1
|
Sato S, Kawasaki T, Hatano R, Koyanagi Y, Takahashi Y, Ohnuma K, Morimoto C, Dudek SM, Tatsumi K, Suzuki T. Functional roles of CD26/DPP4 in lipopolysaccharide-induced lung injury. Am J Physiol Lung Cell Mol Physiol 2024; 326:L562-L573. [PMID: 38469626 DOI: 10.1152/ajplung.00392.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/01/2024] [Accepted: 02/27/2024] [Indexed: 03/13/2024] Open
Abstract
Acute respiratory distress syndrome (ARDS) is characterized by dysregulated inflammation and increased permeability of lung microvascular cells. CD26/dipeptidyl peptidase-4 (DPP4) is a type II membrane protein that is expressed in several cell types and mediates multiple pleiotropic effects. We previously reported that DPP4 inhibition by sitagliptin attenuates lipopolysaccharide (LPS)-induced lung injury in mice. The current study characterized the functional role of CD26/DPP4 expression in LPS-induced lung injury in mice, isolated alveolar macrophages, and cultured lung endothelial cells. In LPS-induced lung injury, inflammatory responses [bronchoalveolar lavage fluid (BALF) neutrophil numbers and several proinflammatory cytokine levels] were attenuated in Dpp4 knockout (Dpp4 KO) mice. However, multiple assays of alveolar capillary permeability were similar between the Dpp4 KO and wild-type mice. TNF-α and IL-6 production was suppressed in alveolar macrophages isolated from Dpp4 KO mice. In contrast, in cultured mouse lung microvascular endothelial cells (MLMVECs), reduction in CD26/DPP4 expression by siRNA resulted in greater ICAM-1 and IL-6 expression after LPS stimulation. Moreover, the LPS-induced vascular monolayer permeability in vitro was higher in MLMVECs treated with Dpp4 siRNA, suggesting that CD26/DPP4 plays a protective role in endothelial barrier function. In summary, this study demonstrated that genetic deficiency of Dpp4 attenuates inflammatory responses but not permeability in LPS-induced lung injury in mice, potentially through differential functional roles of CD26/DPP4 expression in resident cellular components of the lung. CD26/DPP4 may be a potential therapeutic target for ARDS and warrants further exploration to precisely identify the multiple functional effects of CD26/DPP4 in ARDS pathophysiology.NEW & NOTEWORTHY We aimed to clarify the functional roles of CD26/DPP4 in ARDS pathophysiology using Dpp4-deficient mice and siRNA reduction techniques in cultured lung cells. Our results suggest that CD26/DPP4 expression plays a proinflammatory role in alveolar macrophages while also playing a protective role in the endothelial barrier. Dpp4 genetic deficiency attenuates inflammatory responses but not permeability in LPS-induced lung injury in mice, potentially through differential roles of CD26/DPP4 expression in the resident cellular components of the lung.
Collapse
Affiliation(s)
- Shun Sato
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
- Synergy Institute for Futuristic Mucosal Vaccine Research and Development, Chiba University, Chiba, Japan
| | - Takeshi Kawasaki
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Ryo Hatano
- Department of Therapy Development and Innovation for Immune Disorders and Cancers, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Yu Koyanagi
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yukiko Takahashi
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kei Ohnuma
- Department of Therapy Development and Innovation for Immune Disorders and Cancers, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Chikao Morimoto
- Department of Therapy Development and Innovation for Immune Disorders and Cancers, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Steven M Dudek
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Koichiro Tatsumi
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Takuji Suzuki
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
- Synergy Institute for Futuristic Mucosal Vaccine Research and Development, Chiba University, Chiba, Japan
| |
Collapse
|
2
|
Hua E, Xu D, Chen H, Zhang S, Feng J, Xu L. Development of the dipeptidyl peptidase 4 family and its association with lung diseases: a narrative review. J Thorac Dis 2023; 15:7024-7034. [PMID: 38249892 PMCID: PMC10797411 DOI: 10.21037/jtd-23-1158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/10/2023] [Indexed: 01/23/2024]
Abstract
Background and Objective Dipeptidyl peptidase (DPP)4 is a member of a subfamily of serine peptidase S9. DPP4, expressed as a type II transmembrane protein, has a wide tissue distribution and is most active in the lung and small intestine. Many substrates of DPP4 have been identified, including neuropeptides, chemokines, and glucagon-like peptide-1 (GLP-1) and gastric inhibitory polypeptides (GIPs). DPP4 inhibitors are clinically useful in the treatment of type 2 diabetes mellitus. DPP9, an N-terminal dipeptide targeting enzyme with proline or alanine, may have DPP4-like activity. DPP9 is ubiquitously expressed at human and rodent messenger RNA (mRNA) levels and therefore may play a role in the immune system and epithelial cells. It has been shown that DPP9 plays an important signaling role in the regulation of survival and proliferation pathways and is also involved in cell migration, apoptosis, and cell adhesion. In recent years, there has been further progress in DPP9 inhibition through activation of apoptosis by the inflammasome sensor protein Nlrp1b. This study aims to investigate the association of DPP4 family members and DPP9 with lung disease. Methods The literature search was initiated using the PubMed database. We searched for the content (DPP4) AND (Lung Diseases), (DPP9) AND (Lung Diseases), from which we filtered the literature we needed. Key Content and Findings Given the high biological activity of the DPP4 family, their involvement in various lung diseases is highly relevant. There is growing evidence for the importance of DPP4 and DPP9 of the DPP4 family in lung diseases, which are closely associated with diseases such as asthma, lung infections, pulmonary fibrosis (PF), and lung cancer. Conclusions This review summarizes most of the current evidence that DPP4/9 is associated with lung disease. Within the DPP4 family, the role of DPP4 in particular in respiratory disease is important.
