1
|
Liang N, Cao Y, Li J, Zhang K. Normal dermal mesenchymal stem cells improve the functions of psoriatic keratinocytes by inducing autophagy. Acta Histochem 2025; 127:152229. [PMID: 39864345 DOI: 10.1016/j.acthis.2025.152229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 01/09/2025] [Accepted: 01/11/2025] [Indexed: 01/28/2025]
Abstract
OBJECTIVE Psoriasis is a chronic inflammatory skin disease characterized by excessive proliferation and abnormal differentiation of keratinocytes. Although stem cell-based therapies have shown promise in treating psoriasis, the underlying mechanisms remain unclear. This study aimed to established a psoriatic cell model to investigate the effect of normal dermal mesenchymal stem cell (DMSCs) on keratinocyte proliferation, inflammation responses and the associated mechanism. METHODS To create an in vitro model of psoriasis, HaCaT cells were stimulated with a mixture of five inflammatory cytokines including IL-17A, IL-22, oncostatin M, IL-1α, and TNF-α (M5). A transwell co-culture system was employed to assess the influence of normal DMSCs on proliferation and inflammation response of HaCaT cells. Cell viability was assessed using the CCK-8 assay and EDU incorporation assay. The expression levels of mRNA for inflammatory cytokines (IL-8, IL-17A and TNF-α) in HaCaT cells co-cultured with either normal or psoriatic DMSCs were quantified by qRT-PCR. Apoptosis was evaluated by annexin V-FITC/PI double staining and TUNEL/DAPI staining assay. Autophagy was detected by immunostaining, RT-PCR and western blotting. Additionally, the expression levels of mRNA and protein of both Akt and mammalin target of rapamycin(mTOR) were also determined. RESULTS Normal DMSCs were found to decrease the viability and promote apoptosis of HaCaT cells treated with M5. Furthermore, DMSCs reduced the secretion of proinflammatory cytokines, such as IL-8, IL-17A and TNF-α. Importantly, normal DMSCs were shown to induced autophagy in HaCaT cell. Pretreatment of HaCaT cells with autophagy inhibitor 3-methyladenine (3-MA) reversed the anti-psoriatic effect of normal DMSCs. Notably, DMSCs promote autophagy in M5-treated HaCaT cells by inhibition of p-Akt/Akt and p-mTOR/mTOR ratio. CONCLUSION Normal mesenchymal stem cells promote autophagy through the inhibition of Akt/mTOR signaling pathway, leading to the alleviation of psoriasis in vitro. These findings provide insights into the potential mechanisms by which DMSCs may exert therapeutic effects in psoriasis and support further investigation into their clinical applications.
Collapse
Affiliation(s)
- Nannan Liang
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yue Cao
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Junqin Li
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Kaiming Zhang
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi, China.
| |
Collapse
|
2
|
Khalilzad MA, Mohammadi J, Najafi S, Amirsaadat S, Zare S, Khalilzad M, Shamloo A, Khaghani A, Peyrovan A, Khalili SFS, Fayyaz N, Zare S. Harnessing the Anti-Inflammatory Effects of Perinatal Tissue Derived Therapies for the Treatment of Inflammatory Skin Diseases: A Comprehensive Review. Stem Cell Rev Rep 2024:10.1007/s12015-024-10822-3. [PMID: 39531196 DOI: 10.1007/s12015-024-10822-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Dealing with chronic inflammatory skin conditions like atopic dermatitis and psoriasis can be extremely difficult. Current treatments, such as topical corticosteroids, often have limitations and side effects. However, researchers have discovered that the placenta's remarkable properties may provide a breakthrough in effectively addressing these skin conditions. The placenta comprises three essential tissues: decidua, placental membrane, and umbilical cord. Placental derivatives have shown significant potential in treating psoriasis by reducing inflammatory cytokines and inhibiting keratinocyte proliferation. In the case of atopic dermatitis, umbilical cord stem cells have demonstrated anti-inflammatory effects by targeting critical factors and promoting anti-inflammatory cytokines. The scope of benefits associated with placental derivatives transcends these specific applications. They also potentially address other inflammatory skin diseases, such as vitiligo, by stimulating melanin production. Moreover, these derivatives have been leveraged in the treatment of pemphigus and epidermolysis bullosa (EB), showcasing potential as a wound dressing that could eliminate the necessity for painful dressing changes in EB patients. In summary, the integration of placental derivatives stands to revolutionize our approach to inflammatory skin conditions owing to their distinct properties and the prospective benefits they offer. This comprehensive review delves into the current applications of placental derivatives in addressing inflammatory skin diseases, presenting a novel treatment approach.
