1
|
He J, Qing Z, Li Y, Lin J, Wang D, Xu W, Chen X, Meng X, Duan J. MiR-214 promotes the antitumor effect of NK cells in colorectal cancer liver metastasis through USP27X/Bim. Cytotechnology 2024; 76:667-681. [PMID: 39435421 PMCID: PMC11490475 DOI: 10.1007/s10616-024-00642-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/25/2024] [Indexed: 10/23/2024] Open
Abstract
Colorectal cancer (CRC) is a common tumor type, and liver metastasis reduces the long-term survival in CRC patients. Natural killer (NK) cells play an important role in anti-tumor immunity. The aim of this study was to investigate the mechanism of miR-214-5p on NK cells in CRC liver metastasis. We collected clinical samples of CRC liver metastasis and nonmetastatic tissues and purchased the human NK cell lines NK92 and liver metastatic CRC cells KM12L4 for research. RT‒qPCR, Western blot, CCK-8, Transwell, and flow cytometry methods were used to evaluate the effect of miR-214-5p/USP27X/Bim pathway regulating NK cell activity on CRC liver metastasis. In addition, we also investigated the potential targets and regulatory mechanisms of the signaling pathway of miR-214-5p. In this study, we found that miR-214-5p was downregulated in CRC liver metastasis tissues. After transfection of miR-214-5p mimic, the activity of NK cells was significantly enhanced, and the proliferation and migration ability of CRC liver metastasis cells were inhibited, while inducing tumor cell apoptosis. Further research proved that USP27X is a potential target for miR-214-5p and upregulates Bim level through deubiquitination. In addition, miR-214-5p mimic reduced the level of USP27X and Bim, thereby enhancing the antitumor effect of NK cells. In conclusion, our research results show that miR-214-5p promotes the antitumor effect of NK cells by regulating the USP27X/Bim pathway, thereby inhibiting CRC liver metastasis. This finding reveals the important role of miR-214-5p in regulating the immune function of NK cells, and provides new ideas for developing new immunotherapy strategies. Supplementary Information The online version contains supplementary material available at 10.1007/s10616-024-00642-1.
Collapse
Affiliation(s)
- Jinlan He
- Department of General Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, 650000 Yunnan China
| | - Zhe Qing
- Department of General Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, 650000 Yunnan China
| | - Yifei Li
- Department of Organ Transplantation, The First Affiliated Hospital of Kunming Medical University, Kunming, 650000 Yunnan China
| | - Jie Lin
- Department of Organ Transplantation, The First Affiliated Hospital of Kunming Medical University, Kunming, 650000 Yunnan China
| | - Dan Wang
- Department of Organ Transplantation, The First Affiliated Hospital of Kunming Medical University, Kunming, 650000 Yunnan China
| | - Wanggang Xu
- Department of Organ Transplantation, The First Affiliated Hospital of Kunming Medical University, Kunming, 650000 Yunnan China
| | - Xiyuan Chen
- Department of Hepatological Surgery, The Third People’s Hospital of Honghe Hani and Yi Autonomous Prefecture, Gejiu, 661000 Yunnan China
| | - Xiangyu Meng
- Department of Hepatological Surgery, Peace Hospital Affiliated to Changzhi Medical College, Changzhi, 046000 Shanxi China
| | - Jian Duan
- Department of General Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, 650000 Yunnan China
| |
Collapse
|
2
|
Li Y, Ma Z, Li W, Xu X, Shen P, Zhang SE, Cheng B, Xia J. PDPN + CAFs facilitate the motility of OSCC cells by inhibiting ferroptosis via transferring exosomal lncRNA FTX. Cell Death Dis 2023; 14:759. [PMID: 37993428 PMCID: PMC10665425 DOI: 10.1038/s41419-023-06280-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/28/2023] [Accepted: 11/06/2023] [Indexed: 11/24/2023]
Abstract
Cancer-associated fibroblasts (CAFs) are abundant and heterogeneous in tumor microenvironment (TME). Cross-talk between cancer cells and CAFs results in cancer progression. Here, we demonstrated that a distinct cancer-associated fibroblasts subset with podoplanin (PDPN) positive expression (PDPN+ CAFs) was correlated with poor survival in oral squamous cell carcinoma (OSCC). PDPN+ CAFs promoted the progression of OSCC by transferring exosomal lncRNA FTX to OSCC cells. Mechanically, FTX bound to flap endonuclease-1 (FEN1), forming an RNA‒protein complex. FTX enhanced promoter demethylation of FEN1 by recruiting ten-eleven translocation-2 (TET2). In addition, FTX/FEN1 axis promoted OSCC cells motility by inhibiting ferroptosis. In xenograft experiments, RSL-3, a ferroptosis-inducing agent, suppressed the tumorigenesis potential of FEN1-overexpressed OSCC cells. Furthermore, Acyl-CoA synthetase long-chain family member 4 (ACSL4) was confirmed to participate in the motility promotion induced by FEN1 overexpression. FEN1 could bind to promoter region of ACSL4 and then inhibit ferroptosis in OSCC cells. Our study reveals that PDPN+ CAFs promote the invasiveness of OSCC cells by inhibiting ferroptosis through FTX/FEN1/ACSL4 signaling cascade. PDPN+ CAFs may serve as a novel potential therapeutic target for OSCC.
