1
|
Asghari M, Sabo AR, Barwinska D, Ferreira RM, Ferkowicz M, Bowen WS, Cheng YH, Gisch DL, Gulbronson C, Phillips CL, Kelly KJ, Sutton TA, Williams JC, Vazquez M, O'Toole J, Palevsky P, Rosas SE, Waikar SS, Kiryluk K, Parikh C, Hodgins J, Sarder P, De Boer IH, Himmelfarb J, Kretzler M, Jain S, Eadon MT, Winfree S, El-Achkar TM, Dagher PC. Integration of spatial multiplexed protein imaging and transcriptomics in the human kidney tracks the regenerative potential timeline of proximal tubules. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.26.625544. [PMID: 39677736 PMCID: PMC11642746 DOI: 10.1101/2024.11.26.625544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
The organizational principles of nephronal segments are based on longstanding anatomical and physiological attributes that are closely linked to the homeostatic functions of the kidney. Novel molecular approaches have recently uncovered layers of deeper signatures and states in tubular cells that arise at various timepoints on the spectrum between health and disease. For example, a dedifferentiated state of proximal tubular cells with mesenchymal stemness markers is frequently seen after injury. The persistence of such a state is associated with failed repair. Here, we introduce a novel analytical pipeline applied to highly multiplexed spatial protein imaging to characterize proximal tubular subpopulations and neighborhoods in reference and disease human kidney tissue. The results were validated and extended through integration with spatial and single cell transcriptomics. We demonstrate that, in reference tissue, a large proportion of S1 and S2 proximal tubular epithelial cells express THY1, a mesenchymal stromal and stem cell marker that regulates differentiation. Kidney disease is associated with loss of THY1 and transition towards expression of PROM1, another stem cell marker shown recently to be linked to failed repair. We demonstrate that the trajectory of proximal tubular cells to THY1 expression is clearly distinct from that of PROM1, and that a state with PROM1 expression is associated with niches of inflammation. Our data support a model in which the interplay between THY1 and PROM1 expression in proximal tubules associates with their regenerative potential and marks the timeline of disease progression.
Collapse
|
2
|
Blank V, Karlas T, Anderegg U, Wiegand J, Arnold J, Bundalian L, Le Duc GD, Körner C, Ebert T, Saalbach A. Thy-1 restricts steatosis and liver fibrosis in steatotic liver disease. Liver Int 2024; 44:2075-2090. [PMID: 38702958 DOI: 10.1111/liv.15956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/26/2024] [Accepted: 04/16/2024] [Indexed: 05/06/2024]
Abstract
BACKGROUND AND AIMS Steatotic liver disease (SLD) is generally considered to represent a hepatic manifestation of metabolic syndrome and includes a disease spectrum comprising isolated steatosis, metabolic dysfunction-associated steatohepatitis, liver fibrosis and ultimately cirrhosis. A better understanding of the detailed underlying pathogenic mechanisms of this transition is crucial for the design of new and efficient therapeutic interventions. Thymocyte differentiation antigen (Thy-1, also known as CD90) expression on fibroblasts controls central functions relevant to fibrogenesis, including proliferation, apoptosis, cytokine responsiveness, and myofibroblast differentiation. METHODS The impact of Thy-1 on the development of SLD and progression to fibrosis was investigated in high-fat diet (HFD)-induced SLD wild-type and Thy-1-deficient mice. In addition, the serum soluble Thy-1 (sThy-1) concentration was analysed in patients with metabolic dysfunction-associated SLD stratified according to steatosis, inflammation, or liver fibrosis using noninvasive markers. RESULTS We demonstrated that Thy-1 attenuates the development of fatty liver and the expression of profibrogenic genes in the livers of HFD-induced SLD mice. Mechanistically, Thy-1 directly inhibits the profibrotic activation of nonparenchymal liver cells. In addition, Thy-1 prevents palmitic acid-mediated amplification of the inflammatory response of myeloid cells, which might indirectly contribute to the pronounced development of liver fibrosis in Thy-1-deficient mice. Serum analysis of patients with metabolically associated steatotic liver disease syndrome revealed that sThy-1 expression is correlated with liver fibrosis status, as assessed by liver stiffness, the Fib4 score, and the NAFLD fibrosis score. CONCLUSION Our data strongly suggest that Thy-1 may function as a fibrosis-protective factor in mouse and human SLD.
