1
|
HUANG YONGJIAN, WANG JINZHOU, XU JIUHUA, RUAN NING. Remodeling tumor microenvironment using pH-sensitive biomimetic co-delivery of TRAIL/R848 liposomes against colorectal cancer. Oncol Res 2024; 32:1765-1776. [PMID: 39449815 PMCID: PMC11497182 DOI: 10.32604/or.2024.045564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 01/11/2024] [Indexed: 10/26/2024] Open
Abstract
Background Despite significant advancements in the development of anticancer therapies over the past few decades, the clinical management of colorectal cancer remains a challenging task. This study aims to investigate the inhibitory effects of cancer-targeting liposomes against colorectal cancer. Materials and Methods Liposomes consisting of 3β-[N-(N', N'-dimethylamino ethane)carbamoyl]-cholesterol (DC-CHOL), cholesterol (CHOL), and dioleoylphosphatidylethanolamine (DOPE) at a molar ratio of 1:1:0.5 were created and used as carriers to deliver an apoptosis-inducing plasmid encoding the tumor necrosis factor-related apoptosis-inducing ligand (pTRAIL) gene, along with the toll-like receptor (TLR7) agonist Rsiquimod (R848). The rationale behind this design is that pTRAIL can trigger cancer cell apoptosis by activating the DR4/5 receptor, while R848 can stimulate the immune microenvironment. Results Experimental results demonstrated the synergistic effects of R848 and pTRAIL encapsulated by liposomes (RTL) in suppressing the proliferation of colorectal cancer cells. Moreover, further in vivo investigations revealed the strong anti-tumor efficacy of RTL in xenograft and orthotropic in situ models of colorectal cancer. Conclusions These findings collectively highlight the therapeutic potential of R848/pTRAIL-loaded liposomes in the treatment of colorectal cancer.
Collapse
Affiliation(s)
- YONGJIAN HUANG
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| | - JINZHOU WANG
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| | - JIUHUA XU
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| | - NING RUAN
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| |
Collapse
|
2
|
Cruz LS, Robinson M, Stevenson D, Amador IC, Jordan GJ, Valencia S, Navarrete C, House CD. Chemotherapy Enriches for Proinflammatory Macrophage Phenotypes that Support Cancer Stem-Like Cells and Disease Progression in Ovarian Cancer. CANCER RESEARCH COMMUNICATIONS 2024; 4:2638-2652. [PMID: 39287565 PMCID: PMC11464072 DOI: 10.1158/2767-9764.crc-24-0311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/20/2024] [Accepted: 09/12/2024] [Indexed: 09/19/2024]
Abstract
High-grade serous ovarian cancer remains a poorly understood disease with a high mortality rate. Although most patients respond to cytotoxic therapies, a majority will experience recurrence. This may be due to a minority of drug-resistant cancer stem-like cells (CSC) that survive chemotherapy and are capable of repopulating heterogeneous tumors. It remains unclear how CSCs are supported in the tumor microenvironment (TME) particularly during chemotherapy exposure. Tumor-associated macrophages (TAM) make up half of the immune population of the ovarian TME and are known to support CSCs and contribute to cancer progression. TAMs are plastic cells that alter their phenotype in response to environmental stimuli and thus may influence CSC maintenance during chemotherapy. Given the plasticity of TAMs, we studied the effects of carboplatin on macrophage phenotypes using both THP1- and peripheral blood mononuclear cell (PBMC)-derived macrophages and whether this supports CSCs and ovarian cancer progression following treatment. We found that carboplatin exposure induces an M1-like proinflammatory phenotype that promotes SOX2 expression, spheroid formation, and CD117+ ovarian CSCs, and that macrophage-secreted CCL2/MCP-1 is at least partially responsible for this effect. Depletion of TAMs during carboplatin exposure results in fewer CSCs and prolonged survival in a xenograft model of ovarian cancer. This study supports a role for platinum-based chemotherapies in promoting a transient proinflammatory M1-like TAM that enriches for CSCs during treatment. Improving our understanding of TME responses to cytotoxic drugs and identifying novel mechanisms of CSC maintenance will enable the development of better therapeutic strategies for high-grade serous ovarian cancer. Significance: We show that chemotherapy enhances proinflammatory macrophage phenotypes that correlate with ovarian cancer progression. Given that macrophages are the most prominent immune cell within these tumors, this work provides the foundation for future translational studies targeting specific macrophage populations during chemotherapy, a promising approach to prevent relapse in ovarian cancer.