Collapse
Affiliation(s)
- Yaoyin Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, PR China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, PR China
| | - Zeyi Ma
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, PR China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, PR China
| | - Weiyu Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, PR China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, PR China
| | - Xiaoqing Xu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, PR China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, PR China
| | - Peiqi Shen
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, PR China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, PR China
| | - Si-En Zhang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, PR China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, PR China
| | - Bin Cheng
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, PR China.
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, PR China.
| | - Juan Xia
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, PR China.
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, PR China.
| |
Collapse
|
3
|
Sheykhi-Sabzehpoush M, Ghasemian M, Khojasteh Pour F, Mighani M, Moghanibashi M, Mohammad Jafari R, Zabel M, Dzięgiel P, Farzaneh M, Kempisty B. Emerging roles of long non-coding RNA FTX in human disorders. Clin Transl Oncol 2023; 25:2812-2831. [PMID: 37095425 DOI: 10.1007/s12094-023-03163-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 03/16/2023] [Indexed: 04/26/2023]
Abstract
Long non-coding RNAs (lncRNAs) are involved the progression of cancerous and non-cancerous disorders via different mechanism. FTX (five prime to xist) is an evolutionarily conserved lncRNA that is located upstream of XIST and regulates its expression. FTX participates in progression of various malignancy including gastric cancer, glioma, ovarian cancer, pancreatic cancer, and retinoblastoma. Also, FTX can be involved in the pathogenesis of non-cancerous disorders such as endometriosis and stroke. FTX acts as competitive endogenous RNA (ceRNA) and via sponging various miRNAs, including miR-186, miR-200a-3p, miR-215-3p, and miR-153-3p to regulate the expression of their downstream target. FTX by targeting various signaling pathways including Wnt/β-catenin, PI3K/Akt, SOX4, PDK1/PKB/GSK-3β, TGF-β1, FOXA2, and PPARγ regulate molecular mechanism involved in various disorders. Dysregulation of FTX is associated with an increased risk of various disorders. Therefore, FTX and its downstream targets may be suitable biomarkers for the diagnosis and treatment of human malignancies. In this review, we summarized the emerging roles of FTX in human cancerous and non-cancerous cells.
Collapse
Affiliation(s)
| | - Majid Ghasemian
- Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Fatemeh Khojasteh Pour
- Department of Obstetrics and Gynecology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Mighani
- School of Medicine, Golestan University of Medical Sciences, Golestan, Iran
| | - Mehdi Moghanibashi
- Department of Genetics, Faculty of Medicine, Kazerun Branch, Islamic Azad University, Kazerun, Iran
| | - Razieh Mohammad Jafari
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maciej Zabel
- Division of Anatomy and Histology, University of Zielona Góra, 65-046, Zielona Góra, Poland
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368, Wroclaw, Poland
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368, Wroclaw, Poland
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Bartosz Kempisty
- Department of Human Morphology and Embryology, Division of Anatomy, Wroclaw Medical, University, Wrocław, Poland.
