1
|
Peng L, Zhang X, Zhu Y, Shi L, Ai K, Huang G, Ma W, Wei Z, Wang L, Ma Y, Wang L. T2WI and ADC radiomics combined with a nomogram based on clinicopathologic features to quantitatively predict microsatellite instability in colorectal cancer. Acad Radiol 2025; 32:1431-1450. [PMID: 39490321 DOI: 10.1016/j.acra.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 10/02/2024] [Accepted: 10/09/2024] [Indexed: 11/05/2024]
Abstract
RATIONALE AND OBJECTIVES Microsatellite instability (MSI) stratification can guide the clinical management of patients with colorectal cancer (CRC). This study aimed to establish a radiomics model for predicting the MSI status of patients with CRC before treatment. MATERIALS AND METHODS This retrospective study was performed on 366 patients diagnosed with CRC who underwent preoperative magnetic resonance imaging (MRI) and immunohistochemical staining between February 2016 and September 2023. The participants were divided randomly into training and testing cohorts in a 7:3 ratio. The tumor volume of interest (VOI) was manually delineated on T2-weighted imaging (T2WI) and apparent diffusion coefficient (ADC) sequences using 3D Slicer software, and radiomics features were extracted. Feature selection was performed using the least absolute shrinkage and selection operator method. A radiomics nomogram was developed using multiple logistic regression, and the predictive performance of the models was evaluated and compared using receiver operating characteristic curves. The calibration curve, clinical decision curve analysis (DCA) and clinical impact curve (CIC) were used to evaluate the clinical application value of the model. RESULTS The radiomics normogram combined with history of chronic enteritis, tumor location, MR-reported inflammatory response, D2-40, carcinoembryonic antigen, tumor protein 53, and monocyte was an excellent predictive tool. The area under the curve for the training and testing cohorts were 0.927 and 0.984, respectively. The DCA and CIC demonstrated favorable clinical application and net benefit. CONCLUSIONS A radiomics nomogram based on T2WI and ADC sequences and clinicopathologic features can effectively and noninvasively predict the MSI status in CRC. This approach helps clinicians in stratifying CRC patients and making clinical decisions for personalized treatment.
Collapse
Affiliation(s)
- Leping Peng
- Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Xiuling Zhang
- Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Yuanhui Zhu
- Department of Radiology, Gansu Provincial Hospital, Lanzhou 730000, China
| | - Liuyan Shi
- Department of Radiology, Gansu Provincial Hospital, Lanzhou 730000, China
| | - Kai Ai
- Department of Clinical and Technical Support, Philips Healthcare, Xi'an 710065, China
| | - Gang Huang
- Department of Radiology, Gansu Provincial Hospital, Lanzhou 730000, China
| | - Wenting Ma
- Department of Radiology, Gansu Provincial Hospital, Lanzhou 730000, China
| | - Zhaokun Wei
- Department of Radiology, Gansu Provincial Hospital, Lanzhou 730000, China
| | - Ling Wang
- Department of Pathology, Gansu Provincial Hospital, Lanzhou 730000, China
| | - Yaqiong Ma
- Department of Radiology, Gansu Provincial Hospital, Lanzhou 730000, China
| | - Lili Wang
- Department of Radiology, Gansu Provincial Hospital, Lanzhou 730000, China.
| |
Collapse
|
2
|
Bodalal Z, Hong EK, Trebeschi S, Kurilova I, Landolfi F, Bogveradze N, Castagnoli F, Randon G, Snaebjornsson P, Pietrantonio F, Lee JM, Beets G, Beets-Tan R. Non-invasive CT radiomic biomarkers predict microsatellite stability status in colorectal cancer: a multicenter validation study. Eur Radiol Exp 2024; 8:98. [PMID: 39186200 PMCID: PMC11347521 DOI: 10.1186/s41747-024-00484-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 05/30/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND Microsatellite instability (MSI) status is a strong predictor of response to immunotherapy of colorectal cancer. Radiogenomic approaches promise the ability to gain insight into the underlying tumor biology using non-invasive routine clinical images. This study investigates the association between tumor morphology and the status of MSI versus microsatellite stability (MSS), validating a novel radiomic signature on an external multicenter cohort. METHODS Preoperative computed tomography scans with matched MSI status were retrospectively collected for 243 colorectal cancer patients from three hospitals: Seoul National University Hospital (SNUH); Netherlands Cancer Institute (NKI); and Fondazione IRCCS Istituto Nazionale dei Tumori, Milan Italy (INT). Radiologists delineated primary tumors in each scan, from which radiomic features were extracted. Machine learning models trained on SNUH data to identify MSI tumors underwent external validation using NKI and INT images. Performances were compared in terms of area under the receiving operating curve (AUROC). RESULTS We identified a radiomic signature comprising seven radiomic features that were predictive of tumors with MSS or MSI (AUROC 0.69, 95% confidence interval [CI] 0.54-0.84, p = 0.018). Integrating radiomic and clinical data into an algorithm improved predictive performance to an AUROC of 0.78 (95% CI 0.60-0.91, p = 0.002) and enhanced the reliability of the predictions. CONCLUSION Differences in the radiomic morphological phenotype between tumors MSS or MSI could be detected using radiogenomic approaches. Future research involving large-scale multicenter prospective studies that combine various diagnostic data is necessary to refine and validate more robust, potentially tumor-agnostic MSI radiogenomic models. RELEVANCE STATEMENT Noninvasive radiomic signatures derived from computed tomography scans can predict MSI in colorectal cancer, potentially augmenting traditional biopsy-based methods and enhancing personalized treatment strategies. KEY POINTS Noninvasive CT-based radiomics predicted MSI in colorectal cancer, enhancing stratification. A seven-feature radiomic signature differentiated tumors with MSI from those with MSS in multicenter cohorts. Integrating radiomic and clinical data improved the algorithm's predictive performance.
Collapse
Affiliation(s)
- Zuhir Bodalal
- Department of Radiology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- GROW Research Institute for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Eun Kyoung Hong
- Department of Radiology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- GROW Research Institute for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
- Seoul National University Hospital, Seoul, South Korea
| | - Stefano Trebeschi
- Department of Radiology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- GROW Research Institute for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Ieva Kurilova
- Department of Radiology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- GROW Research Institute for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Federica Landolfi
- Department of Radiology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Radiology Unit, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy
| | - Nino Bogveradze
- Department of Radiology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- GROW Research Institute for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
- Department of Radiology, American Hospital Tbilisi, Tbilisi, Georgia
| | - Francesca Castagnoli
- Department of Radiology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Department of Radiology, Royal Marsden Hospital, London, UK
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
| | - Giovanni Randon
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Petur Snaebjornsson
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Filippo Pietrantonio
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
- Oncology and Hemato-oncology Department, University of Milan, Milan, Italy
| | - Jeong Min Lee
- Seoul National University Hospital, Seoul, South Korea
| | - Geerard Beets
- GROW Research Institute for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
- Department of Surgery, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Regina Beets-Tan
- Department of Radiology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
- GROW Research Institute for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands.
- Institute of Regional Health Research, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
3
|
Wang J, Song P, Zhang M, Liu W, Zeng X, Chen N, Li Y, Wang M. A prediction model based on deep learning and radiomics features of DWI for the assessment of microsatellite instability in endometrial cancer. Cancer Med 2024; 13:e70046. [PMID: 39171859 PMCID: PMC11339853 DOI: 10.1002/cam4.70046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 07/06/2024] [Accepted: 07/12/2024] [Indexed: 08/23/2024] Open
Abstract
BACKGROUND To explore the efficacy of a prediction model based on diffusion-weighted imaging (DWI) features extracted from deep learning (DL) and radiomics combined with clinical parameters and apparent diffusion coefficient (ADC) values to identify microsatellite instability (MSI) in endometrial cancer (EC). METHODS This study included a cohort of 116 patients with EC, who were subsequently divided into training (n = 81) and test (n = 35) sets. From DWI, conventional radiomics features and convolutional neural network-based DL features were extracted. Random forest (RF) and logistic regression were adopted as classifiers. DL features, radiomics features, clinical variables, ADC values, and their combinations were applied to establish DL, radiomics, clinical, ADC, and combined models, respectively. The predictive performance was evaluated through the area under the receiver operating characteristic curve (AUC), total integrated discrimination index (IDI), net reclassification index (NRI), calibration curves, and decision curve analysis (DCA). RESULTS The optimal predictive model, based on an RF classifier, comprised four DL features, three radiomics features, two clinical variables, and an ADC value. In the training and test sets, this model exhibited AUC values of 0.989 (95% CI: 0.935-1.000) and 0.885 (95% CI: 0.731-0.967), respectively, demonstrating different degrees of improvement compared with the clinical, DL, radiomics, and ADC models (AUC-training = 0.671, 0.873, 0.833, and 0.814, AUC-test = 0.685, 0.783, 0.708, and 0.713, respectively). The NRI and IDI analyses revealed that the combined model resulted in improved risk reclassification of the MSI status compared to the clinical, radiomics, DL, and ADC models. The calibration curves and DCA indicated good consistency and clinical utility of this model, respectively. CONCLUSIONS The predictive model based on DWI features extracted from DL and radiomics combined with clinical parameters and ADC values could effectively assess the MSI status in EC.