Collapse
Affiliation(s)
- Mohammad Amin Khalilzad
- Department of Life Sciences Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, 143951561, Iran
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Javad Mohammadi
- Department of Life Sciences Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, 143951561, Iran.
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Biotechnology and Medicinal Plants Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Soumaye Amirsaadat
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sona Zare
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran.
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran, Iran.
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran.
| | - Mitra Khalilzad
- Brain Mapping Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Shamloo
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran.
| | - Ayoub Khaghani
- Department of Gynecological Surgery, Tehranpars Hospital, Tehran, Iran
| | - Aysan Peyrovan
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Negin Fayyaz
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Solmaz Zare
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Chen YK, Mohamed AH, Amer Alsaiari A, Olegovich Bokov D, Ali Patel A, Al Abdulmonem W, Shafie A, Adnan Ashour A, Azhar Kamal M, Ahmad F, Ahmad I. The role of mesenchymal stem cells in the treatment and pathogenesis of psoriasis. Cytokine 2024; 182:156699. [PMID: 39033730 DOI: 10.1016/j.cyto.2024.156699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/19/2024] [Accepted: 07/14/2024] [Indexed: 07/23/2024]
Abstract
Psoriasis, a prevalent inflammatory skin condition impacting millions globally, continues to pose treatment challenges, despite the availability of multiple therapies. This underscores the demand for innovative treatments. Mesenchymal stem cells (MSCs) have emerged as a promising therapeutic option due to their capacity to modulate the immune system and facilitate tissue healing. Recent research indicates that MSCs don't just work through direct cell-to-cell interactions but also release extracellular vesicles (EVs), containing various bioactive substances like proteins, lipids, and nucleic acids. This article explores our current knowledge of psoriasis's origins and the potential utilization of MSCs and their EVs, particularly exosomes, in managing the condition. Additionally, we delve into how MSCs and EVs function in therapy, including their roles in regulating immune responses and promoting tissue repair. Lastly, we discuss the obstacles and opportunities associated with translating MSC-based treatments for psoriasis into clinical practice.
Collapse
Affiliation(s)
- Yan-Kun Chen
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518109, China; Precision Medicine R&D Center, Zhuhai Institute of Advanced Technology, Chinese Academy of Sciences, Zhuhai 519000, China
| | - Asma'a H Mohamed
- Biomedical Engineering Department, College of Engineering and Technologies, Al-Mustaqbal University, Babil 51001, Hilla, Iraq.
| | - Ahad Amer Alsaiari
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Dmitry Olegovich Bokov
- Institute of Pharmacy Named After A.P. Nelyubin, Sechenov First Moscow State Medical University, 8 Trubetskaya St., bldg. 2, Moscow 119991, Russian Federation; Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety, 2/14 Ustyinsky pr., Moscow 109240, Russian Federation
| | - Ayyub Ali Patel
- Department of Clinical Biochemistry, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Alaa Shafie
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Amal Adnan Ashour
- Department of Oral & Maxillofacial Surgery and Diagnostic Sciences, Faculty of Dentistry, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Mohammad Azhar Kamal
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Fuzail Ahmad
- Respiratory Care Department, College of Applied Sciences, Almaarefa University, Diriya, Riyadh 13713, Saudi Arabia
| | - Irshad Ahmad
- Department of Medical Rehabilitation Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia.