- Institute of Veterinary Medicine, Department of Veterinary Surgery, Nicolaus Copernicus University, Torun, Poland.
- North Carolina State University College of Agriculture and Life Sciences, Raleigh, NC, 27695, USA.
| |
Collapse
|
4
|
Hong H, Zeng K, Zhou C, Chen X, Xu Z, Li M, Liu L, Zeng Q, Tao Q, Wei X. The pluripotent factor OCT4A enhances the self-renewal of human dental pulp stem cells by targeting lncRNA FTX in an LPS-induced inflammatory microenvironment. Stem Cell Res Ther 2023; 14:109. [PMID: 37106382 PMCID: PMC10142416 DOI: 10.1186/s13287-023-03313-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 03/29/2023] [Indexed: 04/29/2023] Open
Abstract
BACKGROUND Regulating the pluripotency of human dental pulp stem cells (hDPSCs) is key for the self-repair of injured dental pulp. We previously found that OCT4A promotes the proliferation and odontogenic differentiation of human dental pulp cells (hDPCs). Recent studies have shown the interaction between OCT4A and lncRNAs in pluripotency maintenance of various stem cells. The aim of this study was to explore the underlying roles and mechanisms of OCT4A and its related lncRNAs in the proliferation and multidirectional differentiation of hDPSCs in an inflammatory microenvironment. METHODS Human lncRNA microarrays were applied to screen out the differentially expressed lncRNAs in hDPSCs between the OCT4A-overexpressing and vector groups. Lipopolysaccharide (LPS) was used to simulate the inflammatory microenvironment. The effects of OCT4A and the lncRNA FTX on the proliferation and multidifferentiation of hDPSCs were observed by the CCK-8 assay, EdU staining, real-time PCR, western blotting, and Alizarin red and oil red O staining. Bioinformatics analysis and chromatin immunoprecipitation (ChIP) assays were performed to clarify the targeted mechanism of OCT4A on FTX. The regulation by FTX of the expression of OCT4A and its downstream pluripotent transcription factors SOX2 and c-MYC was further detected by real-time PCR and western blotting. RESULTS The microarray results showed that 978 lncRNAs (250 of which were upregulated and 728 downregulated) were potentially differentially expressed genes (fold change ≥ 2, P < 0.05). LPS stimulation attenuated the self-renewal of hDPSCs. OCT4A enhanced the cell proliferation and multidifferentiation capacities of hDPSCs in an inflammatory microenvironment, while FTX exhibited the opposite effects. OCT4A negatively regulated FTX function by binding to specific regions on the FTX promoter, thereby inhibiting the transcription of FTX. Moreover, overexpression of FTX downregulated the expression of OCT4A, SOX2 and c-MYC, whereas knockdown of FTX facilitated their expression. CONCLUSIONS OCT4A was found to be a crucial factor maintaining the self-renewal of hDPSCs by transcriptionally targeting FTX in an inflammatory microenvironment. Moreover, we proposed a novel function of FTX in negatively regulating the pluripotency and multilineage differentiation capacity of hDPSCs. The hierarchical organization between OCT4A and FTX expanded the understanding of the network between transcription factors and lncRNAs in fine-tuning the pluripotency/differentiation balance of adult stem cells, and provided prospective targets for optimizing dental-derived stem cell sources for regenerative endodontics.
Collapse
Affiliation(s)
- Hong Hong
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, 510055, People's Republic of China
| | - Kai Zeng
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, 510055, People's Republic of China
| | - Can Zhou
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, 510055, People's Republic of China
| | - Xiaochuan Chen
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, 510055, People's Republic of China
| | - Zhezhen Xu
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, 510055, People's Republic of China
| | - Mengjie Li
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, 510055, People's Republic of China
| | - Lu Liu
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, 510055, People's Republic of China
| | - Qian Zeng
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, 510055, People's Republic of China
| | - Qian Tao
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, 510055, People's Republic of China.
| | - Xi Wei
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, 510055, People's Republic of China.
