1
|
Jindanil T, Xu L, Fontenele RC, Perula MCDL, Jacobs R. Smartphone applications for facial scanning: A technical and scoping review. Orthod Craniofac Res 2024. [PMID: 38842250 DOI: 10.1111/ocr.12821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2024] [Indexed: 06/07/2024]
Abstract
INTRODUCTION Facial scanning through smartphone scanning applications (SSA) is increasingly being used for medical applications as cost-effective, chairside method. However, clinical validation is lacking. This review aims to address: (1) Which SSA could perform facial scanning? (2) Which SSA can be clinically used? (3) Which SSA have been reported and scientifically validated for medical applications? METHODS Technical search for SSA designed for face or object scanning was conducted on Google, Apple App Store, and Google Play Store from August 2022 to December 2023. Literature search was performed on PubMed, Cochrane, EMBASE, MEDLINE, Scopus, IEEE Xplore, ACM Digital Library, Clinicaltrials.gov, ICTRP (WHO) and preprints up to 2023. Eligibility criteria included English-written scientific articles incorporating at least one SSA for clinical purposes. SSA selection and data extraction were executed by one reviewer, validated by second, with third reviewer being consulted for discordances. RESULTS Sixty-three applications designed for three-dimensional object scanning were retrieved, with 52 currently offering facial scanning capabilities. Fifty-six scientific articles, comprising two case reports, 16 proof-of-concepts and 38 experimental studies were analysed. Thirteen applications (123D Catch, 3D Creator, Bellus 3D Dental Pro, Bellus 3D Face app, Bellus 3D Face Maker, Capture, Heges, Metascan, Polycam, Scandy Pro, Scaniverse, Tap tap tap and Trnio) were reported in literature for digital workflow integration, comparison or proof-of-concept studies. CONCLUSION Fifty-two SSA can perform facial scanning currently and can be used clinically, offering cost-effectiveness, portability and user-friendliness. Although clinical validation is crucial, only 13 SSA were scientifically validated, underlying awareness of potential pitfalls and limitations.
Collapse
Affiliation(s)
- Thanatchaporn Jindanil
- OMFS-IMPATH Research Group, Department of Imaging and Pathology, Faculty of Medicine, KU Leuven, Leuven, Belgium
| | - Lianyi Xu
- OMFS-IMPATH Research Group, Department of Imaging and Pathology, Faculty of Medicine, KU Leuven, Leuven, Belgium
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | - Maria Cadenas de Llano Perula
- Department of Oral Health Sciences - Orthodontics, KU Leuven and Dentistry, University Hospitals Leuven, Leuven, Belgium
| | - Reinhilde Jacobs
- OMFS-IMPATH Research Group, Department of Imaging and Pathology, Faculty of Medicine, KU Leuven, Leuven, Belgium
- Department of Dental Medicine, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
2
|
Luo Y, Zhao M, Lu J. Accuracy of Smartphone-Based Three-Dimensional Facial Scanning System: A Systematic Review. Aesthetic Plast Surg 2024:10.1007/s00266-024-04121-y. [PMID: 38831068 DOI: 10.1007/s00266-024-04121-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 05/02/2024] [Indexed: 06/05/2024]
Abstract
BACKGROUND Recently, the integration of 3D face scanning into smartphones has raised vast interest in plastic surgery. With the release of smartphones featuring 3D face scanning technology, users now can capture detailed 3D models of their faces using their smartphones. However, trueness and precision of this system is less well established. METHODS PubMed, Cochrane Library, Embase, ScienceDirect, Scopus, and Web of Science databases were searched for studies evaluating 3D scanning of smartphone devices and conventional 3D imaging systems from January 1, 2017, to June 1, 2023. A qualitative systematic review was conducted by two review authors after independently selecting studies, extracting data, and assessing the risk of bias of included studies. RESULTS A total of 11 studies were included, all focusing on the accuracy of smartphone 3D facial scanning. The results show that although smartphones perform poorly on deep and irregular surfaces, they are accurate enough for clinical applications and have the advantage of being economical and portable. CONCLUSIONS Smartphone-based 3D facial scanning has been basically validated for clinical application, showing broad clinical application prospects in plastic surgery. LEVEL OF EVIDENCE II This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
Affiliation(s)
- Yuna Luo
- Cranio-Maxillo-Facial Surgery Department, Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 33 Ba-Da-Chu Road, Shi-Jing-Shan District, Beijing, 100144, China
- Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Minghao Zhao
- Cranio-Maxillo-Facial Surgery Department, Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 33 Ba-Da-Chu Road, Shi-Jing-Shan District, Beijing, 100144, China
| | - Jianjian Lu
- Cranio-Maxillo-Facial Surgery Department, Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 33 Ba-Da-Chu Road, Shi-Jing-Shan District, Beijing, 100144, China.