Collapse
Affiliation(s)
- Luisjesus S. Cruz
- Department of Biology, San Diego State University, San Diego, California.
| | - Mikella Robinson
- Department of Biology, San Diego State University, San Diego, California.
| | - Denay Stevenson
- Department of Biology, San Diego State University, San Diego, California.
| | - Isabella C. Amador
- Department of Biology, San Diego State University, San Diego, California.
| | - Gregory J. Jordan
- Department of Biology, San Diego State University, San Diego, California.
| | - Sofia Valencia
- Department of Biology, San Diego State University, San Diego, California.
| | - Carolina Navarrete
- Department of Biology, San Diego State University, San Diego, California.
| | - Carrie D. House
- Department of Biology, San Diego State University, San Diego, California.
- Moores Cancer Center, University of California San Diego, San Diego, California.
| |
Collapse
|
3
|
An R, Zhang Z, Zhang D, Li Y, Lin Y, Sun H, Xu F, Li M, Liu Z. A novel EZH1/2 dual inhibitor inhibits GCB DLBCL through cell cycle regulation and M2 tumor-associated macrophage polarization. J Biol Chem 2024; 300:107788. [PMID: 39303914 PMCID: PMC11538787 DOI: 10.1016/j.jbc.2024.107788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024] Open
Abstract
The incidence of germinal center B-cell-like type diffuse large B-cell lymphoma (GCB DLBCL) is steadily increasing, with a known hereditary component. Although some molecular mechanisms in GCB DLBCL have been elucidated, understanding remains incomplete, limiting the effectiveness of targeted therapies. In GCB DLBCL patients, abnormally high expression of zeste homologs 2 (EZH2) is noted, and the compensatory effect of EZH1 following EZH2 inhibition contributes to poor prognosis. This highlights the potential of dual targeting of EZH1/2 as a promising strategy. In this study, we developed a novel inhibitor, EZH-1-P2, targeting EZH1/2 and evaluated its antitumor effects on DLBCL cells. Mechanistically, inhibition of EZH1/2 affects the epigenetic regulation of gene expression related to p53, impacting cell cycle progression and GCB DLBCL cell growth. Additionally, while EZH1/2 inhibition impacts NOTCH signaling, the precise mechanism by which it affects M2-type tumor-associated macrophage polarization and germinal center expansion requires further investigation. Our research introduces EZH-1-P2 as a novel inhibitor with potential as a candidate for GCB DLBCL therapy, although further studies are needed to fully elucidate its mechanisms.
Collapse
Affiliation(s)
- Ran An
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Zhimeng Zhang
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Dongli Zhang
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Yuqing Li
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Yueling Lin
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Hongtao Sun
- Guangdong Second Provincial General Hospital, Department of Orthopedics, Guangzhou, China
| | - Fang Xu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), School of Pharmacy, Jinan University, Guangzhou, China
| | - Manmei Li
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), School of Pharmacy, Jinan University, Guangzhou, China.
| | - Zhong Liu
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China; Key Laboratory of Innovative Technology Research on Natural Products and Cosmetics Raw Materials, Guangzhou, China.
