1
|
Liu JS, Li YK, Li J, Li Y, Liu ZT, Zhou ZX, Li YG, Wang R. Ascorbate peroxidase catalyses synthesis of protocatechualdehyde from p-hydroxybenzaldehyde in Lycoris aurea. Gene 2024; 927:148697. [PMID: 38880186 DOI: 10.1016/j.gene.2024.148697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/10/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
Protocatechualdehyde is a plant natural phenolic aldehyde and an active ingredient with important bioactivities in traditional Chinese medicine. Protocatechualdehyde is also a key intermediate in the synthesis of Amaryllidaceae alkaloids for supplying the C6-C1 skeleton. However, the biosynthesis of protocatechualdehyde in plants remains obscure. In this study, we measured the protocatechualdehyde contents in the root, bulb, scape and flower of the Amaryllidaceae plant Lycoris aurea (L'Hér.) Herb., and performed the correlation analysis between the protocatechualdehyde contents and the transcriptional levels of the phenolic oxidization candidate protein encoding genes. We found that a novel ascorbate peroxidase encoded by the contig_24999 in the L. aurea transcriptome database had potential role in the biosynthesis of protocatechualdehyde. The LauAPX_24999 gene was then cloned from the cDNA of the scape of L. aurea. The transient expression of LauAPX_24999 protein in Arabidopsis protoplasts demonstrated that LauAPX_24999 protein was localized in the cytoplasm, thus belonging to Class II L-ascorbate peroxidase. Subsequently, LauAPX_24999 protein was heterogenously expressed in Escherichia coli, and identified that LauAPX_24999 biosynthesized protocatechualdehyde from p-hydroxybenzaldehyde using L-ascorbic acid as the electron donor. The protein structure modelling and molecular docking indicated that p-hydroxybenzaldehyde could access to the active pocket of LauAPX_24999 protein, and reside at the δ-edge of the heme group while L-ascorbic acid binds at the γ-heme edge. To our knowledge, LauAPX_24999 is the first enzyme discovered in plants able to biosynthesize protocatechualdehyde from p-hydroxybenzaldehyde, and offers a competent enzyme resource for the biosynthesis of Amaryllidaceae alkaloids via synthetic biology.
Collapse
Affiliation(s)
- Jin-Shu Liu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; Engineering College, Qufu Normal University, Rizhao 276826, China.
| | - Yi-Kui Li
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
| | - Jie Li
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
| | - Yang Li
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
| | - Zheng-Tai Liu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
| | - Zheng-Xiong Zhou
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| | - Yu-Gang Li
- Engineering College, Qufu Normal University, Rizhao 276826, China.
| | - Ren Wang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing 210014, China.
| |
Collapse
|
2
|
Wei B, Sun C, Wan H, Shou Q, Han B, Sheng M, Li L, Kai G. Bioactive components and molecular mechanisms of Salvia miltiorrhiza Bunge in promoting blood circulation to remove blood stasis. JOURNAL OF ETHNOPHARMACOLOGY 2023; 317:116697. [PMID: 37295577 DOI: 10.1016/j.jep.2023.116697] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 05/09/2023] [Accepted: 05/28/2023] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Salvia miltiorrhiza Bunge (SM) is an outstanding herbal medicine with various traditional effects, especially promoting blood circulation to remove blood stasis. It has been widely used for centuries to treat blood stasis syndrome (BSS)-related diseases. BSS is one of the basic pathological syndromes of diseases such as cardiovascular and cerebrovascular diseases in traditional East Asian medicine, which is characterized by disturbance of blood circulation. However, the bioactive components and mechanisms of SM in the treatment of BSS have not been systematically reviewed. Therefore, this article outlines the anti-BSS effects of bioactive components of SM, concentrating on the molecular mechanisms. AIM OF THE REVIEW To summarize the bioactive components of SM against BSS and highlight its potential targets and signaling pathways, hoping to provide a modern biomedical perspective to understand the efficacy of SM on enhancing blood circulation to remove blood stasis. MATERIALS AND METHODS A comprehensive literature search was performed to retrieve articles published in the last two decades on bioactive components of SM used for BSS treatment from the online electronic medical literature database (PubMed). RESULTS Phenolic acids and tanshinones in SM are the main bioactive components in the treatment of BSS, including but not limited to salvianolic acid B, tanshinone IIA, salvianolic acid A, cryptotanshinone, Danshensu, dihydrotanshinone, rosmarinic acid, protocatechuic aldehyde, and caffeic acid. They protect vascular endothelial cells by alleviating oxidative stress and inflammatory damage and regulating of NO/ET-1 levels. They also enhance anticoagulant and fibrinolytic capacity, inhibit platelet activation and aggregation, and dilate blood vessels. Moreover, lowering blood lipids and improving blood rheological properties may be the underlying mechanisms of their anti-BSS. More notably, these compounds play an anti-BSS role by mediating multiple signaling pathways such as Nrf2/HO-1, TLR4/MyD88/NF-κB, PI3K/Akt/eNOS, MAPKs (p38, ERK, and JNK), and Ca2+/K+ channels. CONCLUSIONS Both phenolic acids and tanshinones in SM may act synergistically to target different signaling pathways to achieve the effect of promoting blood circulation.