| |
Collapse
|
3
|
Hartmann R, Nieberle F, Palm C, Brébant V, Prantl L, Kuehle R, Reichert TE, Taxis J, Ettl T. "Utility of Smartphone-based Three-dimensional Surface Imaging for Digital Facial Anthropometry". JPRAS Open 2024; 39:330-343. [PMID: 38390355 PMCID: PMC10882018 DOI: 10.1016/j.jpra.2024.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/15/2024] [Accepted: 01/20/2024] [Indexed: 02/24/2024] Open
Abstract
Background The utilization of three-dimensional (3D) surface imaging for facial anthropometry is a significant asset for patients undergoing maxillofacial surgery. Notably, there have been recent advancements in smartphone technology that enable 3D surface imaging.In this study, anthropometric assessments of the face were performed using a smartphone and a sophisticated 3D surface imaging system. Methods 30 healthy volunteers (15 females and 15 males) were included in the study. An iPhone 14 Pro (Apple Inc., USA) using the application 3D Scanner App (Laan Consulting Corp., USA) and the Vectra M5 (Canfield Scientific, USA) were employed to create 3D surface models. For each participant, 19 anthropometric measurements were conducted on the 3D surface models. Subsequently, the anthropometric measurements generated by the two approaches were compared. The statistical techniques employed included the paired t-test, paired Wilcoxon signed-rank test, Bland-Altman analysis, and calculation of the intraclass correlation coefficient (ICC). Results All measurements showed excellent agreement between smartphone-based and Vectra M5-based measurements (ICC between 0.85 and 0.97). Statistical analysis revealed no statistically significant differences in the central tendencies for 17 of the 19 linear measurements. Despite the excellent agreement found, Bland-Altman analysis revealed that the 95% limits of agreement between the two methods exceeded ±3 mm for the majority of measurements. Conclusion Digital facial anthropometry using smartphones can serve as a valuable supplementary tool for surgeons, enhancing their communication with patients. However, the proposed data suggest that digital facial anthropometry using smartphones may not yet be suitable for certain diagnostic purposes that require high accuracy.
Collapse
Affiliation(s)
- Robin Hartmann
- University Hospital Regensburg Clinic and Polyclinic for Oral and Maxillofacial Surgery, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
| | - Felix Nieberle
- University Hospital Regensburg Clinic and Polyclinic for Oral and Maxillofacial Surgery, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
| | - Christoph Palm
- Regensburg Medical Image Computing (ReMIC), Ostbayerische Technische Hochschule Regensburg (OTH Regensburg), Galgenbergstr. 32, 93053, Regensburg
- Regensburg Center of Biomedical Engineering (RCBE), OTH Regensburg and Regensburg University, Galgenbergstr. 32, 93053, Regensburg
| | - Vanessa Brébant
- University Center of Plastic, Aesthetic, Hand and Reconstructive Surgery, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany
| | - Lukas Prantl
- University Center of Plastic, Aesthetic, Hand and Reconstructive Surgery, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany
| | - Reinald Kuehle
- University of Heidelberg, Department of Oral and Maxillofacial Surgery, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Torsten E Reichert
- University Hospital Regensburg Clinic and Polyclinic for Oral and Maxillofacial Surgery, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
| | - Juergen Taxis
- University Hospital Regensburg Clinic and Polyclinic for Oral and Maxillofacial Surgery, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
| | - Tobias Ettl
- University Hospital Regensburg Clinic and Polyclinic for Oral and Maxillofacial Surgery, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
| |
Collapse
|
4
|
Ritschl LM, Classen C, Kilbertus P, Eufinger J, Storck K, Fichter AM, Wolff KD, Grill FD. Comparison of three-dimensional imaging of the nose using three different 3D-photography systems: an observational study. Head Face Med 2024; 20:7. [PMID: 38267982 PMCID: PMC10807178 DOI: 10.1186/s13005-024-00406-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/04/2024] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND New 3D technologies for superficial soft tissue changes, especially in plastic and reconstructive surgical procedures, can improve the planning and documentation of facial surgeries. The purpose of this study was to compare and determine the applicability and feasibility of three different 3D-photography systems in clinical practice imaging the nose. METHODS A total of 16 healthy non-operated noses were included in this prospective study. A plaster model of each nose was produced, digitized, and converted to a .stl mesh (= ground truth model). Three-dimensional images of each nose were then taken using Artec Space Spider (gold standard), Planmeca