| |
Collapse
|
4
|
Sturniolo I, Váróczy C, Regdon Z, Mázló A, Muzsai S, Bácsi A, Intili G, Hegedűs C, Boothby MR, Holechek J, Ferraris D, Schüler H, Virág L. PARP14 Contributes to the Development of the Tumor-Associated Macrophage Phenotype. Int J Mol Sci 2024; 25:3601. [PMID: 38612413 PMCID: PMC11011797 DOI: 10.3390/ijms25073601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
Cancers reprogram macrophages (MΦs) to a tumor-growth-promoting TAM (tumor-associated MΦ) phenotype that is similar to the anti-inflammatory M2 phenotype. Poly(ADP-ribose) polymerase (PARP) enzymes regulate various aspects of MΦ biology, but their role in the development of TAM phenotype has not yet been investigated. Here, we show that the multispectral PARP inhibitor (PARPi) PJ34 and the PARP14 specific inhibitor MCD113 suppress the expression of M2 marker genes in IL-4-polarized primary murine MΦs, in THP-1 monocytic human MΦs, and in primary human monocyte-derived MΦs. MΦs isolated from PARP14 knockout mice showed a limited ability to differentiate to M2 cells. In a murine model of TAM polarization (4T1 breast carcinoma cell supernatant transfer to primary MΦs) and in a human TAM model (spheroids formed from JIMT-1 breast carcinoma cells and THP-1-MΦs), both PARPis and the PARP14 KO phenotype caused weaker TAM polarization. Increased JIMT-1 cell apoptosis in co-culture spheroids treated with PARPis suggested reduced functional TAM reprogramming. Protein profiling arrays identified lipocalin-2, macrophage migration inhibitory factor, and plasminogen activator inhibitor-1 as potential (ADP-ribosyl)ation-dependent mediators of TAM differentiation. Our data suggest that PARP14 inhibition might be a viable anticancer strategy with a potential to boost anticancer immune responses by reprogramming TAMs.
Collapse
Affiliation(s)
- Isotta Sturniolo
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (I.S.); (C.V.); (Z.R.); (C.H.)
- Doctoral School of Molecular Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Csongor Váróczy
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (I.S.); (C.V.); (Z.R.); (C.H.)
- National Academy of Scientist Education, 4032 Debrecen, Hungary
| | - Zsolt Regdon
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (I.S.); (C.V.); (Z.R.); (C.H.)
| | - Anett Mázló
- Department of Immunology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (A.M.); (S.M.); (A.B.)
| | - Szabolcs Muzsai
- Department of Immunology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (A.M.); (S.M.); (A.B.)
- Gyula Petrányi Doctoral School of Clinical Immunology and Allergology, University of Debrecen, 4032 Debrecen, Hungary
| | - Attila Bácsi
- Department of Immunology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (A.M.); (S.M.); (A.B.)
- HUN-REN-DE Allergology Research Group, 4032 Debrecen, Hungary
| | - Giorgia Intili
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90133 Palermo, Italy;
| | - Csaba Hegedűs
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (I.S.); (C.V.); (Z.R.); (C.H.)
| | - Mark R. Boothby
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN 37235, USA;
| | | | - Dana Ferraris
- Department of Chemistry, McDaniel College, Westminster, MD 21157, USA;
| | - Herwig Schüler
- Center for Molecular Protein Science, Department of Chemistry, Lund University, 22100 Lund, Sweden;
| | - László Virág
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (I.S.); (C.V.); (Z.R.); (C.H.)
- HUN-REN-DE Cell Biology and Signaling Research Group, 4032 Debrecen, Hungary
| |
Collapse
|
5
|
Hekmatirad S, Moloudizargari M, Fallah M, Rahimi A, Poortahmasebi V, Asghari MH. Cancer-associated immune cells and their modulation by melatonin. Immunopharmacol Immunotoxicol 2023; 45:788-801. [PMID: 37489565 DOI: 10.1080/08923973.2023.2239489] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/17/2023] [Indexed: 07/26/2023]
Abstract
OBJECTIVES Rapidly growing evidence suggests that immune cells play a key role in determining tumor progression. Tumor cells are surrounded by a microenvironment composed of different cell populations including immune cells. The cross talk between tumor cells and the neighboring microenvironment is an important factor to take into account while designing tumor therapies. Despite significant advances in immunotherapy strategies, a relatively small proportion of patients have successfully responded to them. Therefore, the search for safe and efficient drugs, which could be used alongside conventional therapies to boost the immune system against tumors, is an ongoing need. In the present work, the modulatory effects of melatonin on different components of tumor immune microenvironment are reviewed. METHODS A thorough literature review was performed in PubMed, Scopus, and Web of Science databases. All published papers in English on tumor immune microenvironment and the relevant modulatory effects of melatonin were scrutinized. RESULTS Melatonin modulates macrophage polarization and prevents M2 induction. Moreover, it prevents the conversion of fibroblasts into cancer-associated fibroblasts (CAFs) and prevents cancer cell stemness. In addition, it can affect the payload composition of tumor-derived exosomes (TEXs) and their secretion levels to favor a more effective anti-tumor immune response. Melatonin is a safe molecule that affects almost all components of the tumor immune microenvironment and prevents them from being negatively affected by the tumor. CONCLUSION Based on the effects of melatonin on normal cells, tumor cells and microenvironment components, it could be an efficient compound to be used in combination with conventional immune-targeted therapies to increase their efficacy.