Collapse
Affiliation(s)
- Baoyu Wei
- Zhejiang Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 311402, PR China.
| | - Chengtao Sun
- Zhejiang Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 311402, PR China.
| | - Haitong Wan
- Zhejiang Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 311402, PR China.
| | - Qiyang Shou
- Zhejiang Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 311402, PR China.
| | - Bing Han
- Zhejiang Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 311402, PR China.
| | - Miaomiao Sheng
- Zhejiang Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 311402, PR China.
| | - Liqing Li
- Huzhou Central Hospital, Huzhou, Zhejiang, 31300, PR China.
| | - Guoyin Kai
- Zhejiang Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 311402, PR China.
| |
Collapse
|
3
|
Wu X, Wei F, Ding F, Yang N, Niu J, Ran Y, Tian M. Phytochemical analysis, antioxidant, antimicrobial, and anti-enzymatic properties of Alpinia coriandriodora (sweet ginger) rhizome. FRONTIERS IN PLANT SCIENCE 2023; 14:1284931. [PMID: 37936928 PMCID: PMC10626549 DOI: 10.3389/fpls.2023.1284931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/09/2023] [Indexed: 11/09/2023]
Abstract
Alpinia coriandriodora, also known as sweet ginger, is a medicinal and edible plant. A. coriandriodora rhizome is popularly utilized in traditional Chinese medicine and as flavouring spices, but there are few reports on its constituents and bioactivities. This study analyzed the phytochemical components of A. coriandriodora rhizome by GC-MS and UHPLC-Q-Orbitrap-MS and evaluated its antioxidant, antimicrobial, and anti-enzymatic properties. According to the GC-FID/MS data, its rhizome essential oil (EO) consisted mainly of (E)-2-decenal (53.8%), (E)-2-decenyl acetate (24.4%), (Z)-3-dodecenyl acetate (3.5%), and (E)-2-octenal (3.5%). Its water extract (WE) and 70% ethanol extract (EE) showed high total phenolic content (TPC, 52.99-60.49 mg GAEs/g extract) and total flavonoid content (TFC, 260.69-286.42 mg REs/g extract). In addition, the phytochemicals of WE and EE were further characterized using UHPLC-Q-Orbitrap-MS, and a total of sixty-three compounds were identified, including fourteen phenolic components and twenty-three flavonoid compounds. In the antioxidant assay, WE and EE revealed a potent scavenging effect on DPPH (IC50: 6.59 ± 0.88 mg/mL and 17.70 ± 1.15 mg/mL, respectively), surpassing the BHT (IC50: 21.83 ± 0.89 mg/mL). For the antimicrobial activities, EO displayed excellent antibacterial capabilities against Proteus vulgaris, Enterococcus faecalis, Bacillus subtilis, Escherichia coli, and Staphylococcus aureus with DIZ (12.60-22.17 mm), MIC (0.78-1.56 mg/mL), and MBC (3.13 mg/mL) and significantly inhibited Aspergillus flavus growth (MIC = 0.313 mg/mL, MFC = 0.625 mg/mL, respectively). In addition to weak tyrosinase and cholinesterase inhibition, EE and WE had a prominent inhibitory effect against α-glucosidase (IC50: 0.013 ± 0.001 mg/mL and 0.017 ± 0.002 mg/mL), which was significantly higher than acarbose (IC50: 0.22 ± 0.01 mg/mL). Hence, the rhizome of A. coriandriodora has excellent potential for utilization in the pharmaceutical and food fields as a source of bioactive substances.