ProFace®, and the Bellus3D Dental Pro application. All resulting .stl files were aligned to the ground truth model using MeshLab software, and the root mean square error (RMSE), mean surface distance (MSD), and Hausdorff distance (HD) were calculated. RESULTS The Artec Space Spider 3D-photography system showed significantly better results compared to the two other systems in regard to RMSE, MSD, and HD (each p < 0.001). There was no significant difference between Planmeca ProFace® and Bellus3D Dental Pro in terms of RMSE, MSD, and HD. Overall, all three camera systems showed a clinically acceptable deviation to the reference model (range: -1.23-1.57 mm). CONCLUSIONS The three evaluated 3D-photography systems were suitable for nose imaging in the clinical routine. While Artec Space Spider showed the highest accuracy, the Bellus3D Dental Pro app may be the most feasible option for everyday clinical use due to its portability, ease of use, and low cost. This study presents three different systems, allowing readers to extrapolate to other systems when planning to introduce 3D photography in the clinical routine.
Collapse
Affiliation(s)
- Lucas M Ritschl
- Department of Oral and Maxillofacial Surgery, School of Medicine and Health, Technical University of Munich, Klinikum rechts der Isar, Ismaninger Strasse 22, D-81675, Munich, Germany
| | - Carolina Classen
- Department of Oral and Maxillofacial Surgery, School of Medicine and Health, Technical University of Munich, Klinikum rechts der Isar, Ismaninger Strasse 22, D-81675, Munich, Germany.
- Department of Oral and Maxillofacial Surgery, Saarland University Medical Centre, 66421, Homburg, Germany.
| | - Paul Kilbertus
- Department of Oral and Maxillofacial Surgery, School of Medicine and Health, Technical University of Munich, Klinikum rechts der Isar, Ismaninger Strasse 22, D-81675, Munich, Germany
| | - Julia Eufinger
- Department of Oral and Maxillofacial Surgery, School of Medicine and Health, Technical University of Munich, Klinikum rechts der Isar, Ismaninger Strasse 22, D-81675, Munich, Germany
| | - Katharina Storck
- Department of Otorhinolaryngology, Head and Neck Surgery, School of Medicine and Health, Technical University of Munich, Klinikum rechts der Isar, Ismaninger Strasse 22, D-81675, Munich, Germany
| | - Andreas M Fichter
- Department of Oral and Maxillofacial Surgery, School of Medicine and Health, Technical University of Munich, Klinikum rechts der Isar, Ismaninger Strasse 22, D-81675, Munich, Germany
| | - Klaus-Dietrich Wolff
- Department of Oral and Maxillofacial Surgery, School of Medicine and Health, Technical University of Munich, Klinikum rechts der Isar, Ismaninger Strasse 22, D-81675, Munich, Germany
| | - Florian D Grill
- Department of Oral and Maxillofacial Surgery, School of Medicine and Health, Technical University of Munich, Klinikum rechts der Isar, Ismaninger Strasse 22, D-81675, Munich, Germany
- Private Practice Oral and Maxillofacial Surgery, Wolfratshausen, Germany
| |
Collapse
|
5
|
König J, Kelemen K, Czumbel LM, Szabó B, Varga G, Borbély J, Németh O, Hegyi P, Hermann P. Current status of optical scanning in facial prosthetics: A systematic review and meta-analysis. J Prosthodont Res 2024; 68:1-11. [PMID: 37286516 DOI: 10.2186/jpr.jpr_d_22_00221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Purpose To assess the accuracy of scanning technologies for constructing facial prostheses on human faces.Study selection Our systematic search was performed on five databases. Studies reporting on human volunteers (P) whose faces were scanned with a scanning technology were eligible. The anthropometrical interlandmark distances (ILDs) were used as indicators of accuracy; the ILDs are measured on the virtual models (I) and directly on the faces (C). The virtual models deviated from their true values (O). Studies reporting the measurements on patients with or without facial deformities were included, but cadavers or inanimate objects were reasons for exclusion. We performed a mean difference (MD) / standardized MD analysis with a random effect model. The difficulties regarding the scanning procedure mentioned in the articles were also assessed.Results We found 3723 records after duplicate removal. Twenty five articles were eligible for the qualitative review, and ten articles were included in the quantitative synthesis. Eight different ILDs were compared in MD analyses. The differences were between -0.54-0.43 mm. We also performed a regional three-dimensional analysis to compare scanning technologies in each major region. No significant differences were found in any of the regions and axes. The most mentioned difficulties were artifacts due to motion or blinking.Conclusions The results suggest no systematic skew in linear dimensions neither between direct caliper measurements nor between measurements on the scanned models, scanning technologies, or facial regions.
