1
|
Frohlich J, Liorni N, Mangoni M, Lochmanová G, Pírek P, Kaštánková N, Pata P, Kucera J, Chaldakov GN, Tonchev AB, Pata I, Gorbunova V, Leire E, Zdráhal Z, Mazza T, Vinciguerra M. Epigenetic and transcriptional control of adipocyte function by centenarian-associated SIRT6 N308K/A313S mutant. Clin Epigenetics 2024; 16:96. [PMID: 39033117 PMCID: PMC11265064 DOI: 10.1186/s13148-024-01710-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/18/2024] [Indexed: 07/23/2024] Open
Abstract
BACKGROUND Obesity is a major health burden. Preadipocytes proliferate and differentiate in mature adipocytes in the adipogenic process, which could be a potential therapeutic approach for obesity. Deficiency of SIRT6, a stress-responsive protein deacetylase and mono-ADP ribosyltransferase enzyme, blocks adipogenesis. Mutants of SIRT6 (N308K/A313S) were recently linked to the in the long lifespan Ashkenazi Jews. In this study, we aimed to clarify how these new centenarian-associated SIRT6 genetic variants affect adipogenesis at the transcriptional and epigenetic level. METHODS We analyzed the role of SIRT6 wild-type (WT) or SIRT6 centenarian-associated mutant (N308K/A313S) overexpression in adipogenesis, by creating stably transduced preadipocyte cell lines using lentivirus on the 3T3-L1 model. Histone post-translational modifications (PTM: acetylation, methylation) and transcriptomic changes were analyzed by mass spectrometry (LC-MS/MS) and RNA-Seq, respectively, in 3T3-L1 adipocytes. In addition, the adipogenic process and related signaling pathways were investigated by bioinformatics and biochemical approaches. RESULTS Overexpression of centenarian-associated SIRT6 mutant increased adipogenic differentiation to a similar extent compared to the WT form. However, it triggered distinct histone PTM profiles in mature adipocytes, with significantly higher acetylation levels, and activated divergent transcriptional programs, including those dependent on signaling related to the sympathetic innervation and to PI3K pathway. 3T3-L1 mature adipocytes overexpressing SIRT6 N308K/A313S displayed increased insulin sensitivity in a neuropeptide Y (NPY)-dependent manner. CONCLUSIONS SIRT6 N308K/A313S overexpression in mature adipocytes ameliorated glucose sensitivity and impacted sympathetic innervation signaling. These findings highlight the importance of targeting SIRT6 enzymatic activities to regulate the co-morbidities associated with obesity.
Collapse
Affiliation(s)
- Jan Frohlich
- International Clinical Research Center, St. Anne's University Hospital and Masaryk University, Brno, Czech Republic
| | - Niccolò Liorni
- IRCCS, Bioinformatics Unit, Casa Sollievo Della Sofferenza, San Giovanni Rotondo, Italy
| | - Manuel Mangoni
- IRCCS, Bioinformatics Unit, Casa Sollievo Della Sofferenza, San Giovanni Rotondo, Italy
| | - Gabriela Lochmanová
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Pavlína Pírek
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Nikola Kaštánková
- International Clinical Research Center, St. Anne's University Hospital and Masaryk University, Brno, Czech Republic
| | | | - Jan Kucera
- RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
- Department of Physical Activities and Health, Faculty of Sports Studies, Masaryk University, Brno, Czech Republic
| | - George N Chaldakov
- Department of Translational Stem Cell Biology, Research Institute of the Medical University, Varna, Bulgaria
- Department of Anatomy and Cell Biology, Faculty of Medicine, Varna, Bulgaria
| | - Anton B Tonchev
- Department of Translational Stem Cell Biology, Research Institute of the Medical University, Varna, Bulgaria
- Department of Anatomy and Cell Biology, Faculty of Medicine, Varna, Bulgaria
| | | | - Vera Gorbunova
- Departments of Biology and Medicine, University of Rochester, Rochester, NY, USA
| | - Eric Leire
- GenFlow Biosciences Srl, Charleroi, Belgium
- Clinique 135, Brussels, Belgium
| | - Zbyněk Zdráhal
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Tommaso Mazza
- IRCCS, Bioinformatics Unit, Casa Sollievo Della Sofferenza, San Giovanni Rotondo, Italy
| | - Manlio Vinciguerra
- International Clinical Research Center, St. Anne's University Hospital and Masaryk University, Brno, Czech Republic.
- Department of Translational Stem Cell Biology, Research Institute of the Medical University, Varna, Bulgaria.