Collapse
Affiliation(s)
- Xia Wu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), School of Liquor and Food Engineering, Guizhou University, Guiyang, China
- National & Local Joint Engineering Research Center for the Exploitation of Homology Resources of Southwest Medicine and Food, Guizhou University, Guiyang, China
| | - Feng Wei
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), School of Liquor and Food Engineering, Guizhou University, Guiyang, China
| | - Furong Ding
- National & Local Joint Engineering Research Center for the Exploitation of Homology Resources of Southwest Medicine and Food, Guizhou University, Guiyang, China
| | - Nian Yang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), School of Liquor and Food Engineering, Guizhou University, Guiyang, China
- National & Local Joint Engineering Research Center for the Exploitation of Homology Resources of Southwest Medicine and Food, Guizhou University, Guiyang, China
| | - Jingming Niu
- First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Yuanquan Ran
- First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Minyi Tian
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), School of Liquor and Food Engineering, Guizhou University, Guiyang, China
- National & Local Joint Engineering Research Center for the Exploitation of Homology Resources of Southwest Medicine and Food, Guizhou University, Guiyang, China
- First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| |
Collapse
|
4
|
Chis IC, Micu CM, Toader A, Moldovan R, Lele L, Clichici S, Mitrea DR. The Beneficial Effect of Swimming Training Associated with Quercetin Administration on the Endothelial Nitric Oxide-Dependent Relaxation in the Aorta of Rats with Experimentally Induced Type 1 Diabetes Mellitus. Metabolites 2023; 13:metabo13050586. [PMID: 37233627 DOI: 10.3390/metabo13050586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 04/19/2023] [Accepted: 04/23/2023] [Indexed: 05/27/2023] Open
Abstract
Type 1 diabetes mellitus is related to the vascular oxidative and nitrosative stress, the trigger for atherosclerosis and cardiovascular complications. The effects of moderate swimming training associated with quercetin oral administration were evaluated in aorta of rats with experimentally induced type 1 diabetes mellitus (T1DM), by analysing the nitric oxide-endothelial dependent relaxation (NO-EDR). T1DM rats received daily quercetin 30 mg/kg and followed the protocol of 5-weeks swimming exercise (30 min/day; 5 days/week). Aorta relaxation to acetylcholine (Ach) and sodium nitroprusside (SNP) were measured at the end of the experiment. Ach-induced endothelial dependent relaxation was significantly decreased in phenylephrine (PE) pre-contracted aorta of diabetic rats. Swimming exercise with quercetin administration preserved Ach-induced EDR but did not have any impact on SNP-induced endothelium-independent relaxation in the diabetic aorta. These findings suggest that quercetin administration associated with moderate swimming exercise could improve the endothelial NO-dependent relaxation in the aorta of rats with experimentally induced type 1 diabetes mellitus, showing that this therapeutical combination may improve and even prevent the vascular complications that occur in diabetic patients.