Collapse
Affiliation(s)
- Jing Wang
- Department of Nuclear MedicineThe Affiliated Hospital of Guizhou Medical UniversityGuiyangChina
| | - Pujiao Song
- Department of Nuclear MedicineThe Affiliated Hospital of Guizhou Medical UniversityGuiyangChina
| | - Meng Zhang
- Department of Magnetic Resonance ImagingThe First Affiliated Hospital of Xinxiang Medical UniversityXinxiangChina
| | - Wei Liu
- Department of Nuclear MedicineThe Affiliated Hospital of Guizhou Medical UniversityGuiyangChina
| | - Xi Zeng
- Department of Nuclear MedicineThe Affiliated Hospital of Guizhou Medical UniversityGuiyangChina
| | - Nanshan Chen
- Department of Nuclear MedicineThe Affiliated Hospital of Guizhou Medical UniversityGuiyangChina
| | - Yuxia Li
- Department of Magnetic Resonance ImagingThe First Affiliated Hospital of Xinxiang Medical UniversityXinxiangChina
| | - Minghua Wang
- Department of Nuclear MedicineThe Affiliated Hospital of Guizhou Medical UniversityGuiyangChina
| |
Collapse
|
4
|
Xing X, Li D, Peng J, Shu Z, Zhang Y, Song Q. A combinatorial MRI sequence-based radiomics model for preoperative prediction of microsatellite instability status in rectal cancer. Sci Rep 2024; 14:11760. [PMID: 38783014 PMCID: PMC11116457 DOI: 10.1038/s41598-024-62584-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 05/20/2024] [Indexed: 05/25/2024] Open
Abstract
This study aimed to develop an optimal radiomics model for preoperatively predicting microsatellite instability (MSI) in patients with rectal cancer (RC) based on multiparametric magnetic resonance imaging. The retrospective study included 308 RC patients who did not receive preoperative antitumor therapy, among whom 51 had MSI. Radiomics features were extracted and dimensionally reduced from T2-weighted imaging (T2WI), T1-weighted imaging (T1WI), diffusion-weighted imaging (DWI), and T1-weighted contrast enhanced (T1CE) images for each patient, and the features of each sequence were combined. Multifactor logistic regression was used to screen the optimal feature set for each combination. Different machine learning methods were applied to construct predictive MSI status models. Relative standard deviation values were determined to evaluate model performance and select the optimal model. Receiver operating characteristic (ROC) curve, calibration curve, and decision curve analyses were performed to evaluate model performance. The model constructed using the k-nearest neighbor (KNN) method combined with T2WI and T1CE images performed best. The area under the curve values for prediction of MSI with this model were 0.849 (0.804-0.887), with a sensitivity of 0.784 and specificity of 0.805. The Delong test showed no significant difference in diagnostic efficacy between the KNN-derived model and the traditional logistic regression model constructed using T1WI + DWI + T1CE and T2WI + T1WI + DWI + T1CE data (P > 0.05) and the diagnostic efficiency of the KNN-derived model was slightly better than that of the traditional model. From ROC curve analysis, the KNN-derived model significantly distinguished patients at low- and high-risk of MSI with the optimal threshold of 0.2, supporting the clinical applicability of the model. The model constructed using the KNN method can be applied to noninvasively predict MSI status in RC patients before surgery based on radiomics features from T2WI and T1CE images. Thus, this method may provide a convenient and practical tool for formulating treatment strategies and optimizing individual clinical decision-making for patients with RC.
Collapse
Affiliation(s)
- Xiaowei Xing
- Cancer Center, Department of Radiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Dongxue Li
- Cancer Center, Department of Radiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jiaxuan Peng
- Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Zhenyu Shu
- Cancer Center, Department of Radiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yang Zhang
- Cancer Center, Department of Radiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Qiaowei Song
- Cancer Center, Department of Radiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
5
|
Ma Y, Xu X, Lin Y, Li J, Yuan H. An integrative clinical and CT-based tumoral/peritumoral radiomics nomogram to predict the microsatellite instability in rectal carcinoma. Abdom Radiol (NY) 2024; 49:783-790. [PMID: 38001326 DOI: 10.1007/s00261-023-04099-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/14/2023] [Accepted: 10/18/2023] [Indexed: 11/26/2023]
Abstract
BACKGROUND Microsatellite instability (MSI) is detected in approximately 15% of colorectal carcinoma (CRC) patients, which has emerged as a predictor of patient response to adjuvant chemotherapy. Rectal carcinoma (RC) is the most common type of CRC. Therefore, prediction of MSI status of RC is significant for personalized medication. The purpose of this article was to develop an integrative model that combines clinical characteristics and computed tomography-based (CT-based) tumoral/peritumoral radiomics to predict the MSI status in RC. METHODS A cohort of 788 RCs with 97 high-MSI status (MSI-H) and 691 microsatellite stable status (MSS) were enrolled between January 2015 and January 2021 in this retrospective study. Clinical characteristics were recorded, and CT-based tumoral/peritumoral radiomic features were calculated after segmenting volume of interests. The patients were randomly divided into training and validation sets in a 7:3 proportion. Logistic models of single tumoral radiomics (LM-tRadio), peritumoral radiomics (LM-ptRadio), and combined tumoral/peritumoral radiomics (LM-Radio) were constructed to distinguish MSI-H from MSS, and a relevant radiomic score was calculated. An integrative nomogram (LM-Nomo) was developed, including significant clinical characteristics and CT-based tumoral/peritumoral radiomics. The area under receiver operator curve (AUC) was calculated to evaluate the efficacy of prediction. RESULTS The AUCs of LM-Radio were 0.785 (95%CI 0.732-0.837) in the training set and were 0.628 (95%CI 0.528-0.723) in the validation set, which were higher than those of LM-tRadio and LM-ptRadio. The AUCs of single LM-ptRadio were slightly higher than those of LM-tRadio (0.724 vs. 0.708 in the training set, 0.613 vs. 0.602 in the validation set). The LM-Nomo containing carcinoembryonic antigen (CEA), hypertension, and CT-based tumoral/peritumoral radiomic score showed the highest AUCs of 0.796 (95%CI 0.748-0.843) in the training set and 0.679 (95%CI 0.588-0.771) in the validation set in predicting the MSI-H status of RC. CONCLUSION The AUCs of LM-ptRadio were slightly higher than LM-tRadio to evaluate the MSI-H status of RC. The LM-Nomo, which includes significant clinical characteristics and CT-based tumoral/peritumoral radiomics score, demonstrated the best performance in predicting MSI-H status of RC.
Collapse
Affiliation(s)
- Yanqing Ma
- Cancer Center, Department of Radiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, 310014, Zhejiang, China
| | - Xiren Xu
- Cancer Center, Department of Radiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, 310014, Zhejiang, China
| | - Yi Lin
- Cancer Center, Department of Radiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, 310014, Zhejiang, China
| | - Jie Li
- Cancer Center, Department of Radiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, 310014, Zhejiang, China
| | - Hang Yuan
- Cancer Center, Department of Colorectal Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, 310014, Zhejiang, China.
| |
Collapse
|
6
|
Lin X, Jiang H, Zhao S, Hu H, Jiang H, Li J, Jia F. MRI-based radiomics model for preoperative prediction of extramural venous invasion of rectal adenocarcinoma. Acta Radiol 2024; 65:68-75. [PMID: 37097830 DOI: 10.1177/02841851231170364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
BACKGROUND Extramural venous invasion (EMVI) is an important prognostic factor of rectal adenocarcinoma. However, accurate preoperative assessment of EMVI remains difficult. PURPOSE To assess EMVI preoperatively through radiomics technology, and use different algorithms combined with clinical factors to establish a variety of models in order to make the most accurate judgments before surgery. MATERIAL AND METHODS A total of 212 patients with rectal adenocarcinoma between September 2012 and July 2019 were included and distributed to training and validation datasets. Radiomics features were extracted from pretreatment T2-weighted images. Different prediction models (clinical model, logistic regression [LR], random forest [RF], support vector machine [SVM], clinical-LR model, clinical-RF model, and clinical-SVM model) were constructed on the basis of radiomics features and clinical factors, respectively. The area under the curve (AUC) and accuracy were used to assess the predictive efficacy of different models. Sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were also calculated. RESULTS The clinical-LR model exhibited the best diagnostic efficiency with an AUC of 0.962 (95% confidence interval [CI] = 0.936-0.988) and 0.865 (95% CI = 0.770-0.959), accuracy of 0.899 and 0.828, sensitivity of 0.867 and 0.818, specificity of 0.913 and 0.833, PPV of 0.813 and 0.720, and NPV of 0.940 and 0.897 for the training and validation datasets, respectively. CONCLUSION The radiomics-based prediction model is a valuable tool in EMVI detection and can assist decision-making in clinical practice.