| |
Collapse
|
4
|
Wang Z, Hu Y, Wang X, Chen Y, Wu D, Ji H, Yu C, Fang J, Pan C, Wang L, Wang S, Guo Y, Lu Y, Wu D, Ren F, Zhu H, Shi Y. Comparative Analysis of the Therapeutic Effects of Fresh and Cryopreserved Human Umbilical Cord Derived Mesenchymal Stem Cells in the Treatment of Psoriasis. Stem Cell Rev Rep 2023:10.1007/s12015-023-10556-8. [PMID: 37199874 DOI: 10.1007/s12015-023-10556-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2023] [Indexed: 05/19/2023]
Abstract
Psoriasis, an inflammatory autoimmune skin disease, is characterized by scaly white or erythematous plaques, which severely influence patients' quality of life and social activities. Mesenchymal stem cells derived from the human umbilical cord (UCMSCs) represent a promising therapeutic approach for psoriasis because of its unique superiority in ethical agreeableness, abundant source, high proliferation capacity, and immunosuppression. Although cryopreservation provided multiple benefits to the cell therapy, it also greatly compromised clinical benefits of MSCs due to impaired cell functions. The current study aims to evaluate the therapeutic efficacy of cryopreserved UCMSCs in a mouse model of psoriasis as well as in patients with psoriasis. Our results showed that cryopreserved and fresh UCMSCs have comparable effects on the suppression of psoriasis-like symptoms such as thickening, erythema, and scaling, and serum IL-17 A secretion in mice model of psoriasis. Moreover, psoriatic patients injected with cryopreserved UCMSCs had a significant improvement in the Psoriasis Area and Severity Index (PASI), Physician Global Assessment (PGA), and Patient Global Assessments (PtGAs) scores compared to baseline values. Mechanically, cryopreserved UCMSCs markedly inhibit the proliferation of PHA-activated PBMCs, type 1 T helper (Th1) and type 17 T helper (Th17) cell differentiation and secretion of inflammatory cytokines including IFN-γ, TNF-a and IL-17 A in PBMCs stimulated by anti-CD3/CD28 beads. Taken together, these data indicated that cryopreserved UCMSCs exhibited great beneficial effect on psoriasis. Thus, cryopreserved UCMSCs can be systemically administered as ''off-the-shelf'' cell product for psoriasis therapy. Trial Registration ChiCTR1800019509. Registered on November 15, 2018-Retrospectively registered, http://www.chictr.org.cn/ .
Collapse
Affiliation(s)
- Zhifeng Wang
- Department of Dermatology, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, 200443, China.
- Sinoneural Cell Engineering Group Holdings Co., Ltd, No. 1188, Lianhang Road, Shanghai, 201100, China.
| | - Yifan Hu
- Department of Dermatology, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, 200443, China
- Institute of Psoriasis, Tongji University School of Medicine, Shanghai, 200443, China
| | - Xiaoyu Wang
- Sinoneural Cell Engineering Group Holdings Co., Ltd, No. 1188, Lianhang Road, Shanghai, 201100, China
| | - Youdong Chen
- Department of Dermatology, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, 200443, China
- Institute of Psoriasis, Tongji University School of Medicine, Shanghai, 200443, China
| | - Danfeng Wu
- Sinoneural Cell Engineering Group Holdings Co., Ltd, No. 1188, Lianhang Road, Shanghai, 201100, China
| | - Houli Ji
- Sinoneural Cell Engineering Group Holdings Co., Ltd, No. 1188, Lianhang Road, Shanghai, 201100, China
| | - Cuicui Yu
- Sinoneural Cell Engineering Group Holdings Co., Ltd, No. 1188, Lianhang Road, Shanghai, 201100, China
| | - Jingmeng Fang
- Sinoneural Cell Engineering Group Holdings Co., Ltd, No. 1188, Lianhang Road, Shanghai, 201100, China
| | - Chunrong Pan
- Sinoneural Cell Engineering Group Holdings Co., Ltd, No. 1188, Lianhang Road, Shanghai, 201100, China
| | - Lianjian Wang
- Sinoneural Cell Engineering Group Holdings Co., Ltd, No. 1188, Lianhang Road, Shanghai, 201100, China
| | - Shouxin Wang
- Sinoneural Cell Engineering Group Holdings Co., Ltd, No. 1188, Lianhang Road, Shanghai, 201100, China
| | - Yinhong Guo
- Sinoneural Cell Engineering Group Holdings Co., Ltd, No. 1188, Lianhang Road, Shanghai, 201100, China
| | - Yi Lu
- Sinoneural Cell Engineering Group Holdings Co., Ltd, No. 1188, Lianhang Road, Shanghai, 201100, China
| | - Di Wu
- Sinoneural Cell Engineering Group Holdings Co., Ltd, No. 1188, Lianhang Road, Shanghai, 201100, China
| | - Fangfang Ren
- Sinoneural Cell Engineering Group Holdings Co., Ltd, No. 1188, Lianhang Road, Shanghai, 201100, China
| | - Hao Zhu
- Sinoneural Cell Engineering Group Holdings Co., Ltd, No. 1188, Lianhang Road, Shanghai, 201100, China.