Collapse
Affiliation(s)
- Irina-Camelia Chis
- Department of Physiology, Iuliu Hatieganu University of Medicine and Pharmacy, 1-3 Clinicilor Street, 400006 Cluj-Napoca, Cluj County, Romania
| | - Carmen-Maria Micu
- Department of Anatomy and Embryology, Iuliu Hatieganu University of Medicine and Pharmacy, 3-5 Clinicilor Street, 400006 Cluj-Napoca, Cluj County, Romania
| | - Alina Toader
- Department of Physiology, Iuliu Hatieganu University of Medicine and Pharmacy, 1-3 Clinicilor Street, 400006 Cluj-Napoca, Cluj County, Romania
| | - Remus Moldovan
- Department of Physiology, Iuliu Hatieganu University of Medicine and Pharmacy, 1-3 Clinicilor Street, 400006 Cluj-Napoca, Cluj County, Romania
| | - Laura Lele
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 10 1 Decembrie Street, 410073 Oradea, Bihor County, Romania
| | - Simona Clichici
- Department of Physiology, Iuliu Hatieganu University of Medicine and Pharmacy, 1-3 Clinicilor Street, 400006 Cluj-Napoca, Cluj County, Romania
| | - Daniela-Rodica Mitrea
- Department of Physiology, Iuliu Hatieganu University of Medicine and Pharmacy, 1-3 Clinicilor Street, 400006 Cluj-Napoca, Cluj County, Romania
| |
Collapse
|
5
|
Kong J, Li S, Li Y, Chen M. Effects of Salvia miltiorrhiza active compounds on placenta-mediated pregnancy complications. Front Cell Dev Biol 2023; 11:1034455. [PMID: 36711034 PMCID: PMC9880055 DOI: 10.3389/fcell.2023.1034455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 01/03/2023] [Indexed: 01/15/2023] Open
Abstract
Placenta-mediated pregnancy complications (PMPCs), including preeclampsia (PE), fetal growth restriction (FGR), and recurrent spontaneous abortion (RSA), occur in approximately 5% of pregnancies and are caused by abnormal placenta development. The development of effective therapies for PMPCs is still challenging due to the complicated pathogenesis, such as disrupted vascular homeostasis and subsequent abnormal placentation. Synthetic drugs have been recommended for treating PMPCs; however, they tend to cause adverse reactions in the mother and fetus. Salvia miltiorrhiza (S. miltiorrhiza) has potential effects on PMPCs owing to its advantages in treating cardiovascular disorders. S. miltiorrhiza and its active compounds could attenuate the symptoms of PMPCs through anticoagulation, vasodilation, antioxidation, and endothelial protection. Thus, in this review, we summarize the literature and provide comprehensive insights on S. miltiorrhiza and its phytochemical constituents, pharmacological activities, and on PMPCs, which would be valuable to explore promising drugs.
Collapse
Affiliation(s)
- Jingyin Kong
- Department of Prenatal Diagnosis and Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Songjun Li
- Department of Reproduction Medical Center, The Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Yingting Li
- Department of Prenatal Diagnosis and Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Min Chen
- Department of Prenatal Diagnosis and Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China,*Correspondence: Min Chen,
| |
Collapse
|
6
|
Cao S, Chen S, Qiao X, Guo Y, Liu F, Ding Z, Jin B. Protocatechualdehyde Rescues Oxygen-Glucose Deprivation/Reoxygenation-Induced Endothelial Cells Injury by Inducing Autophagy and Inhibiting Apoptosis via Regulation of SIRT1. Front Pharmacol 2022; 13:846513. [PMID: 35431914 PMCID: PMC9008765 DOI: 10.3389/fphar.2022.846513] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/14/2022] [Indexed: 01/30/2023] Open
Abstract
Background: Oxidative stress-induced endothelial cell death, such as apoptosis and autophagy, plays a critical role in ischemia-reperfusion injury. Protocatechualdehyde (PCA) is a major bioactive component of the traditional Chinese medicine Salvia miltiorrhiza Bunge (Lamiaceae), and it has been proved to be effective in the prevention and treatment of ischemic cardiovascular and cerebrovascular diseases. However, its role in oxidative stress-induced endothelial cell death and its underlying mechanisms remains unclear. This study aims to investigate the effects and mechanisms of PCA on endothelial cell apoptosis and autophagy induced by oxygen-glucose deprivation/reoxygenation (OGD/R) injury. Methods: After OGD/R induction, human umbilical vein endothelial cells (HUVECs) were treated with different concentrations of PCA. Cell viability, apoptosis, and autophagy were detected by Cell Counting Kit-8 assay, flow cytometry, and monodansylcadaverine assay, respectively. Western blot was applied to explore the effects of PCA on the expression levels of relevant protein factors. Results: The results show that PCA significantly promoted cell survival rate and cell proliferation and enhanced the antioxidant activity in OGD/R-induced HUVECs. PCA inhibited HUVECs apoptosis, as evidenced by decreased expression of cleaved-caspase-3, Bcl2-associated X (BAX), and increased expression of Bcl-2. PCA induced autophagy by reducing the expression of P62 while increasing the expression of Beclin-1 and LC3 II/I. Meanwhile, PCA enhanced the expression of Sirtuin 1 (SIRT1) and suppressed the expression of P53. When SIRT1 was inhibited by selisistat or SIRT1 small-interfering RNA, the anti-apoptotic and pro-autophagy abilities of PCA were attenuated. Conclusion: These results demonstrated that PCA rescued HUVECs from OGD/R-induced injury by promoting autophagy and inhibiting apoptosis through SIRT1 and could be developed as a potential therapeutic agent against ischemic diseases.