Collapse
Affiliation(s)
- Xue Lin
- Department of Radiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, PR China
- Research Lab for Medical Imaging and Digital Surgery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, PR China
| | - Hao Jiang
- Department of Radiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, PR China
| | - Sheng Zhao
- Department of Radiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, PR China
| | - Hongbo Hu
- Department of Radiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, PR China
| | - Huijie Jiang
- Department of Radiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, PR China
| | - Jinping Li
- Department of Radiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, PR China
| | - Fucang Jia
- Research Lab for Medical Imaging and Digital Surgery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, PR China
- Pazhou Lab, Guangzhou, PR China *Equal contributors
| |
Collapse
|
7
|
Jin Y, Yin H, Zhang H, Wang Y, Liu S, Yang L, Song B. Predicting tumor deposits in rectal cancer: a combined deep learning model using T2-MR imaging and clinical features. Insights Imaging 2023; 14:221. [PMID: 38117396 PMCID: PMC10733230 DOI: 10.1186/s13244-023-01564-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 11/05/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND Tumor deposits (TDs) are associated with poor prognosis in rectal cancer (RC). This study aims to develop and validate a deep learning (DL) model incorporating T2-MR image and clinical factors for the preoperative prediction of TDs in RC patients. METHODS AND METHODS A total of 327 RC patients with pathologically confirmed TDs status from January 2016 to December 2019 were retrospectively recruited, and the T2-MR images and clinical variables were collected. Patients were randomly split into a development dataset (n = 246) and an independent testing dataset (n = 81). A single-channel DL model, a multi-channel DL model, a hybrid DL model, and a clinical model were constructed. The performance of these predictive models was assessed by using receiver operating characteristics (ROC) analysis and decision curve analysis (DCA). RESULTS The areas under the curves (AUCs) of the clinical, single-DL, multi-DL, and hybrid-DL models were 0.734 (95% CI, 0.674-0.788), 0.710 (95% CI, 0.649-0.766), 0.767 (95% CI, 0.710-0.819), and 0.857 (95% CI, 0.807-0.898) in the development dataset. The AUC of the hybrid-DL model was significantly higher than the single-DL and multi-DL models (both p < 0.001) in the development dataset, and the single-DL model (p = 0.028) in the testing dataset. Decision curve analysis demonstrated the hybrid-DL model had higher net benefit than other models across the majority range of threshold probabilities. CONCLUSIONS The proposed hybrid-DL model achieved good predictive efficacy and could be used to predict tumor deposits in rectal cancer. CRITICAL RELEVANCE STATEMENT The proposed hybrid-DL model achieved good predictive efficacy and could be used to predict tumor deposits in rectal cancer. KEY POINTS • Preoperative non-invasive identification of TDs is of great clinical significance. • The combined hybrid-DL model achieved good predictive efficacy and could be used to predict tumor deposits in rectal cancer. • A preoperative nomogram provides gastroenterologist with an accurate and effective tool.
Collapse
Affiliation(s)
- Yumei Jin
- Department of Medical Imaging Center, Qujing First People's Hospital, Qujing, 655000, Yunnan Province, China.
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan Province, China.
| | - Hongkun Yin
- Beijing Infervision Technology Co.Ltd, Beijing, China
| | - Huiling Zhang
- Beijing Infervision Technology Co.Ltd, Beijing, China
| | - Yewu Wang
- Department of Joint and Sports Medicine, Qujing First People's Hospital, Qujing, 655000, Yunnan Province, China
| | - Shengmei Liu
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Ling Yang
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Bin Song
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan Province, China.
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan Province, China.
- Department of Radiology, Sanya People's Hospital, Sanya, Hainan Province, 572000, China.
| |
Collapse
|
8
|
O’Sullivan NJ, Temperley HC, Horan MT, Corr A, Mehigan BJ, Larkin JO, McCormick PH, Kavanagh DO, Meaney JFM, Kelly ME. Radiogenomics: Contemporary Applications in the Management of Rectal Cancer. Cancers (Basel) 2023; 15:5816. [PMID: 38136361 PMCID: PMC10741704 DOI: 10.3390/cancers15245816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/05/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Radiogenomics, a sub-domain of radiomics, refers to the prediction of underlying tumour biology using non-invasive imaging markers. This novel technology intends to reduce the high costs, workload and invasiveness associated with traditional genetic testing via the development of 'imaging biomarkers' that have the potential to serve as an alternative 'liquid-biopsy' in the determination of tumour biological characteristics. Radiogenomics also harnesses the potential to unlock aspects of tumour biology which are not possible to assess by conventional biopsy-based methods, such as full tumour burden, intra-/inter-lesion heterogeneity and the possibility of providing the information of tumour biology longitudinally. Several studies have shown the feasibility of developing a radiogenomic-based signature to predict treatment outcomes and tumour characteristics; however, many lack prospective, external validation. We performed a systematic review of the current literature surrounding the use of radiogenomics in rectal cancer to predict underlying tumour biology.
Collapse
Affiliation(s)
- Niall J. O’Sullivan
- Department of Radiology, St. James’s Hospital, D08 NHY1 Dublin, Ireland; (M.T.H.)
- School of Medicine, Trinity College Dublin, D02 PN40 Dublin, Ireland
- The National Centre for Advanced Medical Imaging (CAMI), St. James’s Hospital, D08 NHY1 Dublin, Ireland
| | - Hugo C. Temperley
- Department of Surgery, St. James’s Hospital, D08 NHY1 Dublin, Ireland;
| | - Michelle T. Horan
- Department of Radiology, St. James’s Hospital, D08 NHY1 Dublin, Ireland; (M.T.H.)
- School of Medicine, Trinity College Dublin, D02 PN40 Dublin, Ireland
- The National Centre for Advanced Medical Imaging (CAMI), St. James’s Hospital, D08 NHY1 Dublin, Ireland
| | - Alison Corr
- Department of Radiology, St. James’s Hospital, D08 NHY1 Dublin, Ireland; (M.T.H.)
| | - Brian J. Mehigan
- School of Medicine, Trinity College Dublin, D02 PN40 Dublin, Ireland
- Department of Surgery, St. James’s Hospital, D08 NHY1 Dublin, Ireland;
| | - John O. Larkin
- School of Medicine, Trinity College Dublin, D02 PN40 Dublin, Ireland
- Department of Surgery, St. James’s Hospital, D08 NHY1 Dublin, Ireland;
| | - Paul H. McCormick
- School of Medicine, Trinity College Dublin, D02 PN40 Dublin, Ireland
- Department of Surgery, St. James’s Hospital, D08 NHY1 Dublin, Ireland;
| | - Dara O. Kavanagh
- Department of Surgery, Tallaght University Hospital, D24 NR0A Dublin, Ireland
- Department of Surgery, Royal College of Surgeons, D02 YN77 Dublin, Ireland
| | - James F. M. Meaney
- Department of Radiology, St. James’s Hospital, D08 NHY1 Dublin, Ireland; (M.T.H.)
- The National Centre for Advanced Medical Imaging (CAMI), St. James’s Hospital, D08 NHY1 Dublin, Ireland
| | - Michael E. Kelly
- School of Medicine, Trinity College Dublin, D02 PN40 Dublin, Ireland
- Department of Surgery, St. James’s Hospital, D08 NHY1 Dublin, Ireland;
- Trinity St. James’s Cancer Institute (TSJCI), D08 NHY1 Dublin, Ireland
| |
Collapse
|
9
|
Miranda J, Horvat N, Araujo-Filho JAB, Albuquerque KS, Charbel C, Trindade BMC, Cardoso DL, de Padua Gomes de Farias L, Chakraborty J, Nomura CH. The Role of Radiomics in Rectal Cancer. J Gastrointest Cancer 2023; 54:1158-1180. [PMID: 37155130 PMCID: PMC11301614 DOI: 10.1007/s12029-022-00909-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/26/2022] [Indexed: 05/10/2023]
Abstract
PURPOSE Radiomics is a promising method for advancing imaging assessment in rectal cancer. This review aims to describe the emerging role of radiomics in the imaging assessment of rectal cancer, including various applications of radiomics based on CT, MRI, or PET/CT. METHODS We conducted a literature review to highlight the progress of radiomic research to date and the challenges that need to be addressed before radiomics can be implemented clinically. RESULTS The results suggest that radiomics has the potential to provide valuable information for clinical decision-making in rectal cancer. However, there are still challenges in terms of standardization of imaging protocols, feature extraction, and validation of radiomic models. Despite these challenges, radiomics holds great promise for personalized medicine in rectal cancer, with the potential to improve diagnosis, prognosis, and treatment planning. Further research is needed to validate the clinical utility of radiomics and to establish its role in routine clinical practice. CONCLUSION Overall, radiomics has emerged as a powerful tool for improving the imaging assessment of rectal cancer, and its potential benefits should not be underestimated.