Collapse
Affiliation(s)
- Shirin Hekmatirad
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Marjan Fallah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Medicinal Plant Research Centre, Islamic Azad University, Amol, Iran
| | - Atena Rahimi
- Department of Pharmacology and Toxicology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Vahdat Poortahmasebi
- Department of Bacteriology and Virology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hossein Asghari
- Department of Pharmacology and Toxicology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
6
|
Dar AI, Randhawa S, Verma M, Acharya A. Erythrocyte Membrane Cloaked Cytokine Functionalized Gold Nanoparticles Create Localized Controlled Inflammation for Rapid In Vitro Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2023; 15:45585-45600. [PMID: 37737830 DOI: 10.1021/acsami.3c08166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Due to impaired wound healing, millions of acute and chronic wound cases with increased morbidity have been recorded in the developed countries. The primary reason has been attributed to uncontrolled inflammation at the wound site, which makes healing impossible for years. The use of red blood cell (RBC) ghosts or erythrocyte membranes for different theranostic applications has gained significant attention in recent years due to their biocompatibility and biomimicking properties. Our study builds upon this concept by presenting a new approach for creating an improved and controlled inflammatory response by employing RBC ghost encapsulated tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) modified AuNPs (gold nanoparticles) for accelerating the wound healing at early postinjury stage (∼48 h). The results suggested that the developed GTNFα-IL6@AuNPs created a controlled and time dependent TNF-α response and showed increased reactive oxygen species generation at ∼12 h. Further, proper M1/M2 functional transition of macrophages was observed in macrophages at different time intervals. The expression results suggested that the levels of wound healing biomarkers like transforming growth factor-β (1.8-fold) and collagen (2.4-fold) increased while matrix metalloproteinase (3-8-fold) levels declined at later stages, which possibly increased the cell migration rate of NP treated cells to ∼90%. Hence, we are here reducing the timeline of the inflammatory phase of wound healing by actually creating a controlled inflammatory response at an early postinjury stage and further assisting in regaining the ability of cells for wound remodelation and repair. We intend that this new approach has the potential to improve the current treatment strategies for wound healing and skin repair under both in vitro and in vivo conditions.
Collapse
Affiliation(s)
- Aqib Iqbal Dar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shiwani Randhawa
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mohini Verma
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Amitabha Acharya
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
7
|
Qin S, Wang Z, Huang C, Huang P, Li D. Serine protease PRSS23 drives gastric cancer by enhancing tumor associated macrophage infiltration via FGF2. Front Immunol 2022; 13:955841. [PMID: 36189305 PMCID: PMC9520605 DOI: 10.3389/fimmu.2022.955841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 08/16/2022] [Indexed: 11/13/2022] Open
Abstract
Serine proteases has been considered to be closely associated with the inflammatory response and tumor progression. As a novel serine protease, the biological function of PRSS23 is rarely studied in cancers. In this study, the prognostic significance of PRSS23 was analyzed in two-independent gastric cancer (GC) cohorts. PRSS23 overexpression was clinically correlated with poor prognosis and macrophage infiltration of GC patients. Loss-of-function study verified that PRSS23 plays oncogenic role in GC. RNA-seq, qRT-PCR, western blotting and ELISA assay confirmed that serine protease PRSS23 positively regulated FGF2 expression and secretion. Single-cell analysis and gene expression correlation analysis showed that PRSS23 and FGF2 were high expressed in fibroblasts, and highly co-expressed with the biomarkers of tumor associated macrophages (TAMs), cancer-associated fibroblasts (CAFs) and mesenchymal cells. Functional analysis confirmed PRSS23/FGF2 was required for TAM infiltration. Rescue assay further verified that PRSS23 promotes GC progression and TAM infiltration through FGF2. Survival analysis showed that high infiltration of M1-macrophage predicted favorable prognosis, while high infiltration level of M2-macrophage predicted poor prognosis in GC. Our finding highlights that PRSS23 promotes TAM infiltration through regulating FGF2 expression and secretion, thereby resulting in a poor prognosis.
