenosyl methionine domain containing 2 (RSAD2) were identified as the hub genes in the PPI and Venn diagram network, and verified by qRT-PCR. Immune infiltration analysis revealed that CD8+ T cells, macrophages, neutrophils, plasmacytoid dendritic cells, helper T cells, Th2 cells, and tumor-infiltrating lymphocytes may be involved in the SCI process. Conclusions There were significant differences among the five hub genes (CXCL10, IRF7, MX1, RSAD2, and STAT1) of the brown module, which may be potential diagnostic and prognostic markers of SCI, and immune cell infiltration may play an important role in the chronic stage of SCI.
Collapse
Affiliation(s)
- Qi Wang
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China.,International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Liang Liu
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China.,International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Jiangang Cao
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China.,International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Muhetidier Abula
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China.,International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Yasen Yimingjiang
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China.,International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Shiqing Feng
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China.,International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
16
|
Tao B, Wang Q, Cao J, Yasen Y, Ma L, Sun C, Shang J, Feng S. The mechanisms of Chuanxiong Rhizoma in treating spinal cord injury based on network pharmacology and experimental verification. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1145. [PMID: 34430586 PMCID: PMC8350674 DOI: 10.21037/atm-21-2529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/13/2021] [Indexed: 12/12/2022]
Abstract
Background Chuanxiong Rhizoma (CR) is a common traditional Chinese medicine (TCM) that has been widely used in the treatment of spinal cord injury (SCI). However, the underlying molecular mechanism of CR is still largely unknown. This study was designed to explore the bioactive components and the mechanism of CR in treating SCI based on a network pharmacology approach and experimental validation. Methods First, the active compounds and related target genes in CR were screened from the Traditional Chinese Medicine Systems Pharmacology (TCMSP) database. Subsequently, the corresponding target genes of SCI were collected by the Therapeutic Target Database (TTD) and GeneCards database. A protein-protein interaction (PPI) network was constructed using the STRING database. Furthermore, GO function and KEGG enrichment analysis of the targets were analyzed using DAVID tools. Subsequently, the AutoDock software for molecular docking was adopted to verify the above network pharmacology analysis results between the active components and key targets. Finally, an SCI rat model animal validation experiment was assessed to verify the reliability of the network pharmacology results. Results There were 7 active ingredients identified in CR and 246 SCI-related targets were collected. Then, 4 core nodes (ALB, AKT1, MAPK1, and EGFR) were discerned via construction of a PPI network of 111 common targets. The KEGG enrichment analysis results indicated that the Ras signaling pathway, estrogen signaling pathway, and vascular endothelial growth factor (VEGF) signaling pathway were enriched in the development of SCI. The results of molecular docking demonstrated that the effects of CR have a strong affinity with the 4 pivotal targets. Experimental validation in a rat model showed that CR could effectively improve the recovery of motor function and mechanical pain threshold after SCI. Conclusions In summary, it revealed the mechanism of CR treatment for SCI involve active ingredients, targets and signaling pathways, providing a scientific basis for future investigations into the mechanism underlying CR treating for SCI.