Collapse
Affiliation(s)
- Joao Miranda
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Ave, Box 29, New York, NY, 10065, USA
| | - Natally Horvat
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Ave, Box 29, New York, NY, 10065, USA.
| | - Jose A B Araujo-Filho
- Department of Radiology, Hospital Sirio-Libanes, 91 Adma Jafet, Sao Paulo, SP, 01308-050, Brazil
| | - Kamila S Albuquerque
- Department of Radiology, Hospital Beneficência Portuguesa, 637 Maestro Cardim, Sao Paulo, SP, 01323-001, Brazil
| | - Charlotte Charbel
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Ave, Box 29, New York, NY, 10065, USA
| | - Bruno M C Trindade
- Department of Radiology, University of Sao Paulo, 75 Dr. Ovídio Pires de Campos, Sao Paulo, SP, 05403-010, Brazil
| | - Daniel L Cardoso
- Department of Radiology, Hospital Sirio-Libanes, 91 Adma Jafet, Sao Paulo, SP, 01308-050, Brazil
| | | | - Jayasree Chakraborty
- Department of Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA
| | - Cesar Higa Nomura
- Department of Radiology, University of Sao Paulo, 75 Dr. Ovídio Pires de Campos, Sao Paulo, SP, 05403-010, Brazil
| |
Collapse
|
10
|
Huang W, Lin R, Ke X, Ni S, Zhang Z, Tang L. Utility of Machine Learning Algorithms in Predicting Preoperative Lymph Node Metastasis in Patients With Rectal Cancer Based on Three-Dimensional Endorectal Ultrasound and Clinical and Laboratory Data. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2023; 42:2615-2627. [PMID: 37401518 DOI: 10.1002/jum.16297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/07/2023] [Accepted: 06/13/2023] [Indexed: 07/05/2023]
Abstract
BACKGROUND We aimed to investigate the value of a machine learning (ML) algorithm in the preoperative prediction of lymph node metastasis in patients with rectal cancer. METHODS Based on the histopathological results, 126 rectal cancer patients were divided into two groups: lymph node metastasis-positive and metastasis-negative groups. We collected clinical and laboratory data, three-dimensional endorectal ultrasound (3D-ERUS) findings, and parameters of the tumor for between-group comparisons. We constructed a clinical prediction model based on the ML algorithm, which demonstrated the best diagnostic performance. Finally, we analyzed the diagnostic results and processes of the ML model. RESULTS Between the two groups, there were significant differences in serum carcinoembryonic antigen (CEA) levels, tumor length, tumor breadth, circumferential extent of the tumor, resistance index (RI), and ultrasound T-stage (P < 0.05). The extreme gradient boosting (XGBoost) model had the best comprehensive diagnostic performance for predicting lymph node metastasis in patients with rectal cancer. Compared with experienced radiologists, the XGBoost model showed significantly higher diagnostic value in predicting lymph node metastasis; the area under curve (AUC) value of the receiver operating characteristic (ROC) curve of the XGBoost model and experienced radiologists was 0.82 and 0.60, respectively. CONCLUSIONS Preoperative predictive utility in lymph node metastasis was demonstrated by the XGBoost model based on the 3D-ERUS finding and related clinical information. This could be useful in guiding clinical decisions on the selection of different treatment strategies.
Collapse
Affiliation(s)
- Weiqin Huang
- Department of Ultrasonography, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Ruoxuan Lin
- Department of Ultrasonography, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Xiaohui Ke
- Department of Ultrasonography, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Shixiong Ni
- Department of Ultrasonography, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Zhen Zhang
- Department of Ultrasound, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Lina Tang
- Department of Ultrasonography, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| |
Collapse
|
11
|
Li Z, Zhang J, Zhong Q, Feng Z, Shi Y, Xu L, Zhang R, Yu F, Lv B, Yang T, Huang C, Cui F, Chen F. Development and external validation of a multiparametric MRI-based radiomics model for preoperative prediction of microsatellite instability status in rectal cancer: a retrospective multicenter study. Eur Radiol 2023; 33:1835-1843. [PMID: 36282309 DOI: 10.1007/s00330-022-09160-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/27/2022] [Accepted: 08/29/2022] [Indexed: 11/30/2022]
Abstract
OBJECTIVES To establish and validate a radiomics model based on multiparametric magnetic resonance imaging (MRI), and to predict microsatellite instability (MSI) status in rectal cancer patients. METHODS A total of 199 patients with pathologically confirmed rectal cancer were included. The MSI status was confirmed by immunohistochemistry (IHC) staining. Clinical factors and laboratory data associated with MSI status were analyzed. The imaging data of 100 patients from one of the hospitals were used as the training set. The remaining 99 patients from the other two hospitals were used as the external validation set. The regions of interest (ROIs) were delineated from T1-weighted imaging (T1WI), T2-weighted imaging (T2WI), diffusion-weighted imaging (DWI), and contrast-enhanced T1WI (CE-T1WI) sequence to extract the radiomics features. The Tree-based approach was used for feature selection. The models were constructed based on the four single sequences and a combination of the four sequences using the random forest (RF) algorithm. The external validation set was used to verify the generalization ability of each model. The receiver operating characteristic (ROC) curves and the area under the curve (AUC) were plotted to evaluate and compare the predictive performance of each model. RESULTS In the four single-series models, the CE-T1WI model performed the best. The AUCs of the T1WI, T2WI, DWI, and CE-T1WI prediction models in the training set were 0.74, 0.71, 0.71, and 0.78, respectively, while in the external validation set, the corresponding AUCs were 0.67, 0.66, 0.70, and 0.77. The prediction and generalization performance of the combined model of multi-sequences was comparable to that of the CE-T1WI model and it was better than that of the remaining three single-series models, with AUC values of 0.78 and 0.78 in the training and validation sets, respectively. CONCLUSION The established radiomics models based on CE-T1WI or multiparametric MRI have similar predictive performance. They have the potential to predict MSI status in rectal cancer patients. KEY POINTS • A radiomics model for the prediction of MSI status in patients with rectal cancer was established and validated using external validation. • The models based on CE-T1WI or multiparametric MRI have better predictive performance than those based on single unenhanced sequence images. • The radiomics model has the potential to suggest MSI status in rectal cancer patients; however, it is not yet a substitute for histological confirmation.
Collapse
Affiliation(s)
- Zhi Li
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jing Zhang
- Department of Radiology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qi Zhong
- Department of Radiology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Zhan Feng
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yushu Shi
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ligong Xu
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Rui Zhang
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Fang Yu
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Biao Lv
- Department of Radiology, The 903 Hospital of Joint Logistics Support Force of PLA, Hangzhou, Zhejiang, China
| | - Tian Yang
- Department of Radiology, Shulan (Hangzhou) Hospital, Hangzhou, Zhejiang, China
| | - Chencui Huang
- Department of Research Collaboration, R&D Center, Beijing Deepwise & League of PHD Technology Co., Ltd, Beijing, China
| | - Feng Cui
- Department of Radiology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Feng Chen
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
12
|
Song XL, Luo HJ, Ren JL, Yin P, Liu Y, Niu J, Hong N. Multisequence magnetic resonance imaging-based radiomics models for the prediction of microsatellite instability in endometrial cancer. LA RADIOLOGIA MEDICA 2023; 128:242-251. [PMID: 36656410 DOI: 10.1007/s11547-023-01590-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 01/04/2023] [Indexed: 01/20/2023]
Abstract
PURPOSE To evaluate the performance of multisequence magnetic resonance imaging (MRI)-based radiomics models in the assessment of microsatellite instability (MSI) status in endometrial cancer (EC). MATERIALS AND METHODS This retrospective multicentre study included 338 EC patients with available MSI status and preoperative MRI scans, divided into training (37 MSI, 123 microsatellite stability [MSS]), internal validation (15 MSI, 52 MSS), and external validation cohorts (30 MSI, 81 MSS). Radiomics features were extracted from T2-weighted images, diffusion-weighted images, and contrast-enhanced T1-weighted images. The ComBat harmonisation method was applied to remove intrascanner variability. The Boruta wrapper algorithm was used for key feature selection. Three classification algorithms, logistic regression (LR), random forest (RF), and support vector machine (SVM), were applied to build the radiomics models. The area under the receiver operating characteristic curve (AUC) was calculated to compare the diagnostic performance of the models. Decision curve analysis (DCA) was conducted to determine the clinical usefulness of the models. RESULTS Among the 1980 features, Boruta finally selected nine radiomics features. A higher MSI prediction performance was achieved after running the ComBat harmonisation method. The SVM algorithm had the best performance, with AUCs of 0.921, 0.903, and 0.937 in the training, internal validation, and external validation cohorts, respectively. The DCA results showed that the SVM algorithm achieved higher net benefits than the other classifiers over a threshold range of 0.581-0.783. CONCLUSION The multisequence MRI-based radiomics models showed promise in preoperatively predicting the MSI status in EC in this multicentre setting.
Collapse
Affiliation(s)
- Xiao-Li Song
- Department of Radiology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China.,Department of Radiology, Peking University People's Hospital, Beijing, China
| | - Hong-Jian Luo
- Department of Radiology, Peking University People's Hospital, Beijing, China.,Department of Radiology, The Third Affiliated Hospital of Zunyi Medical University, The First People's Hospital of Zunyi, Zunyi, Guizhou Province, China
| | - Jia-Liang Ren
- Department of Pharmaceuticals Diagnosics, GE Healthcare, Beijing, China
| | - Ping Yin
- Department of Radiology, Peking University People's Hospital, Beijing, China
| | - Ying Liu
- Department of Radiology, Peking University People's Hospital, Beijing, China
| | - Jinliang Niu
- Department of Radiology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Nan Hong
- Department of Radiology, Peking University People's Hospital, Beijing, China.
| |
Collapse
|
13
|
Zhang Y, Liu J, Wu C, Peng J, Wei Y, Cui S. Preoperative Prediction of Microsatellite Instability in Rectal Cancer Using Five Machine Learning Algorithms Based on Multiparametric MRI Radiomics. Diagnostics (Basel) 2023; 13:diagnostics13020269. [PMID: 36673079 PMCID: PMC9858257 DOI: 10.3390/diagnostics13020269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/29/2022] [Accepted: 01/05/2023] [Indexed: 01/13/2023] Open
Abstract
Objectives: To establish and verify radiomics models based on multiparametric MRI for preoperatively identifying the microsatellite instability (MSI) status of rectal cancer (RC) by comparing different machine learning algorithms. Methods: This retrospective study enrolled 383 (training set, 268; test set, 115) RC patients between January 2017 and June 2022. A total of 4148 radiomics features were extracted from multiparametric MRI, including T2-weighted imaging, T1-weighted imaging, apparent diffusion coefficient, and contrast-enhanced T1-weighted imaging. The analysis of variance, correlation test, univariate logistic analysis, and a gradient-boosting decision tree were used for the dimension reduction. Logistic regression, Bayes, support vector machine (SVM), K-nearest neighbor (KNN), and tree machine learning algorithms were used to build different radiomics models. The relative standard deviation (RSD) and bootstrap method were used to quantify the stability of these five algorithms. Then, predictive performances of different models were assessed using area under curves (AUCs). The performance of the best radiomics model was evaluated using calibration and discrimination. Results: Among these 383 patients, the prevalence of MSI was 14.62% (56/383). The RSD value of logistic regression algorithm was the lowest (4.64%), followed by Bayes (5.44%) and KNN (5.45%), which was significantly better than that of SVM (19.11%) and tree (11.94%) algorithms. The radiomics model based on logistic regression algorithm performed best, with AUCs of 0.827 and 0.739 in the training and test sets, respectively. Conclusions: We developed a radiomics model based on the logistic regression algorithm, which could potentially be used to facilitate the individualized prediction of MSI status in RC patients.