Collapse
Affiliation(s)
- János König
- Department of Prosthodontics, Faculty of Dentistry, Semmelweis University, Budapest, Hungary
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Kata Kelemen
- Department of Prosthodontics, Faculty of Dentistry, Semmelweis University, Budapest, Hungary
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
| | - László Márk Czumbel
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- Department of Periodontology, Faculty of Dentistry, Semmelweis University, Budapest, Hungary
| | - Bence Szabó
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Gábor Varga
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- Department of Oral Biology, Faculty of Dentistry, Semmelweis University, Budapest, Hungary
| | - Judit Borbély
- Department of Prosthodontics, Faculty of Dentistry, Semmelweis University, Budapest, Hungary
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Orsolya Németh
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- Department for Community Dentistry, Faculty of Dentistry, Semmelweis University, Budapest, Hungary
| | - Péter Hegyi
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- Division of Pancreatic Diseases, Heart and Vascular Center, Semmelweis University, Budapest, Hungary
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Péter Hermann
- Department of Prosthodontics, Faculty of Dentistry, Semmelweis University, Budapest, Hungary
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
| |
Collapse
|
6
|
Singh P, Hsung RTC, Ajmera DH, Leung YY, McGrath C, Gu M. Can smartphones be used for routine dental clinical application? A validation study for using smartphone-generated 3D facial images. J Dent 2023; 139:104775. [PMID: 37944629 DOI: 10.1016/j.jdent.2023.104775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/01/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023] Open
Abstract
OBJECTIVES To compare the accuracy of smartphone-generated three-dimensional (3D) facial images to that of direct anthropometry (DA) and 3dMD with the aim of assessing the validity and reliability of smartphone-generated 3D facial images for routine clinical applications. MATERIALS AND METHODS Twenty-five anthropometric soft-tissue facial landmarks were labelled manually on 22 orthognathic surgery patients (11 males and 11 females; mean age 26.2 ± 5.3 years). For each labelled face, two imaging operations were performed using two different surface imaging systems: 3dMDface and Bellus3D FaceApp. Next, 42 inter-landmark facial measurements amongst the identified facial landmarks were measured directly on each labelled face and also digitally on 3D facial images. The measurements obtained from smartphone-generated 3D facial images (SGI) were statistically compared with those from DA and 3dMD. RESULTS SGI had slightly higher measurement values than DA and 3dMD, but there was no statistically significant difference between the mean values of inter-landmark measures across the three methods. Clinically acceptable differences (≤3 mm or ≤5°) were observed for 67 % and 74 % of measurements with good agreement between DA and SGI, and 3dMD and SGI, respectively. An overall small systematic bias of ± 0.2 mm was observed between the three methods. Furthermore, the mean absolute difference between DA and SGI methods was highest for linear (1.41 ± 0.33 mm) as well as angular measurements (3.07 ± 0.73°). CONCLUSIONS SGI demonstrated fair trueness compared to DA and 3dMD. The central region and flat areas of the face in SGI are more accurate. Despite this, SGI have limited clinical application, and the panfacial accuracy of the SGI would be more desirable from a clinical application standpoint. CLINICAL SIGNIFICANCE The usage of SGI in clinical practice for region-specific macro-proportional facial assessment involving central and flat regions of the face or for patient education purposes, which does not require accuracy within 3 mm and 5° can be considered.