Collapse
Affiliation(s)
- Ershi Hua
- Department of Pulmonary and Critical Care Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
- Department of Clinical Laboratory, Affiliated Nantong Hospital of Shanghai University (The Six People’s Hospital of Nantong), Nantong, China
| | - Dongmei Xu
- Department of Pulmonary and Critical Care Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Huamao Chen
- Department of Pulmonary and Critical Care Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Shuwen Zhang
- Department of Pulmonary and Critical Care Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Jian Feng
- Department of Pulmonary and Critical Care Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Liqin Xu
- Department of Pulmonary and Critical Care Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| |
Collapse
|
3
|
Ohm B, Moneke I, Jungraithmayr W. Targeting cluster of differentiation 26 / dipeptidyl peptidase 4 (CD26/DPP4) in organ fibrosis. Br J Pharmacol 2023; 180:2846-2861. [PMID: 36196001 DOI: 10.1111/bph.15967] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/07/2022] [Accepted: 09/29/2022] [Indexed: 11/28/2022] Open
Abstract
Cluster of differentiation 26 (CD26)/dipeptidyl peptidase 4 (DPP4) is an exopeptidase that is expressed as a transmembrane protein in many organs but also present in a circulating soluble form. Beyond its enzymatic and costimulatory activity, CD26/DPP4 is involved in the pathogenesis of chronic fibrotic diseases across many organ types, such as liver cirrhosis, kidney fibrosis and lung fibrosis. Organ fibrosis is associated with a high morbidity and mortality, and there are no causative therapies that can effectively attenuate the progress of the disease. Growing evidence suggests that inhibiting CD26/DPP4 can modulate the profibrotic tissue microenvironment and thus reduce fibrotic changes within affected organs. This review summarizes the role of CD26/DPP4 in fibroproliferative disorders and highlights new opportunities for an antifibrotic treatment by CD26/DPP4 inhibition. As a major advantage, CD26/DPP4 inhibitors have been in safe and routine clinical use in type 2 diabetes for many years and thus qualify for repurposing to repurpose as a promising therapeutic against fibrosis. LINKED ARTICLES: This article is part of a themed issue on Translational Advances in Fibrosis as a Therapeutic Target. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v180.22/issuetoc.
Collapse
Affiliation(s)
- Birte Ohm
- Department of Thoracic Surgery, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Isabelle Moneke
- Department of Thoracic Surgery, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Wolfgang Jungraithmayr
- Department of Thoracic Surgery, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
4
|
Cucinotta L, Mannino D, Casili G, Repici A, Crupi L, Paterniti I, Esposito E, Campolo M. Prolyl oligopeptidase inhibition ameliorates experimental pulmonary fibrosis both in vivo and in vitro. Respir Res 2023; 24:211. [PMID: 37626373 PMCID: PMC10463606 DOI: 10.1186/s12931-023-02519-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/21/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND Pulmonary fibrosis is a progressive disease characterized by lung remodeling due to excessive deposition of extracellular matrix. Although the etiology remains unknown, aberrant angiogenesis and inflammation play an important role in the development of this pathology. In this context, recent scientific research has identified new molecules involved in angiogenesis and inflammation, such as the prolyl oligopeptidase (PREP), a proteolytic enzyme belonging to the serine protease family, linked to the pathology of many lung diseases such as pulmonary fibrosis. Therefore, the aim of this study was to investigate the effect of a selective inhibitor of PREP, known as KYP-2047, in an in vitro and in an in vivo model of pulmonary fibrosis. METHODS The in vitro model was performed using human alveolar A549 cells. Cells were exposed to lipopolysaccharide (LPS) 10 μg/ml and then, cells were treated with KYP-2047 at the concentrations of 1 μM, 10 μM and 50 μM. Cell viability was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium (MTT) bromide colorimetric assay, while inflammatory protein expression was assessed by western blots analysis. The in vivo model was induced in mice by intra-tracheal administration of bleomycin (1 mg/kg) and then treated intraperitoneally with KYP-2047 at doses of 1, 2.5 and 5 mg/kg once daily for 12 days and then mice were sacrificed, and lung tissues were collected for analyses. RESULTS The in vitro results demonstrated that KYP-2047 preserved cell viability, reduced inflammatory process by decreasing IL-18 and TNF-α, and modulated lipid peroxidation as well as nitrosative stress. The in vivo pulmonary fibrosis has demonstrated that KYP-2047 was able to restore histological alterations reducing lung injury. Our data demonstrated that KYP-2047 significantly reduced angiogenesis process and the fibrotic damage modulating the expression of fibrotic markers. Furthermore, KYP-2047 treatment modulated the IκBα/NF-κB pathway and reduced the expression of related pro-inflammatory enzymes and cytokines. Moreover, KYP-2047 was able to modulate the JAK2/STAT3 pathway, highly involved in pulmonary fibrosis. CONCLUSION In conclusion, this study demonstrated the involvement of PREP in the pathogenesis of pulmonary fibrosis and that its inhibition by KYP-2047 has a protective role in lung injury induced by BLM, suggesting PREP as a potential target therapy for pulmonary fibrosis. These results speculate the potential protective mechanism of KYP-2047 through the modulation of JAK2/STAT3 and NF-κB pathways.