Collapse
Affiliation(s)
- Yang Zhang
- Cancer Center, Department of Radiology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou 310014, China
| | - Jing Liu
- Cancer Center, Department of Radiology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou 310014, China
| | - Cuiyun Wu
- Cancer Center, Department of Radiology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou 310014, China
| | - Jiaxuan Peng
- Medical College, Jinzhou Medical University, Jinzhou 121001, China
| | - Yuguo Wei
- Precision Health Institution, General Electric Healthcare, Hangzhou 310004, China
| | - Sijia Cui
- Cancer Center, Department of Radiology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou 310014, China
- Correspondence:
| |
Collapse
|
14
|
Zhou H, Luo Q, Wu W, Li N, Yang C, Zou L. Radiomics-guided checkpoint inhibitor immunotherapy for precision medicine in cancer: A review for clinicians. Front Immunol 2023; 14:1088874. [PMID: 36936913 PMCID: PMC10014595 DOI: 10.3389/fimmu.2023.1088874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 02/16/2023] [Indexed: 03/05/2023] Open
Abstract
Immunotherapy using immune checkpoint inhibitors (ICIs) is a breakthrough in oncology development and has been applied to multiple solid tumors. However, unlike traditional cancer treatment approaches, immune checkpoint inhibitors (ICIs) initiate indirect cytotoxicity by generating inflammation, which causes enlargement of the lesion in some cases. Therefore, rather than declaring progressive disease (PD) immediately, confirmation upon follow-up radiological evaluation after four-eight weeks is suggested according to immune-related Response Evaluation Criteria in Solid Tumors (ir-RECIST). Given the difficulty for clinicians to immediately distinguish pseudoprogression from true disease progression, we need novel tools to assist in this field. Radiomics, an innovative data analysis technique that quantifies tumor characteristics through high-throughput extraction of quantitative features from images, can enable the detection of additional information from early imaging. This review will summarize the recent advances in radiomics concerning immunotherapy. Notably, we will discuss the potential of applying radiomics to differentiate pseudoprogression from PD to avoid condition exacerbation during confirmatory periods. We also review the applications of radiomics in hyperprogression, immune-related biomarkers, efficacy, and immune-related adverse events (irAEs). We found that radiomics has shown promising results in precision cancer immunotherapy with early detection in noninvasive ways.
Collapse
Affiliation(s)
- Huijie Zhou
- Division of Medical Oncology, Cancer Center and State Key Laboratory of Biotherapy, Sichuan University West China Hospital, Chengdu, China
| | - Qian Luo
- Department of Hematology, the Second Affiliated Hospital Zhejiang University School of Medicine, Zhejiang, China
| | - Wanchun Wu
- Division of Medical Oncology, Cancer Center and State Key Laboratory of Biotherapy, Sichuan University West China Hospital, Chengdu, China
| | - Na Li
- Division of Medical Oncology, Cancer Center and State Key Laboratory of Biotherapy, Sichuan University West China Hospital, Chengdu, China
| | - Chunli Yang
- Division of Medical Oncology, Cancer Center and State Key Laboratory of Biotherapy, Sichuan University West China Hospital, Chengdu, China
| | - Liqun Zou
- Division of Medical Oncology, Cancer Center and State Key Laboratory of Biotherapy, Sichuan University West China Hospital, Chengdu, China
- *Correspondence: Liqun Zou,
| |
Collapse
|
15
|
Su X, Zhang H, Wang Y. A predictive model for early therapeutic efficacy of colorectal liver metastases using multimodal MRI data. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY 2023; 31:357-372. [PMID: 36591694 DOI: 10.3233/xst-221317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
BACKGROUND Liver metastases is a pivotal factor of death in patients with colorectal cancer. The longitudinal data of colorectal liver metastases (CRLM) during treatment can monitor and reflect treatment efficacy and outcomes. OBJECTIVE The objective of this study is to establish a radiomic model based on longitudinal magnetic resonance imaging (MRI) to predict chemotherapy response in patients with CRLM. METHODS This study retrospectively enrolled longitudinal MRI data of five modalities on 100 patients. According to Response Evaluation Criteria in Solid Tumors (RECIST 1.1), 42 and 58 patients were identified as responders and non-responders, respectively. First, radiomic features were computed from different modalities of image data acquired pre-treatment and early-treatment, as well as their differences (Δ). Next, the features were screened by a two-sample t-test, max-relevance and min-redundancy (mRMR), and least absolute shrinkage and selection operator (LASSO). Then, several ensemble radiomic models that integrate support vector machine (SVM), k-nearest neighbor (KNN), gradient boost decision tree (GBDT) and multi-layer perceptron (MLP) were established based on voting method to predict chemotherapy response. Data samples were divided into training and verification queues using a ratio of 8:2. Finally, we used the area under ROC curve (AUC) to evaluate model performance. RESULTS Using the ensemble model developed using featue differences (Δ) computed from the longitudinal apparent diffusion coefficient (ADC) images, AUC is 0.9007±0.0436 for the training cohort. Applying to the testing cohort, AUC is 0.8958 and overall accuracy is 0.9. CONCLUSIONS Study results demonstrate advantages and high performance of the ensemble radiomic model based on the radiomics feature difference of the longitudinal ADC images in predicting chemotherapy response, which has potential to assist treatment decision-making and improve clinical outcome.
Collapse
Affiliation(s)
- Xuan Su
- Institute of Medical Imaging Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Huan Zhang
- Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yuanjun Wang
- Institute of Medical Imaging Engineering, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
16
|
Lin Z, Wang T, Li H, Xiao M, Ma X, Gu Y, Qiang J. Magnetic resonance-based radiomics nomogram for predicting microsatellite instability status in endometrial cancer. Quant Imaging Med Surg 2023; 13:108-120. [PMID: 36620141 PMCID: PMC9816750 DOI: 10.21037/qims-22-255] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 09/05/2022] [Indexed: 11/30/2022]
Abstract
Background Microsatellite instability (MSI) status is an important indicator for screening patients with endometrial cancer (EC) who have potential Lynch syndrome (LS) and may benefit from immunotherapy. This study aimed to develop a magnetic resonance imaging (MRI)-based radiomics nomogram for the prediction of MSI status in EC. Methods A total of 296 patients with histopathologically diagnosed EC were enrolled, and their MSI status was determined using immunohistochemical (IHC) analysis. Patients were randomly divided into the training cohort (n=236) and the validation cohort (n=60) at a ratio of 8:2. To predict the MSI status in EC, the tumor radiomics features were extracted from T2-weighted images and contrast-enhanced T1-weighted images, which in turn were selected using one-way analysis of variance (ANOVA) and the least absolute shrinkage and selection operator (LASSO) algorithm to build the radiomics signature (radiomics score; radscore) model. Five clinicopathologic characteristics were used to construct a clinicopathologic model. Finally, the nomogram model combining radscore and clinicopathologic characteristics was constructed. The performance of the three models was evaluated using receiver operating characteristic (ROC), calibration, and decision curve analyses (DCA). Results Totals of 21 radiomics features and five clinicopathologic characteristics were selected to develop the radscore and clinicopathological models. The radscore and clinicopathologic models achieved an area under the curve (AUC) of 0.752 and 0.600, respectively, in the training cohort; and of 0.723 and 0.615, respectively, in the validation cohort. The radiomics nomogram model showed improved discrimination efficiency compared with the radscore and clinicopathologic models, with an AUC of 0.773 and 0.740 in the training and validation cohorts, respectively. The calibration curve analysis and DCA showed favorable calibration and clinical utility of the nomogram model. Conclusions The nomogram incorporating MRI-based radiomics features and clinicopathologic characteristics could be a potential tool for the prediction of MSI status in EC.