Collapse
Affiliation(s)
- Bo Tao
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China.,International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin, China
| | - Qi Wang
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China.,International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin, China
| | - Jiangang Cao
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China.,International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin, China
| | - Yimingjiang Yasen
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China.,International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin, China
| | - Lei Ma
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China.,International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin, China
| | - Chao Sun
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China.,International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin, China
| | - Jun Shang
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China.,International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin, China
| | - Shiqing Feng
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China.,International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin, China
| |
Collapse
|
17
|
Zhang H, Xu J, Saijilafu. The effects of GelMA hydrogel on nerve repair and regeneration in mice with spinal cord injury. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1147. [PMID: 34430588 PMCID: PMC8350630 DOI: 10.21037/atm-21-2874] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/15/2021] [Indexed: 12/02/2022]
Abstract
Background To determine the effects of gelatin methacryloyl (GelMA) hydrogel on nerve repair and regeneration in mice with spinal cord injury (SCI). Methods A total of 30 ICR mice (6–8 weeks old) were randomly assigned into the control group, the model group, and the experimental group via the random digits table method. There were 10 mice in each group. All mice underwent a T8 laminectomy. For mice in the experimental group and the model group, after the T8 laminectomy, SCI models were constructed by clamping the mice spinal cord tissue for 1 minute using an aneurysm clip (25 g). Additionally, the SCI area of each mouse in the experimental group was locally injected with 0.05–0.7 mL GelMA hydrogel [10% (w/v)] and photocrosslinking was initiated under a blue light source with a wavelength of 405 nm. The exercise performance of each mouse was tested via the bedside mobility scale (BMS) on post-operative days 1, 3, 7, and 14. After 14 days, mice were sacrificed and the dorsal root ganglion (DRG) sensory neurons were isolated and cultured for 3 days in vitro. The axon lengths of the neurons were then evaluated. Immunohistochemical staining was performed to assess the development of syringomyelia in the area. Western blots (WB) and immunofluorescence staining were performed to quantify the expression of glial fibrillary acidic protein (GFAP), growth associated protein (GAP)43, and nestin in the DRG neurons from each group of mice. Results Compared with mice in the control group, mice in the SCI model group showed a notable decrease in exercise ability, while the exercise ability of mice in the experimental group recovered markedly after treatment with GelMA hydrogel. Administration of GelMA hydrogel lengthened the axon of DRG neurons in mice and reduced the area of syringomyelia. Furthermore, GelMA hydrogel inhibited scar formation and promoted the recovery of neurological function by upregulating GAP43 and nestin expression and downregulating GFAP expression. Conclusions In mice with SCI, local injection of GelMA hydrogel strongly inhibited scar formation, reduced the area of syringomyelia, and promoted nerve regeneration and recovery of limb movement function.
Collapse
Affiliation(s)
- Hongcheng Zhang
- Department of Orthopaedics, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jinhui Xu
- Department of Orthopedic Oncology, Changzheng Hospital, Shanghai, China
| | - Saijilafu
- Department of Orthopaedics, the First Affiliated Hospital of Soochow University, Suzhou, China.,Orthopaedic Institute, Medical College, Soochow University, Suzhou, China
| |
Collapse
|
18
|
A Time-Course Study of the Expression Level of Synaptic Plasticity-Associated Genes in Un-Lesioned Spinal Cord and Brain Areas in a Rat Model of Spinal Cord Injury: A Bioinformatic Approach. Int J Mol Sci 2021; 22:ijms22168606. [PMID: 34445312 PMCID: PMC8395345 DOI: 10.3390/ijms22168606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/27/2021] [Accepted: 08/06/2021] [Indexed: 12/27/2022] Open
Abstract
"Neuroplasticity" is often evoked to explain adaptation and compensation after acute lesions of the Central Nervous System (CNS). In this study, we investigated the modification of 80 genes involved in synaptic plasticity at different times (24 h, 8 and 45 days) from the traumatic spinal cord injury (SCI), adopting a bioinformatic analysis. mRNA expression levels were analyzed in the motor cortex, basal ganglia, cerebellum and in the spinal segments rostral and caudal to the lesion. The main results are: (i) a different gene expression regulation is observed in the Spinal Cord (SC) segments rostral and caudal to the lesion; (ii) long lasting changes in the SC includes the extracellular matrix (ECM) enzymes Timp1, transcription regulators (Egr, Nr4a1), second messenger associated proteins (Gna1, Ywhaq); (iii) long-lasting changes in the Motor Cortex includes transcription regulators (Cebpd), neurotransmitters/neuromodulators and receptors (Cnr1, Gria1, Nos1), growth factors and related receptors (Igf1, Ntf3, Ntrk2), second messenger associated proteins (Mapk1); long lasting changes in Basal Ganglia and Cerebellum include ECM protein (Reln), growth factors (Ngf, Bdnf), transcription regulators (Egr, Cebpd), neurotransmitter receptors (Grin2c). These data suggest the molecular mapping as a useful tool to investigate the brain and SC reorganization after SCI.