Collapse
Affiliation(s)
- Laura Cucinotta
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 7 Viale Ferdinando Stagno D'Alcontres, 31-98166, Messina, Italy
| | - Deborah Mannino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 7 Viale Ferdinando Stagno D'Alcontres, 31-98166, Messina, Italy
| | - Giovanna Casili
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 7 Viale Ferdinando Stagno D'Alcontres, 31-98166, Messina, Italy
| | - Alberto Repici
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 7 Viale Ferdinando Stagno D'Alcontres, 31-98166, Messina, Italy
| | - Lelio Crupi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 7 Viale Ferdinando Stagno D'Alcontres, 31-98166, Messina, Italy
| | - Irene Paterniti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 7 Viale Ferdinando Stagno D'Alcontres, 31-98166, Messina, Italy
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 7 Viale Ferdinando Stagno D'Alcontres, 31-98166, Messina, Italy.
| | - Michela Campolo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 7 Viale Ferdinando Stagno D'Alcontres, 31-98166, Messina, Italy
| |
Collapse
|
5
|
Proline-specific peptidase activities (DPP4, PRCP, FAP and PREP) in plasma of hospitalized COVID-19 patients. Clin Chim Acta 2022; 531:4-11. [PMID: 35283094 PMCID: PMC8920094 DOI: 10.1016/j.cca.2022.03.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 02/18/2022] [Accepted: 03/06/2022] [Indexed: 12/16/2022]
Abstract
BACKGROUND COVID-19 patients experience several features of dysregulated immune system observed in sepsis. We previously showed a dysregulation of several proline-selective peptidases such as dipeptidyl peptidase 4 (DPP4), fibroblast activation protein alpha (FAP), prolyl oligopeptidase (PREP) and prolylcarboxypeptidase (PRCP) in sepsis. In this study, we investigated whether these peptidases are similarly dysregulated in hospitalized COVID-19 patients. METHODS Fifty-six hospitalized COVID-19 patients and 32 healthy controls were included. Enzymatic activities of DPP4, FAP, PREP and PRCP were measured in samples collected shortly after hospital admission and in longitudinal follow-up samples. RESULTS Compared to healthy controls, both DPP4 and FAP activities were significantly lower in COVID-19 patients at hospital admission and FAP activity further decreased significantly in the first week of hospitalization. While PRCP activity remained unchanged, PREP activity was significantly increased in COVID-19 patients at hospitalization and further increased during hospital stay and stayed elevated until the day of discharge. CONCLUSION The changes in activities of proline-selective peptidases in plasma are very similar in COVID-19 and septic shock patients. The pronounced decrease in FAP activity deserves further investigation, both from a pathophysiological viewpoint and as its utility as a part of a biomarker panel.
Collapse
|
6
|
Molecular pathways and role of epigenetics in the idiopathic pulmonary fibrosis. Life Sci 2022; 291:120283. [PMID: 34998839 DOI: 10.1016/j.lfs.2021.120283] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/19/2021] [Accepted: 12/27/2021] [Indexed: 12/12/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fatal lung disease with unknown etiological factors that can progress to other dangerous diseases like lung cancer. Environmental and genetic predisposition are the two major etiological or risk factors involved in the pathology of the IPF. Among the environmental risk factors, smoking is one of the major causes for the development of IPF. Epigenetic pathways like nucleosomes remodeling, DNA methylation, histone modifications and miRNA mediated genes play a crucial role in development of IPF. Mutations in the genes make the epigenetic factors as important drug targets in IPF. Transcriptional changes due to environmental factors are also involved in the progression of IPF. The mutations in human telomerase reverse transcriptase (hTERT) have shown decreased life expectancy in IPF patients. The TERT-gene is highly expressed in chronic smokers and makes the role of epigenetics evident. Drug like nintedanib acts through vascular endothelial growth factor receptors (VEGFR), while drug pirfenidone acts through transforming growth factor (TGF), which is useful in IPF. Gefitinib, a tyrosine kinase inhibitor of EGFR, is useful as an anti-fibrosis agent in preclinical models. Newer drugs such as Celgene-CC90001 and FibroGen-FG-3019 are currently under investigations acts through the modulating epigenetic mechanisms. Thus, the study on epigenetics opens a wide window for the discovery of newer drugs. This study provides an elementary analysis of multiple regulators of epigenetics and their roles associated with the pathology of IPF. Further, this review also includes epigenetic drugs under development in preclinical and clinical stages.
Collapse
|
7
|
Functional Roles for CD26/DPP4 in Mediating Inflammatory Responses of Pulmonary Vascular Endothelial Cells. Cells 2021; 10:cells10123508. [PMID: 34944016 PMCID: PMC8700481 DOI: 10.3390/cells10123508] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/06/2021] [Accepted: 12/10/2021] [Indexed: 12/12/2022] Open
Abstract
Excessive inflammation in the lung is a primary cause of acute respiratory distress syndrome (ARDS). CD26/dipeptidyl peptidase-4 (DPP4) is a transmembrane protein that is expressed in various cell types and exerts multiple pleiotropic effects. We recently reported that pharmacological CD26/DPP4 inhibition ameliorated lipopolysaccharide (LPS)-induced lung injury in mice and exerted anti-inflammatory effects on human lung microvascular endothelial cells (HLMVECs), in vitro. However, the mechanistic roles of CD26/DPP4 in lung injury and its effects on HLMVECs remain unclear. In this study, transcriptome analysis, followed by various confirmation experiments using siRNA in cultured HLMVECs, are performed to evaluate the role of CD26/DPP4 in response to the pro-inflammatory involved in inflammation, barrier function, and regenerative processes in HLMVECs after pro-inflammatory stimulation. These are all functions that are closely related to the pathophysiology and repair process of lung injury. Confirmatory experiments using flow cytometry; enzyme-linked immunosorbent assay; quantitative polymerase chain reaction; dextran permeability assay; WST-8 assay; wound healing assay; and tube formation assay, reveal that the reduction of CD26/DPP4 via siRNA is associated with altered parameters of inflammation, barrier function, and the regenerative processes in HLMVECs. Thus, CD26/DPP4 can play a pathological role in mediating injury in pulmonary endothelial cells. CD26/DPP4 inhibition can be a new therapeutic strategy for inflammatory lung diseases, involving pulmonary vascular damage.