Collapse
Affiliation(s)
- Valentin Blank
- Division of Gastroenterology, Department of Medicine II, Leipzig University Medical Center, Leipzig, Germany
- Division of Interdisciplinary Ultrasound, Department of Internal Medicine I - Gastroenterology and Pneumology, University Hospital Halle, Halle, Germany
| | - Thomas Karlas
- Division of Gastroenterology, Department of Medicine II, Leipzig University Medical Center, Leipzig, Germany
| | - Ulf Anderegg
- Department of Dermatology, Venereology and Allergology, University of Leipzig Medical Center, Leipzig, Germany
| | - Johannes Wiegand
- Division of Hepatology, Department of Medicine II, Leipzig University Medical Center, Leipzig, Germany
| | - Josi Arnold
- Department of Dermatology, Venereology and Allergology, University of Leipzig Medical Center, Leipzig, Germany
| | - Linnaeus Bundalian
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Gabriela-Diana Le Duc
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Christiane Körner
- Division of Hepatology, Clinic of Oncology, Gastroenterology, Hepatology, and Pneumology, University Hospital Leipzig, Leipzig, Germany
| | - Thomas Ebert
- Division of Endocrinology, Department of Medicine III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| | - Anja Saalbach
- Department of Dermatology, Venereology and Allergology, University of Leipzig Medical Center, Leipzig, Germany
| |
Collapse
|
3
|
Saalbach A, Anderegg U, Wendt R, Beige J, Bachmann A, Klöting N, Blüher M, Zhang MZ, Harris RC, Stumvoll M, Tönjes A, Ebert T. Antifibrotic Soluble Thy-1 Correlates with Renal Dysfunction in Chronic Kidney Disease. Int J Mol Sci 2023; 24:1896. [PMID: 36768219 PMCID: PMC9916214 DOI: 10.3390/ijms24031896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/12/2023] [Accepted: 01/12/2023] [Indexed: 01/21/2023] Open
Abstract
Kidney fibrosis is a major culprit in the development and progression of chronic kidney disease (CKD), ultimately leading to the irreversible loss of organ function. Thymocyte differentiation antigen-1 (Thy-1) controls many core functions of fibroblasts relevant to fibrogenesis but is also found in a soluble form (sThy-1) in serum and urine. We investigated the association of sThy-1 with clinical parameters in patients with CKD receiving hemodialysis treatment compared to individuals with a preserved renal function. Furthermore, Thy-1 tissue expression was detected in a mouse model of diabetic CKD (eNOS-/-; db/db) and non-diabetic control mice (eNOS-/-). Serum and urinary sThy-1 concentrations significantly increased with deteriorating renal function, independent of the presence of diabetes. Serum creatinine is the major, independent, and inverse predictor of serum sThy-1 levels. Moreover, sThy-1 is not only predicted by markers of renal function but is also itself an independent and strong predictor of markers of renal function, i.e., serum creatinine. Mice with severe diabetic CKD show increased Thy-1 mRNA and protein expression in the kidney compared to control animals, as well as elevated urinary sThy-1 levels. Pro-fibrotic mediators, such as interleukin (IL)-4, IL-13, IL-6 and transforming growth factor β, increase Thy-1 gene expression and release of sThy-1 from fibroblasts. Our data underline the role of Thy-1 in the control of kidney fibrosis in CKD and raise the opportunity that Thy-1 may function as a renal antifibrotic factor.
Collapse
Affiliation(s)
- Anja Saalbach
- Department of Dermatology, Venereology and Allergology, University of Leipzig Medical Center, 04103 Leipzig, Germany
| | - Ulf Anderegg
- Department of Dermatology, Venereology and Allergology, University of Leipzig Medical Center, 04103 Leipzig, Germany
| | - Ralph Wendt
- Hospital St. Georg, Division of Nephrology and Kuratorium for Dialysis and Transplantation, 04129 Leipzig, Germany
| | - Joachim Beige
- Hospital St. Georg, Division of Nephrology and Kuratorium for Dialysis and Transplantation, 04129 Leipzig, Germany
- Department for Internal Medicine, Medical Clinic 2, Martin-Luther-University Halle/Wittenberg, 06108 Halle, Germany
| | - Anette Bachmann
- Medical Department III—Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, 04103 Leipzig, Germany
| | - Nora Klöting
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, 04103 Leipzig, Germany
| | - Matthias Blüher
- Medical Department III—Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, 04103 Leipzig, Germany
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, 04103 Leipzig, Germany
| | - Ming-Zhi Zhang
- Division of Nephrology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37212, USA
- Department of Medicine, Nashville Veterans Affairs Hospital, Vanderbilt University School of Medicine, Nashville, TN 37212, USA
| | - Raymond C. Harris
- Division of Nephrology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37212, USA
- Department of Medicine, Nashville Veterans Affairs Hospital, Vanderbilt University School of Medicine, Nashville, TN 37212, USA
| | - Michael Stumvoll
- Medical Department III—Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, 04103 Leipzig, Germany
| | - Anke Tönjes
- Medical Department III—Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, 04103 Leipzig, Germany
| | - Thomas Ebert
- Medical Department III—Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, 04103 Leipzig, Germany
| |
Collapse
|
4
|
Pérez LA, Leyton L, Valdivia A. Thy-1 (CD90), Integrins and Syndecan 4 are Key Regulators of Skin Wound Healing. Front Cell Dev Biol 2022; 10:810474. [PMID: 35186924 PMCID: PMC8851320 DOI: 10.3389/fcell.2022.810474] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 01/06/2022] [Indexed: 12/12/2022] Open
Abstract
Acute skin wound healing is a multistage process consisting of a plethora of tightly regulated signaling events in specialized cells. The Thy-1 (CD90) glycoprotein interacts with integrins and the heparan sulfate proteoglycan syndecan 4, generating a trimolecular complex that triggers bi-directional signaling to regulate diverse aspects of the wound healing process. These proteins can act either as ligands or receptors, and they are critical for the successful progression of wound healing. The expression of Thy-1, integrins, and syndecan 4 is controlled during the healing process, and the lack of expression of any of these proteins results in delayed wound healing. Here, we review and discuss the roles and regulatory events along the stages of wound healing that support the relevance of Thy-1, integrins, and syndecan 4 as crucial regulators of skin wound healing.
Collapse
Affiliation(s)
- Leonardo A. Pérez
- Cellular Communication Laboratory, Program of Cellular & Molecular Biology, Center for Studies on Exercise, Metabolism and Cancer (CEMC), Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile
- Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Lisette Leyton
- Cellular Communication Laboratory, Program of Cellular & Molecular Biology, Center for Studies on Exercise, Metabolism and Cancer (CEMC), Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile
- Faculty of Medicine, Universidad de Chile, Santiago, Chile
- *Correspondence: Lisette Leyton, ; Alejandra Valdivia,
| | - Alejandra Valdivia
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA, United States
- *Correspondence: Lisette Leyton, ; Alejandra Valdivia,
| |
Collapse
|