Collapse
Affiliation(s)
- Shanshan Qin
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
- Laboratory of Tumor Biology, Academy of Bio-Medicine Research, Hubei University of Medicine, Shiyan, China
| | - Zidi Wang
- Laboratory of Tumor Biology, Academy of Bio-Medicine Research, Hubei University of Medicine, Shiyan, China
| | - Congcong Huang
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
- Laboratory of Tumor Biology, Academy of Bio-Medicine Research, Hubei University of Medicine, Shiyan, China
| | - Pan Huang
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
- Laboratory of Tumor Biology, Academy of Bio-Medicine Research, Hubei University of Medicine, Shiyan, China
| | - Dandan Li
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
- Laboratory of Tumor Biology, Academy of Bio-Medicine Research, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
8
|
Gu W, Zhang M, Gao F, Niu Y, Sun L, Xia H, Li W, Zhang Y, Guo Z, Du G. Berberine regulates PADI4-related macrophage function to prevent lung cancer. Int Immunopharmacol 2022; 110:108965. [PMID: 35764017 DOI: 10.1016/j.intimp.2022.108965] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/11/2022] [Accepted: 06/13/2022] [Indexed: 12/14/2022]
Abstract
Coptis chinensis Franch (CCF) has been widely used by Chinese old herbalist doctor to treat internal and external diseases including malignant sore and cancer. Berberine (BBR) is a major bioactive compound in CCF and may exert anti-tumor and anti-inflammatory effects like CCF. However, the prevention effect of berberine against lung cancer and its relevance of anti-inflammation property to cancer-preventing effect are still obscure. Protein arginine deaminase 4 (PAD4) played an important role in macrophage related inflammatory response, the purpose of this study was to identify whether berberine can prevent lung cancer and explore its effect on PADI4-related macrophage function. In vitro, PADI4 overexpression affects cell-activated state in macrophages. PADI4 overexpressed macrophages promote epithelial-mesenchymal transition (EMT) of A549 lung cancer cells and inhibit cell apoptosis. Berberine at the experiment dose had no effect on cell viability of U937-derived macrophages, but could significantly inhibit PADI4 expression to reverse the macrophage-activated state and the lung cancer -promoting effect of PADI4-overexpressed macrophages. Unlike GSK484, berberine had a little effect on the PADI4 citrullination activity at the experimental doses, its IC50 for PADI4 inhibition is 45.07 μM (44.03-46.12 μM). In the mouse lung carcinogenetic model, PADI4 expression was directly related to the number of lung nodules. Berberine had the similar role to GSK484 in reducing the number of lung tumor nodules with the improved lung pathology in a dose-dependent manner and significantly inhibited PADI4 expression. Further, we found that PADI4 overexpression could inhibit IRF5 expression, up-regulate CD163 and CD206 and down-regulate CD86 in macrophages, which could be reversed by berberine. Our results suggest that berberine may regulate PADI4-related macrophage function to prevent lung cancer.