Collapse
|
8
|
Kong L, Deng J, Zhou X, Cai B, Zhang B, Chen X, Chen Z, Wang W. Sitagliptin activates the p62-Keap1-Nrf2 signalling pathway to alleviate oxidative stress and excessive autophagy in severe acute pancreatitis-related acute lung injury. Cell Death Dis 2021; 12:928. [PMID: 34635643 PMCID: PMC8505515 DOI: 10.1038/s41419-021-04227-0] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 09/15/2021] [Accepted: 09/29/2021] [Indexed: 12/29/2022]
Abstract
Acute lung injury (ALI) is a complication of severe acute pancreatitis (SAP). Sitagliptin (SIT) is a DPP4 inhibitor that exerts anti-inflammatory and antioxidant effects; however, its mechanism of action in SAP-ALI remains unclear. In this study, we investigated the effects of SIT on SAP-ALI and the specific pathways involved in SAP-induced lung inflammation, including oxidative stress, autophagy, and p62-Kelch-like ECH-associated protein 1 (Keap1)-NF-E2-related factor 2 (Nrf2) signalling pathways. Nrf2 knockout (Nrf2-/-) and wild-type (WT) mice were pre-treated with SIT (100 mg/kg), followed by caerulein and lipopolysaccharide (LPS) administration to induce pancreatic and lung injury. BEAS-2B cells were transfected with siRNA-Nrf2 and treated with LPS, and the changes in inflammation, reactive oxygen species (ROS) levels, and autophagy were measured. SIT reduced histological damage, oedema, and myeloperoxidase activity in the lung, decreased the expression of pro-inflammatory cytokines, and inhibited excessive autophagy and ROS production via the activation of the p62-Keap1-Nrf2 signalling pathway and promotion of the nuclear translocation of Nrf2. In Nrf2-knockout mice, the anti-inflammatory effect of SIT was reduced, resulting in ROS accumulation and excessive autophagy. In BEAS-2B cells, LPS induced ROS production and activated autophagy, further enhanced by Nrf2 knockdown. This study demonstrates that SIT reduces SAP-ALI-associated oxidative stress and excessive autophagy through the p62-Keap1-Nrf2 signalling pathway and nuclear translocation of Nrf2, suggesting its therapeutic potential in SAP-ALI.
Collapse
Affiliation(s)
- Lingming Kong
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jie Deng
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xiang Zhou
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Binbin Cai
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Baofu Zhang
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaohu Chen
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zongjing Chen
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Weiming Wang
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
9
|
Nakagawa K, Kijima T, Okada M, Morise M, Kato M, Hirano K, Fujimoto N, Takenoyama M, Yokouchi H, Ohe Y, Hida T, Aoe K, Kishimoto T, Hirokawa M, Matsuki H, Kaneko Y, Yamada T, Morimoto C, Takeda M. Phase 2 Study of YS110, a Recombinant Humanized Anti-CD26 Monoclonal Antibody, in Japanese Patients With Advanced Malignant Pleural Mesothelioma. JTO Clin Res Rep 2021; 2:100178. [PMID: 34590026 PMCID: PMC8474437 DOI: 10.1016/j.jtocrr.2021.100178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 04/07/2021] [Accepted: 04/17/2021] [Indexed: 01/21/2023] Open
Abstract
Introduction YS110, a humanized monoclonal antibody with a high affinity to CD26, exhibited promising antitumor activity and was generally well-tolerated in the phase 1 part of a phase 1 and 2 Japanese trial in patients with malignant pleural mesothelioma (MPM). Here we report the results of the phase 2 part of the study. Methods The patients included were aged 20 years and older, had histologically confirmed MPM, were refractory to or intolerant of existing antineoplastic agents, and were not candidates for standard therapy. YS110 6 mg/kg, determined in the phase 1 dose-determination part, was given in 6-weekly cycles (5 × once-weekly infusions, followed by a 1-wk rest). Results The study included 31 patients (median age = 68 y, 90.3% men); 64.5% had stage IV MPM, 90.3% had greater than or equal to 20% CD26 expression in tumor tissue, and 38.7% (12 patients) had previously received nivolumab. The 6-month disease control rate was 3.2%. The best overall response was partial response in one patient and stable disease in 14 patients. The median progression-free survival was 2.8 months (both in patients who had and had not previously received nivolumab—groups A and B, respectively). Respective progression-free survival rates at 6 months were 9.1% and 31.6% in groups A and B. The median overall survival was 9.7 months. A total of 30 patients (96.8%) had at least one adverse event. Common treatment-related adverse events were infusion-related reaction (16.1%), hiccups (9.7%), and interstitial lung disease (9.7%). There were no treatment-related deaths. Conclusions The 6-month disease control rate did not exceed the predefined threshold, but YS110 revealed modest efficacy in response rate as salvage therapy in difficult-to-treat patients with MPM. YS110 was generally well tolerated.