Collapse
Affiliation(s)
- Shidong Cao
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Senmiao Chen
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xilin Qiao
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yan Guo
- School of Basic Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Fang Liu
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhishan Ding
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, China
| | - Bo Jin
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
7
|
Chen F, Yang D, Cheng XY, Yang H, Yang XH, Liu HT, Wang R, Zheng P, Yao Y, Li J. Astragaloside IV Ameliorates Cognitive Impairment and Neuroinflammation in an Oligomeric Aβ Induced Alzheimer's Disease Mouse Model via Inhibition of Microglial Activation and NADPH Oxidase Expression. Biol Pharm Bull 2021; 44:1688-1696. [PMID: 34433707 DOI: 10.1248/bpb.b21-00381] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Microglial activation and neuroinflammation induced by amyloid β (Aβ) play pivotal roles in Alzheimer's disease (AD) pathogenesis. Astragaloside IV (AS-IV) is one of the major active compounds of the traditional Chinese medicine Astmgali Radix. It has been reported that AS-IV could protect against Aβ-induced neuroinflammation and cognitive impairment, but the underlying mechanisms need to be further clarified. In this study, the therapeutic effects of AS-IV were investigated in an oligomeric Aβ (oAβ) induced AD mice model. The effects of AS-IV on microglial activation, neuronal damage and reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase expression were further studied. Different doses of AS-IV were administered intragastrically once a day after intracerebroventricularly oAβ injection. Results of behavioral experiments including novel object recognition (NOR) test and Morris water maze (MWM) test revealed that AS-IV administration could significantly ameliorate oAβ-induced cognitive impairment in a dose dependent manner. Enzyme linked immunosorbent assay (ELISA) results showed that increased levels of reactive oxygen species (ROS), tumor necrosis factor α (TNF-α), interleukin-1β (IL-1β) and IL-6 in hippocampal tissues induced by oAβ injection were remarkably inhibited after AS-IV treatment. OAβ induced microglial activation and neuronal damage was significantly suppressed in AS-IV-treated mice brain, observed in immunohistochemistry results. Furthermore, oAβ upregulated protein expression of NADPH oxidase subunits gp91phox, p47phox, p22phox and p67phox were remarkably reduced by AS-IV in Western blotting assay. These results revealed that AS-IV could ameliorate oAβ-induced cognitive impairment, neuroinflammation and neuronal damage, which were possibly mediated by inhibition of microglial activation and down-regulation of NADPH oxidase protein expression. Our findings provide new insights of AS-IV for the treatment of neuroinflammation related diseases such as AD.
Collapse
Affiliation(s)
- Fei Chen
- School of Pharmacy, Ningxia Engineering and Technology Research Center for Modernization of Traditional Chinese Medicine, and Key Laboratory of Traditional Chinese Medicine Modernization, Ministry of Education, Ningxia Medical University
| | - Dan Yang
- School of Pharmacy, Ningxia Engineering and Technology Research Center for Modernization of Traditional Chinese Medicine, and Key Laboratory of Traditional Chinese Medicine Modernization, Ministry of Education, Ningxia Medical University
| | - Xiao-Yu Cheng
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, the Second Affiliated Hospital, Soochow University
| | - Hui Yang
- Research Center of Medical Science and Technology, Ningxia Medical University
| | - Xin-He Yang
- School of Pharmacy, Ningxia Engineering and Technology Research Center for Modernization of Traditional Chinese Medicine, and Key Laboratory of Traditional Chinese Medicine Modernization, Ministry of Education, Ningxia Medical University
| | - He-Tao Liu
- School of Basic Medical Sciences, Ningxia Medical University
| | - Rui Wang