Collapse
Affiliation(s)
- Pradeep Singh
- Discipline of Orthodontics, Faculty of Dentistry, the University of Hong Kong, Hong Kong SAR, China
| | - Richard Tai-Chiu Hsung
- Department of Computer Science, Hong Kong Chu Hai College, Hong Kong SAR, China; Discipline of Oral and Maxillofacial Surgery, Faculty of Dentistry, the University of Hong Kong, Hong Kong SAR, China
| | - Deepal Haresh Ajmera
- Discipline of Orthodontics, Faculty of Dentistry, the University of Hong Kong, Hong Kong SAR, China
| | - Yiu Yan Leung
- Discipline of Oral and Maxillofacial Surgery, Faculty of Dentistry, the University of Hong Kong, Hong Kong SAR, China
| | - Colman McGrath
- Discipline of Applied Oral Sciences & Community Dental Care, Faculty of Dentistry, the University of Hong Kong, Hong Kong SAR, China
| | - Min Gu
- Discipline of Orthodontics, Faculty of Dentistry, the University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
7
|
Facial Scanning Accuracy with Stereophotogrammetry and Smartphone Technology in Children: A Systematic Review. CHILDREN 2022; 9:children9091390. [PMID: 36138698 PMCID: PMC9498045 DOI: 10.3390/children9091390] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/03/2022] [Accepted: 09/12/2022] [Indexed: 12/23/2022]
Abstract
The aim of the study was to systematically review and compare the accuracy of smartphone scanners versus stereophotogrammetry technology for facial digitization in children. A systematic literature search strategy of articles published from 1 January 2010 to 30 August 2022 was adopted through a combination of Mesh terms and free text words pooled through boolean operators on the following databases: PubMed, Scopus, Web of Science, Cochrane Library, LILACS, and OpenGrey. Twenty-three articles met the inclusion criteria. Stationary stereophotogrammetry devices showed a mean accuracy that ranged from 0.087 to 0.860 mm, portable stereophotogrammetry scanners from 0.150 to 0.849 mm, and smartphones from 0.460 to 1.400 mm. Regarding the risk of bias assessment, fourteen papers showed an overall low risk, three articles had unclear risk and four articles had high risk. Although smartphones showed less performance on deep and irregular surfaces, all the analyzed devices were sufficiently accurate for clinical application. Internal depth-sensing cameras or external infrared structured-light depth-sensing cameras plugged into smartphones/tablets increased the accuracy. These devices are portable and inexpensive but require greater operator experience and patient compliance for the incremented time of acquisition. Stationary stereophotogrammetry is the gold standard for greater accuracy and shorter acquisition time, avoiding motion artifacts.
Collapse
|
8
|
Antonacci D, Caponio VCA, Troiano G, Pompeo MG, Gianfreda F, Canullo L. Facial scanning technologies in the era of digital workflow: A systematic review and network meta-analysis. J Prosthodont Res 2022. [PMID: 36058870 DOI: 10.2186/jpr.jpr_d_22_00107] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
PURPOSE The aim of this network meta-analysis is to evaluate the accuracy of various face-scanning technologies in the market, with respect to the different dimensions of space (x, y, and z axes). Furthermore, attention will be paid to the type of technologies currently used and to the best practices for high-quality scan acquisition. MATERIAL AND METHODS The review was conducted following the PRISMA guidelines and its updates. A thorough search was performed using the digital databases MEDLINE, PubMed, EMBASE, and the Cochrane Central Register of Controlled Trials by entering research lines or various combinations of free words. The main keywords used during the search process were "photogrammetry", "laser scanner", "optical scanner", "3D, and "face". RESULTS None of the included technologies significantly deviated from direct anthropometry. The obtained mean differences in the distances between the considered landmarks range from 1.10 to -1.74 mm. CONCLUSION Limiting the movements of the patient and scanner allows for more accurate facial scans with all the technologies involved. Active technologies such as laser scanners (LS), structured light (SL), and infrared structured light (ISL) have accuracy comparable to that of static stereophotogrammetry while being more cost-effective and less time-consuming.
Collapse
Affiliation(s)
| | | | - Giuseppe Troiano
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | | | - Francesco Gianfreda
- Department of Industrial Engineering, University of Rome "Tor Vergata", Rome, Italy
| | - Luigi Canullo
- Department of Periodontology, University of Bern, Switzerland
| |
Collapse
|