Collapse
Affiliation(s)
- Kazuhiko Nakagawa
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Takashi Kijima
- Department of Respiratory Medicine and Hematology, Hyogo College of Medicine, Nishinomiya City, Japan
| | - Morihito Okada
- Department of Surgical Oncology, Hiroshima University, Hiroshima City, Japan
| | - Masahiro Morise
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya City, Japan
| | - Motoyasu Kato
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Katsuya Hirano
- Department of Respiratory Medicine, Hyogo Prefectural Amagasaki General Medical Center, Amagasaki City, Japan
| | - Nobukazu Fujimoto
- Department of Medical Oncology, Okayama Rosai Hospital, Okayama City, Japan
| | - Mitsuhiro Takenoyama
- Department of Thoracic Oncology, National Hospital Organization Kyushu Cancer Center, Fukuoka City, Japan
| | - Hiroshi Yokouchi
- Department of Respiratory Medicine, National Hospital Organization Hokkaido Cancer Center, Sapporo City, Japan
| | - Yuichiro Ohe
- Department of Thoracic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Toyoaki Hida
- Department of Thoracic Oncology, Aichi Cancer Center Hospital, Nagoya City, Japan
| | - Keisuke Aoe
- Department of Medical Oncology, National Hospital Organization Yamaguchi-Ube Medical Center, Ube City, Japan
| | - Takumi Kishimoto
- Research & Training Center for Asbestos-Related Diseases, Okayama City, Japan
| | | | | | | | - Taketo Yamada
- Department of Pathology, Saitama Medical University, Iruma-gun, Japan
| | - Chikao Morimoto
- Department of Therapy Development and Innovation for Immune Disorders and Cancers, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Masayuki Takeda
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| |
Collapse
|
10
|
Casili G, Scuderi SA, Lanza M, Filippone A, Basilotta R, Mannino D, Campolo M, Esposito E, Paterniti I. The protective role of prolyl oligopeptidase (POP) inhibition in acute lung injury induced by intestinal ischemia-reperfusion. Oncotarget 2021; 12:1663-1676. [PMID: 34434495 PMCID: PMC8378771 DOI: 10.18632/oncotarget.28041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/27/2021] [Indexed: 12/15/2022] Open
Abstract
Intestinal ischemia-reperfusion (II/R) develops when the blood flow to the intestines decreases, followed by the reestablishment of the blood supply to the ischemic tissue, resulting in intestinal mucosal barrier dysfunction, with consequent severe local and systemic inflammation. Acute lung injury (ALI) represents the most serious complication after II/R. KYP-2047 is a selective inhibitor of prolyl oligopeptidase (POP), a serine protease involved in the release of pro-angiogenic and inflammatory molecules. The aim of the present study is to assess the effects of POP-inhibition mediated by KYP-2047 treatment in the pathophysiology of ALI following II/R. An in vivo model of II/R was performed and mice were subjected to KYP-2047 treatment (intraperitoneal, 1, 2.5 and 5 mg/kg). Histological analysis, Masson’s trichrome staining, immunohistochemical, immunofluorescence, biochemical and western blots analysis were performed on ileum and lung samples. KYP-2047 treatment ameliorated histological alteration in ileum and lung, reduced collagen amount and lowered inflammatory protein levels. Moreover, TGF-β1, eNOS, VEGF and CD34 positive staining has been modulated; also, a reduction in apoptosis expression was confirmed. This research revealed the strong anti-inflammatory potential of KYP-2047 associated to its modulatory role on angiogenesis and apoptosis, suggesting POP as a novel therapeutic target for ALI after II/R.
Collapse
Affiliation(s)
- Giovanna Casili
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Sarah Adriana Scuderi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Marika Lanza
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Alessia Filippone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Rossella Basilotta
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Deborah Mannino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Michela Campolo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Irene Paterniti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| |
Collapse
|
11
|
Triposkiadis F, Starling RC, Xanthopoulos A, Butler J, Boudoulas H. The Counter Regulatory Axis of the Lung Renin-Angiotensin System in Severe COVID-19: Pathophysiology and Clinical Implications. Heart Lung Circ 2021; 30:786-794. [PMID: 33454213 PMCID: PMC7831862 DOI: 10.1016/j.hlc.2020.11.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 10/17/2020] [Accepted: 11/22/2020] [Indexed: 12/15/2022]
Abstract
The severe acute respiratory syndrome coronavirus (SARS-CoV)-2, which is responsible for coronavirus disease 2019 (COVID-19), uses angiotensin (ANG)-converting enzyme 2 (ACE2) as the entrance receptor. Although most COVID-19 cases are mild, some are severe or critical, predominantly due to acute lung injury. It has been widely accepted that a counter regulatory renin-angiotensin system (RAS) axis including the ACE2/ANG [1-7]/Mas protects the lungs from acute lung injury. However, recent evidence suggests that the generation of protective ANG [1-7] in the lungs is predominantly mediated by proinflammatory prolyl oligopeptidase (POP), which has been repeatedly demonstrated to be involved in lung pathology. This review contends that acute lung injury in severe COVID-19 is characterised by a) ACE2 downregulation and malfunction (inflammatory signalling) due to viral occupation, and b) dysregulation of the protective RAS axis, predominantly due to increased activity of proinflammatory POP. It follows that a reasonable treatment strategy in COVID-19-related acute lung injury would be delivering functional recombinant (r) ACE2 forms to trap the virus. Additionally, or alternatively to rACE2 delivery, the potential benefits resulting from lowering POP activity should also be explored. These treatment strategies deserve further investigation.