- Faculty of Science, Liverpool John Moores University (LJMU), Liverpool, UK.
| |
Collapse
|
2
|
Valenzuela PL, Carrera-Bastos P, Castillo-García A, Lieberman DE, Santos-Lozano A, Lucia A. Obesity and the risk of cardiometabolic diseases. Nat Rev Cardiol 2023; 20:475-494. [PMID: 36927772 DOI: 10.1038/s41569-023-00847-5] [Citation(s) in RCA: 90] [Impact Index Per Article: 90.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/08/2023] [Indexed: 03/18/2023]
Abstract
The prevalence of obesity has reached pandemic proportions, and now approximately 25% of adults in Westernized countries have obesity. Recognized as a major health concern, obesity is associated with multiple comorbidities, particularly cardiometabolic disorders. In this Review, we present obesity as an evolutionarily novel condition, summarize the epidemiological evidence on its detrimental cardiometabolic consequences and discuss the major mechanisms involved in the association between obesity and the risk of cardiometabolic diseases. We also examine the role of potential moderators of this association, with evidence for and against the so-called 'metabolically healthy obesity phenotype', the 'fatness but fitness' paradox or the 'obesity paradox'. Although maintenance of optimal cardiometabolic status should be a primary goal in individuals with obesity, losing body weight and, particularly, excess visceral adiposity seems to be necessary to minimize the risk of cardiometabolic diseases.
Collapse
Affiliation(s)
- Pedro L Valenzuela
- Physical Activity and Health Research Group (PaHerg), Research Institute of Hospital 12 de Octubre ("i + 12"), Madrid, Spain.
- Department of Systems Biology, University of Alcalá, Alcalá de Henares, Spain.
| | - Pedro Carrera-Bastos
- Center for Primary Health Care Research, Department of Clinical Sciences, Lund University, Malmö, Sweden
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain
| | | | - Daniel E Lieberman
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Alejandro Santos-Lozano
- Physical Activity and Health Research Group (PaHerg), Research Institute of Hospital 12 de Octubre ("i + 12"), Madrid, Spain
- Department of Health Sciences, European University Miguel de Cervantes, Valladolid, Spain
| | - Alejandro Lucia
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain.
- CIBER of Frailty and Healthy Aging (CIBERFES), Madrid, Spain.
| |
Collapse
|
3
|
Katsi V, Georgiopoulos G, Mitropoulou P, Kontoangelos K, Kollia Z, Tzavara C, Soulis D, Toutouzas K, Oikonomou D, Aimo A, Tsioufis K. Exercise tolerance and quality of life in patients with known or suspected coronary artery disease. Qual Life Res 2021; 30:2541-2550. [PMID: 33893931 DOI: 10.1007/s11136-021-02844-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/02/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Coronary artery disease (CAD) is known to impact on patients' physical and mental health. The relationship between performance on treadmill exercise tolerance test (ETT) and health-related quality of life (HRQL)has never been specifically investigated in the setting of CAD. METHODS Consecutive patients undergoing an ETT with the Bruce protocol during a diagnostic workup for CAD (n = 1,631, age 55 ± 12 years) were evaluated. Exercise-related indices were recorded. Detailed information on cardiovascular risk factors and past medical history were obtained. HRQLwas assessed with the use of the validated 36-Item Short Form Survey (SF-36) questionnaire. RESULTS Increasing age and the presence of cardiovascular risk factors and comorbidities correlated with lower scores on the physical and mental health component of SF-36(all P < 0.05). Subjects with arrhythmias during exercise and slow recovery of systolic blood pressure had lower scores on the physical health indices or the Social Role Functioning component (P < 0.05). Achieved target heart rate and good exercise tolerance were independently associated with better scores of the physical and mental health domains of SF-36 and overall HRQLscores (β = 0.05 for target HR and PCS-36, β = 1.86 and β = 1.66 per increasing stage of exercise tolerance and PCS-36 and MCS-36, respectively, P < 0.001 for all associations). Ischemic ECG changes were associated with worse scores on Physical Functioning (β = - 3.2, P = 0.02) and Bodily Pain (β = - 4.55, P = 0.026). CONCLUSION ETT parameters are associated with HRQL indices in patients evaluated for possible CAD. Physical conditioning may increase patient well-being and could serve as a complementary target in conjunction with cardiovascular drug therapy.
Collapse
Affiliation(s)
- Vasiliki Katsi
- First Department of Cardiology, Hippocration Hospital, Athens, Greece
| | - Georgios Georgiopoulos
- First Department of Cardiology, Hippocration Hospital, Athens, Greece.
- Cardiovascular Imaging Department, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas Hospital, Westminster Bridge Road, London, SE1 7EH, UK.
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, Athens, Greece.
| | - Panagiota Mitropoulou
- Department of Cardiology, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Konstantinos Kontoangelos
- 1st Department of Psychiatry, Eginition Hospital, Medical School National and Kapodistrian University of Athens, Athens, Greece
| | - Zoi Kollia
- Emergency Department, Amalia Fleming' General Hospital, Athens, Greece
| | - Chara Tzavara
- Emergency Department, Amalia Fleming' General Hospital, Athens, Greece
| | - Dimitrios Soulis
- Emergency Department, Amalia Fleming' General Hospital, Athens, Greece
| | | | | | - Alberto Aimo
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
- Cardiology Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | | |
Collapse
|