| |
Collapse
|
5
|
Aydın E, Saus E, Chorostecki U, Gabaldón T. A hybrid approach to assess the structural impact of long noncoding RNA mutations uncovers key
NEAT1
interactions in colorectal cancer. IUBMB Life 2023. [PMID: 36971476 DOI: 10.1002/iub.2710] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 01/25/2023] [Indexed: 03/29/2023]
Abstract
Long noncoding RNAs (lncRNAs) are emerging players in cancer and they entail potential as prognostic biomarkers or therapeutic targets. Earlier studies have identified somatic mutations in lncRNAs that are associated with tumor relapse after therapy, but the underlying mechanisms behind these associations remain unknown. Given the relevance of secondary structure for the function of some lncRNAs, some of these mutations may have a functional impact through structural disturbance. Here, we examined the potential structural and functional impact of a novel A > G point mutation in NEAT1 that has been recurrently observed in tumors of colorectal cancer patients experiencing relapse after treatment. Here, we used the nextPARS structural probing approach to provide first empirical evidence that this mutation alters NEAT1 structure. We further evaluated the potential effects of this structural alteration using computational tools and found that this mutation likely alters the binding propensities of several NEAT1-interacting miRNAs. Differential expression analysis on these miRNA networks shows upregulation of Vimentin, consistent with previous findings. We propose a hybrid pipeline that can be used to explore the potential functional effects of lncRNA somatic mutations.
Collapse
Affiliation(s)
- Efe Aydın
- Department of Laboratory Medicine, Division of Clinical Genetics, Lund University, Lund, Sweden
| | - Ester Saus
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Barcelona Supercomputing Centre (BSC-CNS). Plaça Eusebi Güell, Barcelona, Spain
| | - Uciel Chorostecki
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Barcelona Supercomputing Centre (BSC-CNS). Plaça Eusebi Güell, Barcelona, Spain
| | - Toni Gabaldón
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Barcelona Supercomputing Centre (BSC-CNS). Plaça Eusebi Güell, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
- Centro de Investigación Biomédica En Red de Enfermedades Infecciosas (CIBERINFEC), Barcelona, Spain
| |
Collapse
|
6
|
Hashemi M, Mirdamadi MSA, Talebi Y, Khaniabad N, Banaei G, Daneii P, Gholami S, Ghorbani A, Tavakolpournegari A, Farsani ZM, Zarrabi A, Nabavi N, Zandieh MA, Rashidi M, Taheriazam A, Entezari M, Khan H. Pre-clinical and clinical importance of miR-21 in human cancers: Tumorigenesis, therapy response, delivery approaches and targeting agents. Pharmacol Res 2023; 187:106568. [PMID: 36423787 DOI: 10.1016/j.phrs.2022.106568] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/18/2022] [Accepted: 11/19/2022] [Indexed: 11/23/2022]
Abstract
The field of non-coding RNA (ncRNA) has made significant progress in understanding the pathogenesis of diseases and has broadened our knowledge towards their targeting, especially in cancer therapy. ncRNAs are a large family of RNAs with microRNAs (miRNAs) being one kind of endogenous RNA which lack encoded proteins. By now, miRNAs have been well-coined in pathogenesis and development of cancer. The current review focuses on the role of miR-21 in cancers and its association with tumor progression. miR-21 has both oncogenic and onco-suppressor functions and most of the experiments are in agreement with the tumor-promoting function of this miRNA. miR-21 primarily decreases PTEN expression to induce PI3K/Akt signaling in cancer progression. Overexpression of miR-21 inhibits apoptosis and is vital for inducing pro-survival autophagy. miR-21 is vital for metabolic reprogramming and can induce glycolysis to enhance tumor progression. miR-21 stimulates EMT mechanisms and increases expression of MMP-2 and MMP-9 thereby elevating tumor metastasis. miR-21 is a target of anti-cancer agents such as curcumin and curcumol and its down-regulation impairs tumor progression. Upregulation of miR-21 results in cancer resistance to chemotherapy and radiotherapy. Increasing evidence has revealed the role of miR-21 as a biomarker as it is present in both the serum and exosomes making them beneficial biomarkers for non-invasive diagnosis of cancer.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Motahare Sadat Ayat Mirdamadi
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Biology, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Yasmin Talebi
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Biology, Islamic Azad University Central Tehran Branch, Tehran, Iran
| | - Nasrin Khaniabad
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Gooya Banaei
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Pouria Daneii
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Sadaf Gholami
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Amin Ghorbani
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Alireza Tavakolpournegari
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Zoheir Mohammadian Farsani
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Industrial and Environmental Biotechnology, National Institute for Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkey
| | - Noushin Nabavi
- Department of Urological Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC V6H3Z6, Canada
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran.