Collapse
|
19
|
Hu H, Wang H, Liu W. Effect of ganglioside combined with Chip Jiaji electro-acupuncture on Nogo-NgR signal pathway in SCI rats. Saudi J Biol Sci 2021; 28:4132-4136. [PMID: 34354392 PMCID: PMC8324963 DOI: 10.1016/j.sjbs.2021.02.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 02/05/2021] [Accepted: 02/07/2021] [Indexed: 02/02/2023] Open
Abstract
At present, the effect of ganglioside combined with Jiaji electroacupuncture (Jiaji EA) on SCI still remains unclear. This study explores the effect of ganglioside combined with electroacupuncture on Nogo/NgR signal pathway in spinal cord tissue of spinal cord injury (SCI) rats. Basso Beattie Bresnahan (BBB) score was used to evaluate spinal cord function after modeling and 14 days post ganglioside and electroacupuncture treatment. RT-qPCR and western blot were performed to evaluate the expression levels of targets in spinal cord tissue. After 14 days of treatment, the BBB scores of Jiaji EA group, ganglioside group and combination group were all improved. The expression levels of IL-1β, IL-6 and TNF-α in Jiaji EA group, ganglioside group and combination group were significantly lower than those in model group. Both of mRNA and protein expression levels of Nogo-A, NgR and LINGO-1 in the model group were significantly higher than those in the Jiaji EA group, ganglioside group and combination group. Ganglioside combined with Jiaji EA has a stronger effect on promoting the recovery of nerve function. Its mechanism of action may be related to its inhibition of the expression of proinflammatory cytokines such as IL-1β, IL-6 and TNF-α and Nogo-NgR signal pathway to promote neuronal growth. Our results will provide fundamental information for further SCI studies.
Collapse
Affiliation(s)
- Hongfeng Hu
- Department of Neurolog, Jingmen NO.1 People's Hospital, Jingmen, Hubei 448000, China
| | - Hui Wang
- Department of Neurolog, The 966 Hospital of Dandong PLA, Dandong, Liaoning 118000, China
| | - Wei Liu
- Department of Neurolog, Jingmen NO.1 People's Hospital, Jingmen, Hubei 448000, China
| |
Collapse
|
20
|
Van Broeckhoven J, Sommer D, Dooley D, Hendrix S, Franssen AJPM. Macrophage phagocytosis after spinal cord injury: when friends become foes. Brain 2021; 144:2933-2945. [PMID: 34244729 DOI: 10.1093/brain/awab250] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/12/2021] [Accepted: 06/20/2021] [Indexed: 11/14/2022] Open
Abstract
After spinal cord injury (SCI), macrophages can exert either beneficial or detrimental effects depending on their phenotype. Aside from their critical role in inflammatory responses, macrophages are also specialized in the recognition, engulfment, and degradation of pathogens, apoptotic cells, and tissue debris. They promote remyelination and axonal regeneration by removing inhibitory myelin components and cellular debris. However, excessive intracellular presence of lipids and dysregulated intracellular lipid homeostasis result in the formation of foamy macrophages. These develop a pro-inflammatory phenotype that may contribute to further neurological decline. Additionally, myelin-activated macrophages play a crucial role in axonal dieback and retraction. Here, we review the opposing functional consequences of phagocytosis by macrophages in SCI, including remyelination and regeneration versus demyelination, degeneration, and axonal dieback. Furthermore, we discuss how targeting the phagocytic ability of macrophages may have therapeutic potential for the treatment of SCI.
Collapse
Affiliation(s)
- Jana Van Broeckhoven
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Daniela Sommer
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Dearbhaile Dooley
- School of Medicine, Health Sciences Centre, University College Dublin, Belfield Dublin 4, Ireland.,UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Sven Hendrix
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium.,Medical School Hamburg, Hamburg, Germany
| | - Aimée J P M Franssen
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| |
Collapse
|