- School of Pharmacy, Ningxia Engineering and Technology Research Center for Modernization of Traditional Chinese Medicine, and Key Laboratory of Traditional Chinese Medicine Modernization, Ministry of Education, Ningxia Medical University
| | - Ping Zheng
- School of Pharmacy, Ningxia Engineering and Technology Research Center for Modernization of Traditional Chinese Medicine, and Key Laboratory of Traditional Chinese Medicine Modernization, Ministry of Education, Ningxia Medical University
| | - Yao Yao
- School of Basic Medical Sciences, Ningxia Medical University
| | - Juan Li
- School of Pharmacy, Ningxia Engineering and Technology Research Center for Modernization of Traditional Chinese Medicine, and Key Laboratory of Traditional Chinese Medicine Modernization, Ministry of Education, Ningxia Medical University
| |
Collapse
|
8
|
Chang YT, Chung MC, Hsieh CC, Shieh JJ, Wu MJ. Evaluation of the Therapeutic Effects of Protocatechuic Aldehyde in Diabetic Nephropathy. Toxins (Basel) 2021; 13:toxins13080560. [PMID: 34437430 PMCID: PMC8402415 DOI: 10.3390/toxins13080560] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/30/2021] [Accepted: 08/08/2021] [Indexed: 11/18/2022] Open
Abstract
Diabetic nephropathy (DN) is one of the most severe chronic kidney diseases in diabetes and is the main cause of end-stage renal disease (ESRD). Protocatechuic aldehyde (PCA) is a natural product with a variety of effects on pulmonary fibrosis. In this study, we examined the effects of PCA in C57BL/KS db/db male mice. Kidney morphology, renal function indicators, and Western blot, immunohistochemistry, and hematoxylin and eosin (H&E) staining data were analyzed. The results revealed that treatment with PCA could reduce diabetic-induced renal dysfunction, as indicated by the urine albumin-to-creatinine ratio (db/m: 120.1 ± 46.1μg/mg, db/db: 453.8 ± 78.7 µg/mg, db/db + 30 mg/kg PCA: 196.6 ± 52.9 µg/mg, db/db + 60 mg/kg PCA: 163.3 ± 24.6 μg/mg, p < 0.001). However, PCA did not decrease body weight, fasting plasma glucose, or food and water intake in db/db mice. H&E staining data revealed that PCA reduced glomerular size in db/db mice (db/m: 3506.3 ± 789.3 μm2, db/db: 6538.5 ± 1818.6 μm2, db/db + 30 mg/kg PCA: 4916.9 ± 1149.6 μm2, db/db + 60 mg/kg PCA: 4160.4 ± 1186.5 μm2p < 0.001). Western blot and immunohistochemistry staining indicated that PCA restored the normal levels of diabetes-induced fibrosis markers, such as transforming growth factor-beta (TGF-β) and type IV collagen. Similar results were observed for epithelial–mesenchymal transition-related markers, including fibronectin, E-cadherin, and α-smooth muscle actin (α-SMA). PCA also decreased oxidative stress and inflammation in the kidney of db/db mice. This research provides a foundation for using PCA as an alternative therapy for DN in the future.
Collapse
Affiliation(s)
- Yu-Teng Chang
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung 402, Taiwan;
| | - Mu-Chi Chung
- Division of Nephrology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung 407, Taiwan;
- Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan
- Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung 413, Taiwan
| | - Chang-Chi Hsieh
- Department of Animal Science and Biotechnology, Tunghai University, Taichung 407, Taiwan;
| | - Jeng-Jer Shieh
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung 402, Taiwan;
- Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan
- Department of Medical Research, Taichung Veterans General Hospital, Taichung 407, Taiwan
- Correspondence: (J.-J.S.); (M.-J.W.); Tel.: +886-4-23592525 (ext. 4052) (J.-J.S.); +886-4-23592525 (ext. 3000) (M.-J.W.)
| | - Ming-Ju Wu
- Division of Nephrology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung 407, Taiwan;
- Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan
- Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan
- College of Medicine, National Chung Hsing University, Taichung 402, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
- Graduate Institute of Clinical Medical Sciences, School of Medicine, China Medical University, Taichung 404, Taiwan
- Correspondence: (J.-J.S.); (M.-J.W.); Tel.: +886-4-23592525 (ext. 4052) (J.-J.S.); +886-4-23592525 (ext. 3000) (M.-J.W.)
| |
Collapse
|