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan.
| |
Collapse
|
7
|
Hu C, Zhang X, Fang K, Guo Z, Li L. LINC00536 Promotes Breast Cancer Progression by Regulating ROCK1 via Sponging of miR-214-5p. Biochem Genet 2022; 61:1163-1184. [PMID: 36513954 DOI: 10.1007/s10528-022-10304-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 11/10/2022] [Indexed: 12/14/2022]
Abstract
Accumulating evidence has shown that long noncoding RNAs (lncRNAs) play a significant role in regulating gene expression and participating in the progression of various malignancies. In our study, by analyzing data from The Cancer Genome Atlas (TCGA), LINC00536 was found to be highly expressed in breast cancer (BC) tissues, but its function and clinical significance in BC are still unknown. Therefore, we aimed to explore the role and molecular mechanism of LINC00536 in BC. We collected human BC tissue specimens and validated that LINC00536 was overexpressed in BC tissues. Increased LINC00536 expression was associated with advanced TNM stage, larger tumor diameter, lymph node metastasis and poor prognosis in patients with BC. Univariate and multivariate Cox regression analyses showed that high LINC00536 expression was an independent prognostic risk factor for overall survival in BC patients. Furthermore, quantitative reverse transcription PCR (qRT-PCR) showed that LINC00536 was upregulated in BC cell lines. Then, we confirmed that LINC00536 silencing-inhibited BC cell proliferation, migration, and invasion and led to cell cycle arrest in vitro. Animal experiments showed that knockdown of LINC00536 expression suppressed tumorigenesis in vivo. Mechanistically, LINC00536 serves as a ceRNA for miR-214-5p, increasing the expression of ROCK1, which acts as a tumor promoter in BC. Rescue assays revealed that miR-214-5p inhibition or ROCK1 overexpression could neutralize the suppressive effects of LINC00536 knockdown on cell proliferation, migration and invasion. Our data indicated that LINC00536 accelerates BC progression by regulating the miR-214-5p/ROCK1 pathway, which might provide a new perspective to investigate the development process of BC.
Collapse
Affiliation(s)
- Caixia Hu
- Oncology Institute, The Affiliated Hospital of Jiangnan University, 200# Huihe Road, Wuxi, 214062, Jiangsu, China
| | - Xiufen Zhang
- Oncology Institute, The Affiliated Hospital of Jiangnan University, 200# Huihe Road, Wuxi, 214062, Jiangsu, China
| | - Kai Fang
- Oncology Institute, The Affiliated Hospital of Jiangnan University, 200# Huihe Road, Wuxi, 214062, Jiangsu, China
| | - Zijian Guo
- Department of Oncological Surgery, The Affiliated Hospital of Jiangnan University, Wuxi, 214062, China.
| | - Lihua Li
- Oncology Institute, The Affiliated Hospital of Jiangnan University, 200# Huihe Road, Wuxi, 214062, Jiangsu, China.