Collapse
Affiliation(s)
| | - Randall C Starling
- Kaufman Center for Heart Failure and Recovery, Heart, Vascular, and Thoracic Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Andrew Xanthopoulos
- Department of Cardiology, Larissa University General Hospital, Larissa, Greece
| | - Javed Butler
- Department of Medicine, University of Mississippi, Jackson, MS, USA
| | - Harisios Boudoulas
- Department of Medicine/Cardiovascular Medicine, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
12
|
Jungraithmayr W, Yamada Y, Haberecker M, Breuer E, Schuurmans M, Dubs L, Itani S, Janker F, Weder W, Schmitt-Opitz I, Jang JH. CD26 as a target against fibrous formation in chronic airway rejection lesions. Life Sci 2021; 278:119496. [PMID: 33894269 DOI: 10.1016/j.lfs.2021.119496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 04/05/2021] [Accepted: 04/06/2021] [Indexed: 12/29/2022]
Abstract
AIMS Chronic lung allograft dysfunction (CLAD) after lung transplantation (Tx) is the clinical result of chronic airway rejection lesions (CARL), histomorphologically described as either obliterative remodeling of small airways or alveolar fibroelastosis, or as a combination of both. We here investigated the CD26-inhibitory effect on CD26-expressing CARL. MAIN METHODS CARL were induced by BALB/c → C57BL/6 mouse Tx under mild immunosuppression. CARL-related pro-fibrotic mediators were determined by RT-qPCR and western blotting (WB), EMT and ERK markers by WB. CD26 co-expression by immunofluorescence. CD26 was inhibited by Vildagliptin, gene depleted by CD26-/- mice. Primary lung fibroblasts were employed for ex vivo analyses. Samples from lung transplant patients with CLAD were analyzed by immunohistochemistry. KEY FINDINGS CARL revealed a significantly higher expression of profibrotic proteins vs. normal lungs (p < 0.05). CD26 and EMT co-expressed in CARL with significantly higher Vimentin, Slug, Hif-1α, α-SMA expression vs. normal lungs (p < 0.05). Vildagliptin decreased the expression of α-SMA and N-cadherin in wild type (WT) lung fibroblasts (p < 0.05). Primary lung fibroblasts from WT and CD26-/- mice treated with TGF-β1, IFN-γ, and FGF showed a reduction of EMT protein expression, proliferation, and reduced activation of ERK in CD26-/- mice vs. WT mice. CD26-positive cells were found in patient samples with CLAD in areas of loose fibrosis, but not in areas of dense fibrosis. SIGNIFICANCE CD26 is expressed in CARL-developing lung transplants and CD26-inhibition downregulates fibrosis-forming mediators and fibroblast proliferation. CD26 thus qualifies as a target to attenuate the development of CARL mainly via modulation of ERK and the EMT pathway.
Collapse
Affiliation(s)
- Wolfgang Jungraithmayr
- Department of Thoracic Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Department of Thoracic Surgery, University Hospital Zurich, Zurich, Switzerland.
| | - Yoshito Yamada
- Department of Thoracic Surgery, Kyoto University Hospital, Kyoto, Japan
| | - Martina Haberecker
- Institute of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Eva Breuer
- Department of Visceral Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Macé Schuurmans
- Department of Pulmonology, University Hospital Zurich, Zurich, Switzerland
| | - Linus Dubs
- Department of Thoracic Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Saria Itani
- Department of Thoracic Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Florian Janker
- Department of Thoracic Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Walter Weder
- Department of Thoracic Surgery, University Hospital Zurich, Zurich, Switzerland
| | | | - Jae-Hwi Jang
- Department of Thoracic Surgery, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
13
|
Zou H, Zhu N, Li S. The emerging role of dipeptidyl-peptidase-4 as a therapeutic target in lung disease. Expert Opin Ther Targets 2020; 24:147-153. [PMID: 31971463 DOI: 10.1080/14728222.2020.1721468] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction: Dipeptidyl-peptidase-4 (DPP-4) is a surface bound ectopeptidase that is commonly known as CD26 or adenosine deaminase binding protein. DPP-4 is membrane anchored but it can be cleaved by numerous proteases including matrix-metalloproteinases (MMPs). DPP-4 is expressed by endothelial and epithelial cells, the kidney, intestine and cells of the immune system; it has a broad spectrum of biological functions in immune regulation, cancer biology and glucose metabolism.Areas covered: This article sheds light on the functions of DPP-4, the molecular mechanisms that govern its expression, it's role in the pathogenesis of common respiratory illnesses and potential as a therapeutic target.Expert opinion: DPP-4 has a deleterious role in respiratory disease. Its biological functions, key molecular pathways, interactions and associations are slowly being elucidated. Progressing our knowledge of the role of this multi-faceted molecule may yield vital and novel therapies for respiratory diseases such as lung cancer, asthma, and chronic obstructive pulmonary disease (COPD).