Collapse
Affiliation(s)
- Wenwen Gu
- Institute of Pharmacy, Pharmaceutical College of Henan University, Kaifeng 475004, Henan, China
| | - Mengdi Zhang
- Institute of Pharmacy, Pharmaceutical College of Henan University, Kaifeng 475004, Henan, China
| | - Fan Gao
- Institute of Pharmacy, Pharmaceutical College of Henan University, Kaifeng 475004, Henan, China
| | - Yuji Niu
- Institute of Pharmacy, Pharmaceutical College of Henan University, Kaifeng 475004, Henan, China
| | - Luyao Sun
- Institute of Pharmacy, Pharmaceutical College of Henan University, Kaifeng 475004, Henan, China
| | - Haojie Xia
- Institute of Pharmacy, Pharmaceutical College of Henan University, Kaifeng 475004, Henan, China
| | - Wenwen Li
- Institute of Pharmacy, Pharmaceutical College of Henan University, Kaifeng 475004, Henan, China
| | - Yaru Zhang
- Institute of Pharmacy, Pharmaceutical College of Henan University, Kaifeng 475004, Henan, China
| | - Zhenzhen Guo
- Institute of Pharmacy, Pharmaceutical College of Henan University, Kaifeng 475004, Henan, China.
| | - Gangjun Du
- Institute of Pharmacy, Pharmaceutical College of Henan University, Kaifeng 475004, Henan, China; School of Pharmacy and Chemical Engineering, Zhengzhou University of Industry Technology, Xinzheng, Henan Province 451150, China.
| |
Collapse
|
9
|
Macrophages Are a Double-Edged Sword: Molecular Crosstalk between Tumor-Associated Macrophages and Cancer Stem Cells. Biomolecules 2022; 12:biom12060850. [PMID: 35740975 PMCID: PMC9221070 DOI: 10.3390/biom12060850] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 02/07/2023] Open
Abstract
Cancer stem cells (CSCs) are a subset of highly tumorigenic cells in tumors. They have enhanced self-renewal properties, are usually chemo-radioresistant, and can promote tumor recurrence and metastasis. They can recruit macrophages into the tumor microenvironment and differentiate them into tumor-associated macrophages (TAMs). TAMs maintain CSC stemness and construct niches that are favorable for CSC survival. However, how CSCs and TAMs interact is not completely understood. An understanding on these mechanisms can provide additional targeting strategies for eliminating CSCs. In this review, we comprehensively summarize the reported mechanisms of crosstalk between CSCs and TAMs and update the related signaling pathways involved in tumor progression. In addition, we discuss potential therapies targeting CSC–TAM interaction, including targeting macrophage recruitment and polarization by CSCs and inhibiting the TAM-induced promotion of CSC stemness. This review also provides the perspective on the major challenge for developing potential therapeutic strategies to overcome CSC-TAM crosstalk.
Collapse
|
10
|
Ma C, Hu K, Ullah I, Zheng QK, Zhang N, Sun ZG. Molecular Mechanisms Involving the Sonic Hedgehog Pathway in Lung Cancer Therapy: Recent Advances. Front Oncol 2022; 12:729088. [PMID: 35433472 PMCID: PMC9010822 DOI: 10.3389/fonc.2022.729088] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 03/03/2022] [Indexed: 12/09/2022] Open
Abstract
According to the latest statistics from the International Agency for Research on Cancer (IARC), lung cancer is one of the most lethal malignancies in the world, accounting for approximately 18% of all cancer-associated deaths. Yet, even with aggressive interventions for advanced lung cancer, the five-year survival rate remains low, at around 15%. The hedgehog signaling pathway is highly conserved during embryonic development and is involved in tissue homeostasis as well as organ development. However, studies have documented an increasing prevalence of aberrant activation of HH signaling in lung cancer patients, promoting malignant lung cancer progression with poor prognostic outcomes. Inhibitors targeting the HH pathway have been widely used in tumor therapy, however, they still cannot avoid the occurrence of drug resistance. Interestingly, natural products, either alone or in combination with chemotherapy, have greatly improved overall survival outcomes for lung cancer patients by acting on the HH signaling pathway because of its unique and excellent pharmacological properties. In this review, we elucidate on the underlying molecular mechanisms through which the HH pathway promotes malignant biological behaviors in lung cancer, as well as the potential of inhibitors or natural compounds in targeting HH signaling for clinical applications in lung cancer therapy.