| |
Collapse
|
8
|
Hashemi M, Hasani S, Hajimazdarany S, Mirmazloomi SR, Makvandy S, Zabihi A, Goldoost Y, Gholinia N, Kakavand A, Tavakolpournegari A, Salimimoghadam S, Nabavi N, Zarrabi A, Taheriazam A, Entezari M, Hushmandi K. Non-coding RNAs targeting notch signaling pathway in cancer: From proliferation to cancer therapy resistance. Int J Biol Macromol 2022; 222:1151-1167. [DOI: 10.1016/j.ijbiomac.2022.09.203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 09/22/2022] [Indexed: 11/26/2022]
|
9
|
Yang J, Qu T, Li Y, Ma J, Yu H. Biological role of long non-coding RNA FTX in cancer progression. Biomed Pharmacother 2022; 153:113446. [DOI: 10.1016/j.biopha.2022.113446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/03/2022] [Accepted: 07/18/2022] [Indexed: 11/30/2022] Open
|
10
|
MicroRNAs as Potential Tools for Predicting Cancer Patients’ Susceptibility to SARS-CoV-2 Infection and Vaccination Response. Cells 2022; 11:cells11152279. [PMID: 35892576 PMCID: PMC9332853 DOI: 10.3390/cells11152279] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 11/16/2022] Open
Abstract
Coronavirus disease (COVID-19) is an infectious disease that is caused by a highly contagious and severe acute respiratory syndrome—coronavirus 2 (SARS-CoV-2). This infection started to spread across the world in 2019 and rapidly turned into a global pandemic, causing an urgent necessity for treatment strategies development. The mRNA vaccines against SARS-CoV-2 can trigger an immune response, providing genetic information that allows the production of spike glycoproteins. MiRNAs play a crucial role in diverse key cellular processes, including antiviral defense. Several miRNAs are described as key factors in SARS-CoV-2 human infection through the regulation of ACE2 levels and by the inhibition of SARS-CoV-2 replication and spike expression. Consequently, these molecules have been considered as highly promising biomarkers. In numerous human malignancies, it has been recognized that miRNAs expression is dysregulated. Since miRNAs can target SARS-CoV-2-associated mRNAs, in cancer patients, the deregulation of these molecules can impair the immune response to the vaccines. Therefore, in this review, we propose a miRNA profile of seven SARS-CoV-2-related miRNAs, namely miR-214, miR-98-5p, miR-7-5p, miR-24-3p, miR-145-5p, miR-223-3p and miR-15b-5p, that are deregulated in a high number of cancers and have the potential to be used as prognostic biomarkers to stratify cancer patients.
Collapse
|
11
|
Liu M, Peng J. FTX Regulated miR-153-3p/FOXR2 to Promote Cisplatin Resistance in Ovarian Cancer. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:2318170. [PMID: 35651928 PMCID: PMC9151004 DOI: 10.1155/2022/2318170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 04/27/2022] [Accepted: 04/29/2022] [Indexed: 11/17/2022]
Abstract
Purpose The present study was aimed at exploring the role of FTX in cisplatin (DDP) resistance in ovarian cancer (OC). Methods QPCR was applied to evaluate mRNA expression in OC tissue and cells. CCK-8 assay was conducted to evaluate cell proliferation. Transwell chamber assay was performed to evaluate invasion of SKOV3/DDP cells. The protein expression was evaluated via western blot assay. Flow cytometry was performed to evaluate the apoptosis of SKOV3/DDP cells. Results The expression of FTX in DDP-resistant cells was observably higher in contrast to DDP-sensitive cells and normal ovarian cells. FTX was higher expressed in DDP-resistant tissues by comparison with DDP-sensitive tissues. Knockdown of FTX obviously suppressed the proliferation ability invasion ability of SKOV3/DDP cells. Knockdown of FTX obviously enhanced apoptosis of SKOV3/DDP cells. miR-153-3p was proved to be directly regulated by FTX via the luciferase reporter assays. By comparison with normal cells, miR-153-3p was lower expressed in OC cells. miR-153-3p was lower expressed in SKOV3/DDP cells in contrast to SKOV3 cells. More interestingly, FTX reversed the inhibiting influence of miR-153-3p on cisplatin resistance of OC cells. Moreover, miR-153-3p was proved to directly regulate FOXR2. Knockdown of miR-153-3p attenuated the inhibitory influence of knockdown FOXR2 on cisplatin resistance of OC cells. Conclusion FTX regulated miR-153-3p/FOXR2 to promote cisplatin resistance via inhibiting the apoptosis and promoting the viability and invasion in OC.
Collapse
Affiliation(s)
- Ming Liu
- Department of Gynecologic Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Jingwei Peng
- Department of Gynecologic Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, China
| |
Collapse
|