Collapse
Affiliation(s)
- Hai Zou
- Department of Respiratory Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Ning Zhu
- Department of Respiratory Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Shengqing Li
- Department of Respiratory Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
14
|
Wagener I, Jungen M, von Hörsten S, Stephan M, Schmiedl A. Postnatal morphological lung development of wild type and CD26/DPP4 deficient rat pups in dependency of LPS exposure. Ann Anat 2019; 229:151423. [PMID: 31654734 DOI: 10.1016/j.aanat.2019.151423] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/23/2019] [Accepted: 09/24/2019] [Indexed: 01/16/2023]
Abstract
BACKGROUND Rodents are born with morphological immature lungs and an intact surfactant system. CD26/DPP4 is a multifactorial transmembrane integral type II protein, which is involved in physiological and pathophysiological processes and is already expressed during development. CD26/DPP4, called CD26 in the following, is able to enhance or dampen differently triggered inflammation. LPS exposure often used to simulate perinatal infection delays lung development. OBJECTIVE A perinatal LPS rat model was used to test the hypothesis that CD26 deficiency modulates LPS-induced retardation in morphological lung development. METHODS New born Fischer CD26 positive (CD26+) and deficient (CD26-) rats were exposed to LPS on postnatal day (day post partum, dpp) 3 and 5. Morphological parameters of lung development were determined stereologically. Lung development was analysed in 7, 10 14 and 21day old rats. RESULTS Compared to controls LPS application resulted (1) in a mild inflammation independent of the strain, (2) in significantly lower total surface and volume of alveolar septa combined with significantly higher total volume of airspaces and alveolar size on dpp 7 in both substrains. However, compared to controls in LPS treated CD26- rats significant lower values of total septal surface and volume combined with higher values of total parenchymal airspaces and alveolar size were found until the end of classical alveolarization (dpp14). In LPS treated CD26+ rat pups the retardation was abolished already on dpp 10. CONCLUSION In absence of CD26, LPS enhances the delay of morphological lung development. Morphological recovery was slower after the end of LPS exposure in CD26 deficient lungs.
Collapse
Affiliation(s)
- Inga Wagener
- Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany.
| | - Meike Jungen
- Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany.
| | - Stephan von Hörsten
- Franz-Penzoldt-Centre, Experimental Therapy, Friedrich-Alexander-University of Erlangen, Germany.
| | - Michael Stephan
- Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany; Clinic for Psychosomatics and Psychotherapy, Hannover Medical School, 30625 Hannover, Germany.
| | - Andreas Schmiedl
- Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
15
|
Seys LJM, Widagdo W, Verhamme FM, Kleinjan A, Janssens W, Joos GF, Bracke KR, Haagmans BL, Brusselle GG. DPP4, the Middle East Respiratory Syndrome Coronavirus Receptor, is Upregulated in Lungs of Smokers and Chronic Obstructive Pulmonary Disease Patients. Clin Infect Dis 2019; 66:45-53. [PMID: 29020176 PMCID: PMC7108100 DOI: 10.1093/cid/cix741] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 08/12/2017] [Indexed: 12/18/2022] Open
Abstract
Background Middle East respiratory syndrome coronavirus (MERS-CoV) causes pneumonia with a relatively high case fatality rate in humans. Smokers and chronic obstructive pulmonary disease (COPD) patients have been reported to be more susceptible to MERS-CoV infection. Here, we determined the expression of MERS-CoV receptor, dipeptidyl peptidase IV (DPP4), in lung tissues of smokers without airflow limitation and COPD patients in comparison to nonsmoking individuals (never-smokers). Methods DPP4 expression was measured in lung tissue of lung resection specimens of never-smokers, smokers without airflow limitation, COPD GOLD stage II patients and in lung explants of end-stage COPD patients. Both control subjects and COPD patients were well phenotyped and age-matched. The mRNA expression was determined using qRT-PCR and protein expression was quantified using immunohistochemistry. Results In smokers and subjects with COPD, both DPP4 mRNA and protein expression were significantly higher compared to never-smokers. Additionally, we found that both DPP4 mRNA and protein expression were inversely correlated with lung function and diffusing capacity parameters. Conclusions We provide evidence that DPP4 is upregulated in the lungs of smokers and COPD patients, which could partially explain why these individuals are more susceptible to MERS-CoV infection. These data also highlight a possible role of DPP4 in COPD pathogenesis.
Collapse
Affiliation(s)
- Leen J M Seys
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University HospitalGhent, Belgium.,Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - W Widagdo
- Departments of Viroscience, Rotterdam, The Netherlands
| | - Fien M Verhamme
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University HospitalGhent, Belgium
| | - Alex Kleinjan
- Pulmonary Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Wim Janssens
- University Hospital Leuven, Respiratory Division and Rehabilitation, Leuven, Belgium
| | - Guy F Joos
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University HospitalGhent, Belgium
| | - Ken R Bracke
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University HospitalGhent, Belgium
| | | | - Guy G Brusselle
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University HospitalGhent, Belgium
| |
Collapse
|
16
|
Enz N, Vliegen G, De Meester I, Jungraithmayr W. CD26/DPP4 - a potential biomarker and target for cancer therapy. Pharmacol Ther 2019; 198:135-159. [PMID: 30822465 DOI: 10.1016/j.pharmthera.2019.02.015] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
CD26/dipeptidyl peptidase (DPP)4 is a membrane-bound protein found in many cell types of the body, and a soluble form is present in body fluids. There is longstanding evidence that various primary tumors and also metastases express CD26/DPP4 to a variable extent. By cleaving dipeptides from peptides with a proline or alanine in the penultimate position at the N-terminus, it regulates the activity of incretin hormones, chemokines and many other peptides. Due to these effects and interactions with other molecules, a tumor promoting or suppressing role can be attributed to CD26/DPP4. In this review, we discuss the existing evidence on the expression of soluble or membrane-bound CD26/DPP4 in malignant diseases, along with the most recent findings on CD26/DPP4 as a therapeutic target in specific malignancies. The expression and possible involvement of the related DPP8 and DPP9 in cancer are also reviewed. A higher expression of CD26/DPP4 is found in a wide variety of tumor entities, however more research on CD26/DPP4 in the tumor microenvironment is needed to fully explore its use as a tumor biomarker. Circulating soluble CD26/DPP4 has also been studied as a cancer biomarker, however, the observed decrease in most cancer patients does not seem to be cancer specific. Encouraging results from experimental work and a recently reported first phase clinical trial targeting CD26/DPP4 in mesothelioma, renal and urological tumors pave the way for follow-up clinical studies, also in other tumor entities, possibly leading to the development of more effective complementary therapies against cancer.