Collapse
Affiliation(s)
- Chao Ma
- School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Kang Hu
- School of Clinical Medicine, Weifang Medical University, Weifang, China
- Department of Thoracic Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Irfan Ullah
- Department of Surgery, Khyber Medical University Peshawar, Peshawar, Pakistan
| | - Qing-Kang Zheng
- School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Nan Zhang
- Breast Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
- *Correspondence: Zhi-Gang Sun, ; Nan Zhang,
| | - Zhi-Gang Sun
- Department of Thoracic Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
- *Correspondence: Zhi-Gang Sun, ; Nan Zhang,
| |
Collapse
|
11
|
Cook L, Sengelmann M, Winkler B, Nagl C, Koch S, Schlomann U, Slater EP, Miller MA, von Strandmann EP, Dörsam B, Preußer C, Bartsch JW. ADAM8-Dependent Extracellular Signaling in the Tumor Microenvironment Involves Regulated Release of Lipocalin 2 and MMP-9. Int J Mol Sci 2022; 23:ijms23041976. [PMID: 35216088 PMCID: PMC8875419 DOI: 10.3390/ijms23041976] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/03/2022] [Accepted: 02/08/2022] [Indexed: 12/11/2022] Open
Abstract
The metalloprotease-disintegrin ADAM8 is critically involved in the progression of pancreatic cancer. Under malignant conditions, ADAM8 is highly expressed and could play an important role in cell–cell communication as expression has been observed in tumor and immune cells of the tumor microenvironment (TME) such as macrophages. To analyze the potential role of ADAM8 in the TME, ADAM8 knockout PDAC tumor cells were generated, and their release of extracellular vesicles (EVs) was analyzed. In EVs, ADAM8 is present as an active protease and associated with lipocalin 2 (LCN2) and matrix metalloprotease 9 (MMP-9) in an ADAM8-dependent manner, as ADAM8 KO cells show a lower abundance of LCN2 and MMP-9. Sorting of ADAM8 occurs independent of TSG101, even though ADAM8 contains the recognition motif PTAP for the ESCRTI protein TSG101 within the cytoplasmic domain (CD). When tumor cells were co-cultured with macrophages (THP-1 cells), expression of LCN2 and MMP-9 in ADAM8 KO cells was induced, suggesting that macrophage signaling can overcome ADAM8-dependent intracellular signaling in PDAC cells. In co-culture with macrophages, regulation of MMP-9 is independent of the M1/M2 polarization state, whereas LCN2 expression is preferentially affected by M1-like macrophages. From these data, we conclude that ADAM8 has a systemic effect in the tumor microenvironment, and its expression in distinct cell types has to be considered for ADAM8 targeting in tumors.
Collapse
Affiliation(s)
- Lena Cook
- Department of Neurosurgery, Philipps University Marburg, Baldingerstr, 35033 Marburg, Germany; (L.C.); (M.S.); (B.W.); (C.N.); (S.K.); (U.S.)
| | - Marie Sengelmann
- Department of Neurosurgery, Philipps University Marburg, Baldingerstr, 35033 Marburg, Germany; (L.C.); (M.S.); (B.W.); (C.N.); (S.K.); (U.S.)
| | - Birte Winkler
- Department of Neurosurgery, Philipps University Marburg, Baldingerstr, 35033 Marburg, Germany; (L.C.); (M.S.); (B.W.); (C.N.); (S.K.); (U.S.)
| | - Constanze Nagl
- Department of Neurosurgery, Philipps University Marburg, Baldingerstr, 35033 Marburg, Germany; (L.C.); (M.S.); (B.W.); (C.N.); (S.K.); (U.S.)
| | - Sarah Koch
- Department of Neurosurgery, Philipps University Marburg, Baldingerstr, 35033 Marburg, Germany; (L.C.); (M.S.); (B.W.); (C.N.); (S.K.); (U.S.)
| | - Uwe Schlomann
- Department of Neurosurgery, Philipps University Marburg, Baldingerstr, 35033 Marburg, Germany; (L.C.); (M.S.); (B.W.); (C.N.); (S.K.); (U.S.)