| | - Yuling Shi
- Department of Dermatology, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, 200443, China.
- Institute of Psoriasis, Tongji University School of Medicine, Shanghai, 200443, China.
| |
Collapse
|
5
|
Lu X, Wang H, Wang H, Xie F, Jiang C, Shen D, Zhang H, Yang J, Lin Y. Indirubin combined with umbilical cord mesenchymal stem cells to relieve psoriasis-like skin lesions in BALB/c mice. Front Immunol 2022; 13:1033498. [PMID: 36466901 PMCID: PMC9709816 DOI: 10.3389/fimmu.2022.1033498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/28/2022] [Indexed: 10/08/2023] Open
Abstract
Objective To investigate the efficacy of indirubin combined with human umbilical cord mesenchymal stem cells (hUC-MSCs) in the treatment of psoriatic lesions in BALB/c mice and to explore the related mechanism of indirubin in the treatment of psoriasis. Methods A BALB/c mouse psoriasis model induced by imiquimod was established and randomly divided into the control group, model group, indirubin group, hUC-MSCs group, and indirubin combined with hUC-MSCs group. Psoriasis area and severity index (PASI) score was used to observe skin lesion changes in the psoriasis-like mouse model. The epidermal scale, the degree of keratinization, and the infiltration of inflammatory cells were observed by hematoxylin eosin (HE) staining. The concentrations of TNF-α, IFN-γ, IL-17A, and IL-23 in serum of mice were measured using enzyme-linked immunosorbent assay (ELISA). Results The PASI integral trend chart indicates that hUC-MSCs and indirubin and the combination of drugs could relieve the appearance of skin lesions and accelerate the recovery of skin lesions. The indirubin group had the best effect in improving the scale of skin lesions. HE staining showed that the number of parakeratosis cells in the three treatment groups was significantly reduced, the degree of erythrocyte extravasation dermis hyperplasia and inflammatory cell infiltration was significantly lower than that in the model group, and the skin thickness and spleen index of the combined treatment group exhibited the most noticeable improvement. ELISA showed that the concentrations of TNF-α, IFN-γ, IL-17A, and IL-23 in serum of mice in the hUC-MSCs treatment group, indirubin group, and combined administration group were all decreased compared with those in the model group, and the concentrations of IFN-γ, IL-17A, and IL-23 could be decreased significantly in the indirubin group. Conclusions Both hUC-MSCs and indirubin can effectively reduce psoriasis-like lesions in BALB/c mice, and the combined administration of these drugs has the best effect.