Collapse
Affiliation(s)
- Zijing Lin
- Department of Radiology, Jinshan Hospital, Fudan University, Shanghai, China
- Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ting Wang
- Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Haiming Li
- Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Meiling Xiao
- Department of Radiology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Xiaoliang Ma
- Department of Radiology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Yajia Gu
- Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jinwei Qiang
- Department of Radiology, Jinshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
17
|
Mei WJ, Mi M, Qian J, Xiao N, Yuan Y, Ding PR. Clinicopathological characteristics of high microsatellite instability/mismatch repair-deficient colorectal cancer: A narrative review. Front Immunol 2022; 13:1019582. [PMID: 36618386 PMCID: PMC9822542 DOI: 10.3389/fimmu.2022.1019582] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancers (CRCs) with high microsatellite instability (MSI-H) and deficient mismatch repair (dMMR) show molecular and clinicopathological characteristics that differ from those of proficient mismatch repair/microsatellite stable CRCs. Despite the importance of MSI-H/dMMR status in clinical decision making, the testing rates for MSI and MMR in clinical practice remain low, even in high-risk populations. Additionally, the real-world prevalence of MSI-H/dMMR CRC may be lower than that reported in the literature. Insufficient MSI and MMR testing fails to identify patients with MSI-H/dMMR CRC, who could benefit from immunotherapy. In this article, we describe the current knowledge of the clinicopathological features, molecular landscape, and radiomic characteristics of MSI-H/dMMR CRCs. A better understanding of the importance of MMR/MSI status in the clinical characteristics and prognosis of CRC may help increase the rates of MMR/MSI testing and guide the development of more effective therapies based on the unique features of these tumors.
Collapse
Affiliation(s)
- Wei-Jian Mei
- Department of Colorectal Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, China
| | - Mi Mi
- Department of Medical Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jing Qian
- Global Medical Affairs, MSD China, Shanghai, China
| | - Nan Xiao
- Global Medical Affairs, MSD China, Shanghai, China
| | - Ying Yuan
- Department of Medical Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for CANCER, Hangzhou, China
- Cancer Center of Zhejiang University, Hangzhou, China
| | - Pei-Rong Ding
- Department of Colorectal Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
18
|
Wang H, Xu Z, Zhang H, Huang J, Peng H, Zhang Y, Liang C, Zhao K, Liu Z. The value of magnetic resonance imaging-based tumor shape features for assessing microsatellite instability status in endometrial cancer. Quant Imaging Med Surg 2022; 12:4402-4413. [PMID: 36060586 PMCID: PMC9403574 DOI: 10.21037/qims-22-77] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/06/2022] [Indexed: 02/05/2023]
Abstract
BACKGROUND Microsatellite instability (MSI) status can be used for the classification and risk stratification of endometrial cancer (EC). This study aimed to investigate whether magnetic resonance imaging (MRI)-based tumor shape features can help assess MSI status in EC before surgery. METHODS The medical records of 88 EC patients with MSI status were retrospectively reviewed. Quantitative and subjective shape features based on MRI were used to assess MSI status. Variables were compared using the Student's t-test, χ2 test, or Wilcoxon rank-sum test where appropriate. Univariate and multivariate analyses were performed by the logistic regression model. The area under the curve (AUC) was used to estimate the discrimination performance of variables. RESULTS There were 23 patients with MSI, and 65 patients with microsatellite stability (MSS) in this study. Eccentricity and shape type showed significant differences between MSI and MSS (P=0.039 and P=0.033, respectively). The AUC values of eccentricity, shape type, and the combination of 2 features for assessing MSI were 0.662 [95% confidence interval (CI): 0.554-0.770], 0.627 (95% CI: 0.512-0.743), and 0.727 (95% CI: 0.613-0.842), respectively. Considering the International Federation of Gynecology and Obstetrics (FIGO) staging, eccentricity maintained a significant difference in stages I-II (P=0.039), while there was no statistical difference in stages III-IV (P=0.601). CONCLUSIONS It is possible that MRI-based tumor shape features, including eccentricity and shape type, could be promising markers for assessing MSI status. The features may aid in the preliminary screening of EC patients with MSI.
Collapse
Affiliation(s)
- Huihui Wang
- Department of Radiology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Shantou University Medical College, Shantou, China
| | - Zeyan Xu
- Department of Radiology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Haochen Zhang
- Department of Radiology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Jia Huang
- Department of Radiology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Haien Peng
- Department of Radiology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yuan Zhang
- Department of Radiology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Changhong Liang
- Department of Radiology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Ke Zhao
- Department of Radiology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zaiyi Liu
- Department of Radiology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
19
|
Crimì F, Zanon C, Cabrelle G, Luong KD, Albertoni L, Bao QR, Borsetto M, Baratella E, Capelli G, Spolverato G, Fassan M, Pucciarelli S, Quaia E. Contrast-Enhanced CT Texture Analysis in Colon Cancer: Correlation with Genetic Markers. Tomography 2022; 8:2193-2201. [PMID: 36136880 PMCID: PMC9498512 DOI: 10.3390/tomography8050184] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/24/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Background: The purpose of the study was to determine whether contrast-enhanced CT texture features relate to, and can predict, the presence of specific genetic mutations involved in CRC carcinogenesis. Materials and methods: This retrospective study analyzed the pre-operative CT in the venous phase of patients with CRC, who underwent testing for mutations in the KRAS, NRAS, BRAF, and MSI genes. Using a specific software based on CT images of each patient, for each slice including the tumor a region of interest was manually drawn along the margin, obtaining the volume of interest. A total of 56 texture parameters were extracted that were compared between the wild-type gene group and the mutated gene group. A p-value of <0.05 was considered statistically significant. Results: The study included 47 patients with stage III-IV CRC. Statistically significant differences between the MSS group and the MSI group were found in four parameters: GLRLM RLNU (area under the curve (AUC) 0.72, sensitivity (SE) 77.8%, specificity (SP) 65.8%), GLZLM SZHGE (AUC 0.79, SE 88.9%, SP 65.8%), GLZLM GLNU (AUC 0.74, SE 88.9%, SP 60.5%), and GLZLM ZLNU (AUC 0.77, SE 88.9%, SP 65.8%). Conclusions: The findings support the potential role of the CT texture analysis in detecting MSI in CRC based on pre-treatment CT scans.
Collapse
Affiliation(s)
- Filippo Crimì
- Institute of Radiology, Department of Medicine-DIMED, University of Padova, 35128 Padova, Italy
- Correspondence: ; Tel.: +39-049-821-2359
| | - Chiara Zanon
- Institute of Radiology, Department of Medicine-DIMED, University of Padova, 35128 Padova, Italy
| | - Giulio Cabrelle
- Institute of Radiology, Department of Medicine-DIMED, University of Padova, 35128 Padova, Italy
| | - Kim Duyen Luong
- Institute of Radiology, Department of Medicine-DIMED, University of Padova, 35128 Padova, Italy
| | - Laura Albertoni
- Pathology and Cytopathology Unit, Department of Medicine, University of Padova, 35128 Padua, Italy
| | - Quoc Riccardo Bao
- General Surgery 3, Department of Surgical, Oncological, and Gastroenterological Sciences (DiSCOG), University of Padova, 35128 Padova, Italy
| | - Marta Borsetto
- General Surgery 3, Department of Surgical, Oncological, and Gastroenterological Sciences (DiSCOG), University of Padova, 35128 Padova, Italy
| | - Elisa Baratella
- Department of Radiology, Cattinara Hospital, University of Trieste, 34127 Trieste, Italy
| | - Giulia Capelli
- General Surgery 3, Department of Surgical, Oncological, and Gastroenterological Sciences (DiSCOG), University of Padova, 35128 Padova, Italy
| | - Gaya Spolverato
- General Surgery 3, Department of Surgical, Oncological, and Gastroenterological Sciences (DiSCOG), University of Padova, 35128 Padova, Italy
| | - Matteo Fassan
- Pathology and Cytopathology Unit, Department of Medicine, University of Padova, 35128 Padua, Italy
- Veneto Institute of Oncology, IOV-IRCCS, 35128 Padua, Italy
| | - Salvatore Pucciarelli
- General Surgery 3, Department of Surgical, Oncological, and Gastroenterological Sciences (DiSCOG), University of Padova, 35128 Padova, Italy
| | - Emilio Quaia
- Institute of Radiology, Department of Medicine-DIMED, University of Padova, 35128 Padova, Italy
| |
Collapse
|
20
|
Predicting Mismatch-Repair Status in Rectal Cancer Using Multiparametric MRI-Based Radiomics Models: A Preliminary Study. BIOMED RESEARCH INTERNATIONAL 2022; 2022:6623574. [PMID: 36033579 PMCID: PMC9400426 DOI: 10.1155/2022/6623574] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 08/02/2022] [Indexed: 12/24/2022]
Abstract
Detecting mismatch-repair (MMR) status is crucial for personalized treatment strategies and prognosis in rectal cancer (RC). A preoperative, noninvasive, and cost-efficient predictive tool for MMR is critically needed. Therefore, this study developed and validated machine learning radiomics models for predicting MMR status in patients directly on preoperative MRI scans. Pathologically confirmed RC cases administered surgical resection in two distinct hospitals were examined in this retrospective trial. Totally, 78 and 33 cases were included in the training and test sets, respectively. Then, 65 cases were enrolled as an external validation set. Radiomics features were obtained from preoperative rectal MR images comprising T2-weighted imaging (T2WI), diffusion-weighted imaging (DWI), contrast-enhanced T1-weighted imaging (T1WI), and combined multisequences. Four optimal features related to MMR status were selected by the least absolute shrinkage and selection operator (LASSO) method. Support vector machine (SVM) learning was adopted to establish four predictive models, i.e., ModelT2WI, ModelDWI, ModelCE-T1WI, and Modelcombination, whose diagnostic performances were determined and compared by receiver operating characteristic (ROC) curves and decision curve analysis (DCA). Modelcombination had better diagnostic performance compared with the other models in all datasets (all p < 0.05). The usefulness of the proposed model was confirmed by DCA. Therefore, the present pilot study showed the radiomics model combining multiple sequences derived from preoperative MRI is effective in predicting MMR status in RC cases.