- Department of Visceral Surgery, Philipps University Marburg, Baldingerstr, 35033 Marburg, Germany;
| | - Emily P. Slater
- Department of Visceral Surgery, Philipps University Marburg, Baldingerstr, 35033 Marburg, Germany;
| | - Miles A. Miller
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA;
| | - Elke Pogge von Strandmann
- Department of Medicine, Institute for Tumor Immunology, Philipps University Marburg, 35043 Marburg, Germany; (E.P.v.S.); (B.D.); (C.P.)
| | - Bastian Dörsam
- Department of Medicine, Institute for Tumor Immunology, Philipps University Marburg, 35043 Marburg, Germany; (E.P.v.S.); (B.D.); (C.P.)
| | - Christian Preußer
- Department of Medicine, Institute for Tumor Immunology, Philipps University Marburg, 35043 Marburg, Germany; (E.P.v.S.); (B.D.); (C.P.)
| | - Jörg W. Bartsch
- Department of Neurosurgery, Philipps University Marburg, Baldingerstr, 35033 Marburg, Germany; (L.C.); (M.S.); (B.W.); (C.N.); (S.K.); (U.S.)
- Correspondence: ; Tel.: +49-6421-58-61173
| |
Collapse
|
12
|
Yue Y, Zhang Q, Sun Z. CX3CR1 Acts as a Protective Biomarker in the Tumor Microenvironment of Colorectal Cancer. Front Immunol 2022; 12:758040. [PMID: 35140706 PMCID: PMC8818863 DOI: 10.3389/fimmu.2021.758040] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 12/28/2021] [Indexed: 12/12/2022] Open
Abstract
The tumor microenvironment (TME) plays an important role in the pathogenesis of many cancers. We aimed to screen the TME-related hub genes of colorectal adenoma (CRAD) and identify possible prognostic biomarkers. The gene expression profiles and clinical data of 464 CRAD patients in The Cancer Genome Atlas (TCGA) database were downloaded. The Estimation of STromal and Immune cells in MAlignant Tumours using Expression data (ESTIMATE) algorithm was performed to calculate the ImmuneScore, StromalScore, and EstimateScore. Thereafter, differentially expressed genes (DEGs) were screened. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, and protein–protein interaction (PPI) analysis were performed to explore the roles of DEGs. Furthermore, univariate and multivariate Cox analyses were accomplished to identify independent prognostic factors of CRAD. CX3CR1 was selected as a hub gene, and the expression was confirmed in colorectal cancer (CRC) patients and cell lines. The correlations between CX3CR1 and tumor-infiltrating immune cells were estimated by Tumor IMmune Estimation Resource database (TIMER) and CIBERSORT analysis. Besides, we investigated the effects of coculture with THP-1-derived macrophages with HCT8 cells with low CX3CR1 expression on immune marker expression, cell viability, and migration. There were significant differences in the ImmuneScore and EstimateScore among different stages. Patients with low scores presented significantly lower lifetimes than those in the high-score group. Moreover, we recognized 1,578 intersection genes in ImmuneScore and StromalScore, and these genes were mainly enriched in numerous immune-related biological processes. CX3CR1 was found to be associated with immune cell infiltration levels, immune marker expression, and macrophage polarization. Simultaneous silencing of CX3CR1 and coculture with THP-1 cells further regulated macrophage polarization and promoted the cell proliferation and migration of CRC cells. CX3CR1 was decreased in CRAD tissues and cell lines and was related to T and N stages, tumor differentiation, and prognosis. Our results suggest that CX3CR1 contributes to the recruitment and regulation of immune-infiltrating cells and macrophage polarization in CRC and TAM-induced CRC progression. CX3CR1 may act as a prognostic biomarker in CRC.
Collapse
Affiliation(s)
- Yuanyi Yue
- Department of Gastroenterology Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qiang Zhang
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhengrong Sun
- BioBank, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Zhengrong Sun,
| |
Collapse
|