Collapse
Affiliation(s)
- XiaoJuan Lu
- Department of Dermatology, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, China
| | - Hao Wang
- Lab Animal Research Center, Asia Stem Cell Regenerative Pharmaceutical Co. Ltd., Shanghai, China
| | - Hongwei Wang
- Lab Animal Research Center, Asia Stem Cell Regenerative Pharmaceutical Co. Ltd., Shanghai, China
| | - Fan Xie
- Lab Animal Research Center, Asia Stem Cell Regenerative Pharmaceutical Co. Ltd., Shanghai, China
| | - Cuibao Jiang
- Lab Animal Research Center, Asia Stem Cell Regenerative Pharmaceutical Co. Ltd., Shanghai, China
| | - Danpeng Shen
- Lab Animal Research Center, Asia Stem Cell Regenerative Pharmaceutical Co. Ltd., Shanghai, China
| | - Hongpeng Zhang
- Lab Animal Research Center, Asia Stem Cell Regenerative Pharmaceutical Co. Ltd., Shanghai, China
| | - Jie Yang
- Department of Dermatology, The Fifth People’s Hospital of Hainan Province, Haikou, China
| | - Youshu Lin
- Department of Dermatology, The Fifth People’s Hospital of Hainan Province, Haikou, China
| |
Collapse
|
6
|
Yang M, Wang L, Chen Z, Hao W, You Q, Lin J, Tang J, Zhao X, Gao WQ, Xu H. Topical administration of the secretome derived from human amniotic epithelial cells ameliorates psoriasis-like skin lesions in mice. Stem Cell Res Ther 2022; 13:393. [PMID: 35922852 PMCID: PMC9351215 DOI: 10.1186/s13287-022-03091-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 07/25/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Psoriasis is a chronic inflammatory skin disease. Tissue stem cells have exhibited a therapeutic effect on psoriatic mice. However, the therapeutic effect of topical administration of the secretome derived from tissue stem cells on psoriasis has not been reported. METHODS The secretome from human amniotic epithelial cells (AEC-SC) and human umbilical cord mesenchymal stem cells (UMSC-SC) was topically administrated on the back of imiquimod-induced psoriasis-like mice. Subsequently, we observed the skin lesions and skin inflammation of psoriasis-like mice. Next, we further analyzed the paracrine factors in AEC-SC and UMSC-SC by protein chips. Lastly, the effect of the crucial paracrine factor was investigated by imiquimod-induced psoriasis-like mice. RESULTS We found that AEC-SC had a better therapeutic effect on attenuating psoriasis-like skin lesions including skin scales, skin redness and skin thickness than UMSC-SC, and it had a better regulatory effect on keratinocyte hyperproliferation and altered differentiation. Thus, we focused on AEC-SC. Further study showed that AEC-SC reduced the infiltration of neutrophils and interleukin-17-producing T cells. Next, the analysis of AEC-SC with protein chip revealed that the levels of anti-inflammatory factor interleukin-1 receptor antagonist (IL-1ra) were much higher in AEC-SC compared to that in UMSC-SC. More importantly, the beneficial effect of AEC-SC on psoriasis-like skin lesions and skin inflammation of mice were significantly impaired when neutralizing with IL-1ra antibody, while the recombinant human IL-1ra showed a less protective effect than AEC-SC. CONCLUSIONS The present study demonstrated that AEC-SC could efficiently ameliorate psoriasis-like skin lesions and skin inflammation and IL-1ra plays an essential role. Therefore, topical administration of AEC-SC may provide a novel strategy for treating psoriasis-like inflammatory skin diseases.
Collapse
Affiliation(s)
- Mengbo Yang
- State Key Laboratory of Oncogenes and Related Genes, Renji-MedX Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Lanqi Wang
- Department of Dermatology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Zhimin Chen
- State Key Laboratory of Oncogenes and Related Genes, Renji-MedX Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Weijie Hao
- State Key Laboratory of Oncogenes and Related Genes, Renji-MedX Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Qian You
- State Key Laboratory of Oncogenes and Related Genes, Renji-MedX Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Jianhua Lin
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Jingzhi Tang
- State Key Laboratory of Oncogenes and Related Genes, Renji-MedX Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Xin Zhao
- Department of Dermatology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Wei-Qiang Gao
- State Key Laboratory of Oncogenes and Related Genes, Renji-MedX Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China. .,Med-X Research Institute and School of Biological Medical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China.
| | - Huiming Xu
- State Key Laboratory of Oncogenes and Related Genes, Renji-MedX Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| |
Collapse
|