Collapse
|
21
|
A multicenter study on the preoperative prediction of gastric cancer microsatellite instability status based on computed tomography radiomics. Abdom Radiol (NY) 2022; 47:2036-2045. [PMID: 35391567 DOI: 10.1007/s00261-022-03507-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 12/16/2022]
Abstract
PURPOSE To construct and validate a radiomics feature model based on computed tomography (CT) images and clinical characteristics to predict the microsatellite instability (MSI) status of gastric cancer patients before surgery. METHODS We retrospectively collected the upper abdominal or the entire abdominal-enhanced CT scans of 189 gastric cancer patients before surgery. The patients underwent postoperative gastric cancer MSI status testing, and the dates of their radiologic images and clinicopathological data were from January 2015 to August 2021. These 189 patients were divided into a training set (n = 90) and an external validation set (n = 99). The patients were divided by MSI status into the MSI-high (H) arm (30 and 33 patients in the training set and external validation set, respectively) and MSI-low/stable (L/S) arm (60 and 66 patients in the training set and external validation set, respectively). In the training set, the clinical characteristics and tumor radiologic characteristics of the patients were extracted, and the tenfold cross-validation method was used for internal validation of the training set. The external validation set was used to assess its generalized performance. A receiver-operating characteristic (ROC) curve was plotted to assess the model performance, and the area under the curve (AUC) was calculated. RESULTS The AUC of the radiomics model in the training set and external validation set was 0.8228 [95% confidence interval (CI) 0.7355-0.9101] and 0.7603 [95% CI 0.6625-0.8581], respectively, showing that the constructed radiomics model exhibited satisfactory generalization capabilities. The accuracy, sensitivity, and specificity of the training dataset were 0.72, 0.63, and 0.77, respectively. The accuracy, sensitivity, and specificity of the external validation dataset were 0.67, 0.79, and 0.60, respectively. Statistical analysis was carried out on the clinical data, and there was statistical significance for the tumor site and age (p < 0.05). MSI-H gastric cancer was mostly seen in the gastric antrum and older patients. CONCLUSIONS Radiomics markers based on CT images and clinical characteristics have the potential to be a non-invasive auxiliary diagnostic tool for preoperative assessment of gastric cancer MSI status, and they can aid in clinical decision-making and improve patient outcomes.
Collapse
|
22
|
Ying M, Pan J, Lu G, Zhou S, Fu J, Wang Q, Wang L, Hu B, Wei Y, Shen J. Development and validation of a radiomics-based nomogram for the preoperative prediction of microsatellite instability in colorectal cancer. BMC Cancer 2022; 22:524. [PMID: 35534797 PMCID: PMC9087961 DOI: 10.1186/s12885-022-09584-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 04/21/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Preoperative prediction of microsatellite instability (MSI) status in colorectal cancer (CRC) patients is of great significance for clinicians to perform further treatment strategies and prognostic evaluation. Our aims were to develop and validate a non-invasive, cost-effective reproducible and individualized clinic-radiomics nomogram method for preoperative MSI status prediction based on contrast-enhanced CT (CECT)images. METHODS A total of 76 MSI CRC patients and 200 microsatellite stability (MSS) CRC patients with pathologically confirmed (194 in the training set and 82 in the validation set) were identified and enrolled in our retrospective study. We included six significant clinical risk factors and four qualitative imaging data extracted from CECT images to build the clinics model. We applied the intra-and inter-class correlation coefficient (ICC), minimal-redundancy-maximal-relevance (mRMR) and the least absolute shrinkage and selection operator (LASSO) for feature reduction and selection. The selected independent prediction clinical risk factors, qualitative imaging data and radiomics features were performed to develop a predictive nomogram model for MSI status on the basis of multivariable logistic regression by tenfold cross-validation. The area under the receiver operating characteristic (ROC) curve (AUC), calibration plots and Hosmer-Lemeshow test were performed to assess the nomogram model. Finally, decision curve analysis (DCA) was performed to determine the clinical utility of the nomogram model by quantifying the net benefits of threshold probabilities. RESULTS Twelve top-ranked radiomics features, three clinical risk factors (location, WBC and histological grade) and CT-reported IFS were finally selected to construct the radiomics, clinics and combined clinic-radiomics nomogram model. The clinic-radiomics nomogram model with the highest AUC value of 0.87 (95% CI, 0.81-0.93) and 0.90 (95% CI, 0.83-0.96), as well as good calibration and clinical utility observed using the calibration plots and DCA in the training and validation sets respectively, was regarded as the candidate model for identification of MSI status in CRC patients. CONCLUSION The proposed clinic-radiomics nomogram model with a combination of clinical risk factors, qualitative imaging data and radiomics features can potentially be effective in the individualized preoperative prediction of MSI status in CRC patients and may help performing further treatment strategies.
Collapse
Affiliation(s)
- Mingliang Ying
- Department of Radiology, The Second Affiliated Hospital of Soochow University, No.1055 Sanxiang Road, Gusu District, Suzhou, 215004, Jiangsu, China.,Department of Radiology, Jinhua Hospital of Zhejiang University: Jinhua Municipal Central Hospital, No. 351 Mingyue Road, Jinhua, Zhejiang, China
| | - Jiangfeng Pan
- Department of Radiology, Jinhua Hospital of Zhejiang University: Jinhua Municipal Central Hospital, No. 351 Mingyue Road, Jinhua, Zhejiang, China
| | - Guanghong Lu
- Department of Radiology, Jinhua Hospital of Zhejiang University: Jinhua Municipal Central Hospital, No. 351 Mingyue Road, Jinhua, Zhejiang, China
| | - Shaobin Zhou
- Department of Radiology, Jinhua Hospital of Zhejiang University: Jinhua Municipal Central Hospital, No. 351 Mingyue Road, Jinhua, Zhejiang, China
| | - Jianfei Fu
- Department of Oncology, Jinhua Hospital of Zhejiang University: Jinhua Municipal Central Hospital, No. 351 Mingyue Road, Jinhua, Zhejiang, China
| | - Qinghua Wang
- Department of Oncology, Jinhua Hospital of Zhejiang University: Jinhua Municipal Central Hospital, No. 351 Mingyue Road, Jinhua, Zhejiang, China
| | - Lixia Wang
- Department of Pathology, Jinhua Hospital of Zhejiang University: Jinhua Municipal Central Hospital, No. 351 Mingyue Road, Jinhua, Zhejiang, China
| | - Bin Hu
- Department of Pathology, Jinhua Hospital of Zhejiang University: Jinhua Municipal Central Hospital, No. 351 Mingyue Road, Jinhua, Zhejiang, China
| | - Yuguo Wei
- Precision Health Institution, GE Healthcare, Xihu District, Hangzhou, China
| | - Junkang Shen
- Department of Radiology, The Second Affiliated Hospital of Soochow University, No.1055 Sanxiang Road, Gusu District, Suzhou, 215004, Jiangsu, China. .,Institute of Radiation Oncology Therapeutics of Soochow University, Suzhou, 215004, China.
| |
Collapse
|
23
|
Tian Y, Komolafe TE, Chen T, Zhou B, Yang X. Prediction of TACE Treatment Response in a Preoperative MRI via Analysis of Integrating Deep Learning and Radiomics Features. J Med Biol Eng 2022. [DOI: 10.1007/s40846-022-00692-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
24
|
Li X, Chen H, Zhao F, Zheng Y, Pang H, Xiang L. Development of a Radiotherapy Localisation Computed Tomography-Based Radiomic Model for Predicting Survival in Patients With Nasopharyngeal Carcinoma Treated With Intensity-Modulated Radiotherapy Following Induction Chemotherapy. Cancer Control 2022; 29:10732748221076820. [PMID: 35271403 PMCID: PMC8918969 DOI: 10.1177/10732748221076820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Our purpose is to develop a model combining radiomic features of radiotherapy localisation computed tomography and clinical characteristics that can be used to estimate overall survival in patients with nasopharyngeal carcinoma treated with intensity-modulated radiotherapy following induction chemotherapy. METHODS We recruited 145 patients with pathologically confirmed nasopharyngeal carcinoma between February 2012 and April 2015. In total, 851 radiomic features were extracted from radiotherapy localisation computed tomography images for the gross tumour volume of the nasopharynx and the gross tumour volume of neck metastatic lymph nodes. The least absolute shrinkage and selection operator algorithm was applied to select radiomics features, build the model and calculate the Rad-score. The patients were divided into high- and low-risk groups based on their Rad-scores. A nomogram for estimating overall survival based on both radiomic and clinical features was generated using multivariate Cox regression hazard models. Prediction reliability was evaluated using Harrell's concordance index. RESULTS In total, seven radiomic features and one clinical characteristic were extracted for survival analysis, and the combination of radiomic and clinical features was a better predictor of overall survival (concordance index = .849 [confidence interval: .782-.916]) than radiomic features (concordance index = .793 [confidence interval: .697-.890]) or clinical characteristics (concordance index = .661 [confidence interval: .673-.849]) alone. CONCLUSION Our results show that a nomogram combining radiomic features of radiotherapy localisation computed tomography and clinical characteristics can predict overall survival in patients with nasopharyngeal carcinoma treated with intensity-modulated radiotherapy following induction chemotherapy more effectively than radiomic features or clinical characteristics alone.