Collapse
Affiliation(s)
- Njanja Enz
- Department of Thoracic Surgery, University Hospital Rostock, Schillingallee 35, 18057 Rostock, Germany
| | - Gwendolyn Vliegen
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| | - Ingrid De Meester
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium.
| | - Wolfgang Jungraithmayr
- Department of Thoracic Surgery, University Hospital Rostock, Schillingallee 35, 18057 Rostock, Germany.
| |
Collapse
|
17
|
Zhang N, Cong X, Zhou D, Guo L, Yuan C, Xu D, Su C. Predictive significance of serum dipeptidyl peptidase-IV in papillary thyroid carcinoma. Cancer Biomark 2019; 24:7-17. [PMID: 30594915 DOI: 10.3233/cbm-170908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Nan Zhang
- Department of Emergency, The First Hospital of Jilin University, Changchun, Jilin 130021, China
- Department of Emergency, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Xiaoqiang Cong
- Department of Cardiology, The First Hospital of Jilin University, Changchun, Jilin 130021, China
- Department of Emergency, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Dan Zhou
- Department of Pediatrics, The Second Hospital of Jilin University, Changchun, Jilin 130041, China
| | - Liang Guo
- Department of Pathology, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Congwang Yuan
- Department of Pain, Yancheng First People’s Hospital, Yancheng, Jiangsu 224000, China
| | - Dahai Xu
- Department of Emergency, The First Hospital of Jilin University, Changchun, Jilin 130021, China
- Department of Emergency, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Chang Su
- Department of Thyroid Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| |
Collapse
|
18
|
Kawasaki T, Chen W, Htwe YM, Tatsumi K, Dudek SM. DPP4 inhibition by sitagliptin attenuates LPS-induced lung injury in mice. Am J Physiol Lung Cell Mol Physiol 2018; 315:L834-L845. [PMID: 30188745 DOI: 10.1152/ajplung.00031.2018] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a severe clinical condition marked by acute respiratory failure and dysregulated inflammation. Pulmonary vascular endothelial cells (PVECs) function as an important pro-inflammatory source in ARDS, suggesting that modulation of inflammatory events at the endothelial level may have a therapeutic benefit. Dipeptidyl peptidase-4 (DPP4) inhibitors, widely used for the treatment of diabetes mellitus, have been reported to have possible anti-inflammatory effects. However, the potential anti-inflammatory effects of DPP4 inhibition on PVEC function and ARDS pathophysiology are unknown. Therefore, we evaluated the effects of sitagliptin, a DPP4 inhibitor in wide clinical use, on LPS-induced lung injury in mice and in human lung ECs in vitro. In vivo, sitagliptin reduced serum DPP4 activity, bronchoalveolar lavage protein concentration, cell number, and proinflammatory cytokine levels after LPS and alleviated histological findings of lung injury. LPS decreased the expression levels of CD26/DPP4 on pulmonary epithelial cells and PVECs isolated from mouse lungs, and the effect was partially reversed by sitagliptin. In vitro, human lung microvascular ECs (HLMVECs) expressed higher levels of CD26/DPP4 than human pulmonary arterial ECs. LPS induced the release of TNFα, IL-6, and IL-8 by HLMVECs that were inhibited by sitagliptin. LPS promoted the proliferation of HLMVECs, and sitagliptin suppressed this response. However, sitagliptin failed to reverse LPS-induced permeability in cultured ECs or lung epithelial cells in vitro. In summary, sitagliptin attenuates LPS-induced lung injury in mice and exerts anti-inflammatory effects on HLMVECs. These novel observations indicate DPP4 inhibitors may have potential as therapeutic drugs for ARDS.
Collapse
Affiliation(s)
- Takeshi Kawasaki
- Division of Pulmonary, Critical Care, Sleep, and Allergy, Department of Medicine, University of Illinois at Chicago , Chicago, Illinois.,Department of Respirology, Graduate School of Medicine, Chiba University , Chiba , Japan
| | - Weiguo Chen
- Division of Pulmonary, Critical Care, Sleep, and Allergy, Department of Medicine, University of Illinois at Chicago , Chicago, Illinois
| | - Yu Maw Htwe
- Division of Pulmonary, Critical Care, Sleep, and Allergy, Department of Medicine, University of Illinois at Chicago , Chicago, Illinois
| | - Koichiro Tatsumi
- Department of Respirology, Graduate School of Medicine, Chiba University , Chiba , Japan
| | - Steven M Dudek
- Division of Pulmonary, Critical Care, Sleep, and Allergy, Department of Medicine, University of Illinois at Chicago , Chicago, Illinois
| |
Collapse
|