Collapse
Affiliation(s)
- Xiaoyue Li
- Department of Oncology, 74647The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Han Chen
- Department of Oncology, 74647The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Feipeng Zhao
- Department of Otolaryngology-Head and Neck Surgery, 74647The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yun Zheng
- Department of Oncology, 74647The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Haowen Pang
- Department of Oncology, 74647The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Li Xiang
- Department of Oncology, 74647The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
25
|
Tian Y, Komolafe TE, Zheng J, Zhou G, Chen T, Zhou B, Yang X. Assessing PD-L1 Expression Level via Preoperative MRI in HCC Based on Integrating Deep Learning and Radiomics Features. Diagnostics (Basel) 2021; 11:1875. [PMID: 34679573 PMCID: PMC8534850 DOI: 10.3390/diagnostics11101875] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/02/2021] [Accepted: 10/04/2021] [Indexed: 12/30/2022] Open
Abstract
To assess if quantitative integrated deep learning and radiomics features can predict the PD-L1 expression level in preoperative MRI of hepatocellular carcinoma (HCC) patients. The data in this study consist of 103 hepatocellular carcinoma patients who received immunotherapy in a single center. These patients were divided into a high PD-L1 expression group (30 patients) and a low PD-L1 expression group (73 patients). Both radiomics and deep learning features were extracted from their MRI sequence of T2-WI, which were merged into an integrative feature space for machine learning for the prediction of PD-L1 expression. The five-fold cross-validation was adopted to validate the performance of the model, while the AUC was used to assess the predictive ability of the model. Based on the five-fold cross-validation, the integrated model achieved the best prediction performance, with an AUC score of 0.897 ± 0.084, followed by the deep learning-based model with an AUC of 0.852 ± 0.043 then the radiomics-based model with AUC of 0.794 ± 0.035. The feature set integrating radiomics and deep learning features is more effective in predicting PD-L1 expression level than only one feature type. The integrated model can achieve fast and accurate prediction of PD-L1 expression status in preoperative MRI of HCC patients.
Collapse
Affiliation(s)
- Yuchi Tian
- Academy of Engineering and Technology, Fudan University, Shanghai 200433, China;
| | | | - Jian Zheng
- Department of Medical Imaging, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China;
| | - Guofeng Zhou
- Department of Radiology, Zhongshan Hospital, Shanghai 200032, China;
| | - Tao Chen
- School of Information Science and Technology, Fudan University, Shanghai 200433, China;
| | - Bo Zhou
- Department of Interventional Radiology, Zhongshan Hospital, Shanghai 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
| | - Xiaodong Yang
- Academy of Engineering and Technology, Fudan University, Shanghai 200433, China;
- Department of Medical Imaging, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China;
| |
Collapse
|
26
|
Assessment of MRI-Based Radiomics in Preoperative T Staging of Rectal Cancer: Comparison between Minimum and Maximum Delineation Methods. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5566885. [PMID: 34337027 PMCID: PMC8289571 DOI: 10.1155/2021/5566885] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 05/24/2021] [Accepted: 07/02/2021] [Indexed: 12/24/2022]
Abstract
The manual delineation of the lesion is mainly used as a conventional segmentation method, but it is subjective and has poor stability and repeatability. The purpose of this study is to validate the effect of a radiomics model based on MRI derived from two delineation methods in the preoperative T staging of patients with rectal cancer (RC). A total of 454 consecutive patients with pathologically confirmed RC who underwent preoperative MRI between January 2018 and December 2019 were retrospectively analyzed. RC patients were grouped according to whether the muscularis propria was penetrated. Two radiologists segmented lesions, respectively, by minimum delineation (Method 1) and maximum delineation (Method 2), after which radiomics features were extracted. Inter- and intraclass correlation coefficient (ICC) of all features was evaluated. After feature reduction, the support vector machine (SVM) was trained to build a prediction model. The diagnostic performances of models were determined by receiver operating characteristic (ROC) curves. Then, the areas under the curve (AUCs) were compared by the DeLong test. Decision curve analysis (DCA) was performed to evaluate clinical benefit. Finally, 317 patients were assessed, including 152 cases in the training set and 165 cases in the validation set. Moreover, 1288/1409 (91.4%) features of Method 1 and 1273/1409 (90.3%) features of Method 2 had good robustness (P < 0.05). The AUCs of Model 1 and Model 2 were 0.808 and 0.903 in the validation set, respectively (P = 0.035). DCA showed that the maximum delineation yielded more net benefit. MRI-based radiomics models derived from two segmentation methods demonstrated good performance in the preoperative T staging of RC. The minimum delineation had better stability in feature selection, while the maximum delineation method was more clinically beneficial.
Collapse
|
27
|
Advances in radiological staging of colorectal cancer. Clin Radiol 2021; 76:879-888. [PMID: 34243943 DOI: 10.1016/j.crad.2021.06.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/08/2021] [Indexed: 12/12/2022]
Abstract
The role of imaging in clinically staging colorectal cancer has grown substantially in the 21st century with more widespread availability of multi-row detector computed tomography (CT), high-resolution magnetic resonance imaging (MRI) with diffusion weighted imaging (DWI), and integrated positron-emission tomography (PET)/CT. In contrast to staging many other cancers, increasing colorectal cancer stage does not highly correlate with survival. As has been the case previously, clinical practice incorporates advances in staging and it is used to guide therapy before adoption into international staging guidelines. Emerging imaging techniques show promise to become part of future staging standards.
Collapse
|
28
|
Radiomics and Magnetic Resonance Imaging of Rectal Cancer: From Engineering to Clinical Practice. Diagnostics (Basel) 2021; 11:diagnostics11050756. [PMID: 33922483 PMCID: PMC8146913 DOI: 10.3390/diagnostics11050756] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/08/2021] [Accepted: 04/21/2021] [Indexed: 12/24/2022] Open
Abstract
While cross-sectional imaging has seen continuous progress and plays an undiscussed pivotal role in the diagnostic management and treatment planning of patients with rectal cancer, a largely unmet need remains for improved staging accuracy, assessment of treatment response and prediction of individual patient outcome. Moreover, the increasing availability of target therapies has called for developing reliable diagnostic tools for identifying potential responders and optimizing overall treatment strategy on a personalized basis. Radiomics has emerged as a promising, still fully evolving research topic, which could harness the power of modern computer technology to generate quantitative information from imaging datasets based on advanced data-driven biomathematical models, potentially providing an added value to conventional imaging for improved patient management. The present study aimed to illustrate the contribution that current radiomics methods applied to magnetic resonance imaging can offer to managing patients with rectal cancer.
Collapse
|
29
|
Sun Z, Jin L, Zhang S, Duan S, Xing W, Hu S. Preoperative prediction for lauren type of gastric cancer: A radiomics nomogram analysis based on CT images and clinical features. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY 2021; 29:675-686. [PMID: 34024809 DOI: 10.3233/xst-210888] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
PURPOSE To investigate feasibility of predicting Lauren type of gastric cancer based on CT radiomics nomogram before operation. MATERIALS AND METHODS The clinical data and pre-treatment CT images of 300 gastric cancer patients with Lauren intestinal or diffuse type confirmed by postoperative pathology were retrospectively analyzed, who were randomly divided into training set and testing set with a ratio of 2:1. Clinical features were compared between the two Lauren types in the training set and testing set, respectively. Gastric tumors on CT images were manually segmented using ITK-SNAP software, and radiomic features of the segmented tumors were extracted, filtered and minimized using the least absolute shrinkage and selection operator (LASSO) regression to select optimal features and develop radiomics signature. A nomogram was constructed with radiomic features and clinical characteristics to predict Lauren type of gastric cancer. Clinical model, radiomics signature model, and the nomogram model were compared using the receiver operating characteristic (ROC) curve analysis with area under the curve (AUC). The calibration curve was used to test the agreement between prediction probability and actual clinical findings, and the decision curve was performed to assess the clinical usage of the nomogram model. RESULTS In clinical features, Lauren type of gastric cancer relate to age and CT-N stage of patients (all p < 0.05). Radiomics signature was developed with the retained 10 radiomic features. The nomogram was constructed with the 2 clinical features and radiomics signature. Among 3 prediction models, performance of the nomogram was the best in predicting Lauren type of gastric cancer, with the respective AUC, accuracy, sensitivity and specificity of 0.864, 78.0%, 90.0%, 70.0%in the testing set. In addition, the calibration curve showed a good agreement between prediction probability and actual clinical findings (p > 0.05). CONCLUSION The nomogram combining radiomics signature and clinical features is a useful tool with the increased value to predict Lauren type of gastric cancer.
Collapse
Affiliation(s)
- Zongqiong Sun
- Department of Radiology, Affiliated Hospital of Jiangnan University, Wuxi City, Jiangsu, China
| | - Linfang Jin
- Department of Pathology, Affiliated Hospital of Jiangnan University, Wuxi City, Jiangsu, China
| | - Shuai Zhang
- General Electric Company (GE) Healthcare China, Pudong New Town, Shanghai, China
| | - Shaofeng Duan
- General Electric Company (GE) Healthcare China, Pudong New Town, Shanghai, China
| | - Wei Xing
- Department of Radiology, Third Affiliated Hospital of Soochow University, First people's Hospital of Changzhou City, Jiangsu, China
| | - Shudong Hu
- Department of Radiology, Affiliated Hospital of Jiangnan University, Wuxi City, Jiangsu, China
| |
Collapse
|