1
|
Klotz LV, Casjens S, Johnen G, Taeger D, Brik A, Eichhorn F, Förster L, Kaiser N, Muley T, Stolp C, Schneider M, Gleichenhagen J, Brüning T, Winter H, Eichhorn M, Weber DG. Combination of calretinin, MALAT1, and GAS5 as a potential prognostic biomarker to predict disease progression in surgically treated mesothelioma patients. Lung Cancer 2024; 192:107802. [PMID: 38692217 DOI: 10.1016/j.lungcan.2024.107802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/20/2024] [Accepted: 04/23/2024] [Indexed: 05/03/2024]
Abstract
BACKGROUND The role of cytoreductive surgery for epithelioid pleural mesothelioma within a multimodal treatment approach remains controversial. Carefully selected patients benefit from cytoreductive surgery and adjuvant chemotherapy, but there is no established biomarker to predict tumor recurrence or progression during the course of the disease. The aim of this study was to identify potential biomarkers to predict therapeutic response in terms of progression-free survival. METHODS Between 03/2014 and 08/2022, preoperative blood samples were collected from 76 patients with epithelioid pleural mesothelioma who underwent cytoreductive surgery as part of a multimodal treatment approach. Identification of potential biomarkers was performed by determination of mesothelin and calretinin, as well as specific long non-coding RNAs and microRNAs. Receiver operating characteristic analysis, Kaplan-Meier survival analysis, and Cox regression were used to assess the association between biomarker concentrations and patient recurrence status and survival. RESULTS MALAT1, GAS5, and calretinin showed statistically significant increased biomarker levels in patients with recurrence in contrast to recurrence-free patients after surgical treatment (p < 0.0001, p = 0.0190, and p = 0.0068, respectively). The combination of the three biomarkers resulted in a sensitivity of 68 % and a specificity of 89 %. CONCLUSION MALAT1, GAS5, and calretinin could be potential biomarkers for the prediction of tumor recurrence, improving the benefit from multimodal treatment including cytoreductive surgery.
Collapse
Affiliation(s)
- Laura V Klotz
- Department of Thoracic Surgery, Thoraxklinik, University of Heidelberg, Roentgenstraße 1, 69126 Heidelberg, Germany; German Center for Lung Research (TLRC), Germany; Division of Molecular Thoracic Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| | - Swaantje Casjens
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), Bürkle-de-la-Camp Platz 1, 44789 Bochum, Germany
| | - Georg Johnen
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), Bürkle-de-la-Camp Platz 1, 44789 Bochum, Germany
| | - Dirk Taeger
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), Bürkle-de-la-Camp Platz 1, 44789 Bochum, Germany
| | - Alexander Brik
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), Bürkle-de-la-Camp Platz 1, 44789 Bochum, Germany
| | - Florian Eichhorn
- Department of Thoracic Surgery, Thoraxklinik, University of Heidelberg, Roentgenstraße 1, 69126 Heidelberg, Germany; German Center for Lung Research (TLRC), Germany
| | - Laura Förster
- Section for Translational Research, Thoraxklinik, University of Heidelberg, Roentgenstraße 1, 69126 Heidelberg, Germany
| | - Nina Kaiser
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), Bürkle-de-la-Camp Platz 1, 44789 Bochum, Germany
| | - Thomas Muley
- German Center for Lung Research (TLRC), Germany; Section for Translational Research, Thoraxklinik, University of Heidelberg, Roentgenstraße 1, 69126 Heidelberg, Germany
| | - Christa Stolp
- Section for Translational Research, Thoraxklinik, University of Heidelberg, Roentgenstraße 1, 69126 Heidelberg, Germany
| | - Marc Schneider
- German Center for Lung Research (TLRC), Germany; Section for Translational Research, Thoraxklinik, University of Heidelberg, Roentgenstraße 1, 69126 Heidelberg, Germany
| | - Jan Gleichenhagen
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), Bürkle-de-la-Camp Platz 1, 44789 Bochum, Germany
| | - Thomas Brüning
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), Bürkle-de-la-Camp Platz 1, 44789 Bochum, Germany
| | - Hauke Winter
- Department of Thoracic Surgery, Thoraxklinik, University of Heidelberg, Roentgenstraße 1, 69126 Heidelberg, Germany; German Center for Lung Research (TLRC), Germany
| | - Martin Eichhorn
- Department of Thoracic Surgery, Thoraxklinik, University of Heidelberg, Roentgenstraße 1, 69126 Heidelberg, Germany; German Center for Lung Research (TLRC), Germany
| | - Daniel G Weber
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), Bürkle-de-la-Camp Platz 1, 44789 Bochum, Germany
| |
Collapse
|
2
|
Yamada A, Taiji R, Nishimoto Y, Itoh T, Marugami A, Yamauchi S, Minamiguchi K, Yanagawa M, Tomiyama N, Tanaka T. Pictorial Review of Pleural Disease: Multimodality Imaging and Differential Diagnosis. Radiographics 2024; 44:e230079. [PMID: 38547031 DOI: 10.1148/rg.230079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
The pleura is a thin, smooth, soft-tissue structure that lines the pleural cavity and separates the lungs from the chest wall, consisting of the visceral and parietal pleurae and physiologic pleural fluid. There is a broad spectrum of normal variations and abnormalities in the pleura, including pneumothorax, pleural effusion, and pleural thickening. Pneumothorax is associated with pulmonary diseases and is caused by iatrogenic or traumatic factors. Chest radiography and US help detect pneumothorax with various signs, and CT can also help assess the causes. Pleural effusion occurs in a wide spectrum of diseases, such as heart failure, cirrhosis, asbestos-related diseases, infections, chylothorax, and malignancies. Chest US allows detection of a small pleural effusion and evaluation of echogenicity or septa in pleural effusion. Pleural thickening may manifest as unilateral or bilateral and as focal, multifocal, or diffuse. Various diseases can demonstrate pleural thickening, such as asbestos-related diseases, neoplasms, and systemic diseases. CT, MRI, and fluorodeoxyglucose (FDG) PET/CT can help differentiate between benign and malignant lesions. Knowledge of these features can aid radiologists in suggesting diagnoses and recommending further examinations with other imaging modalities. The authors provide a comprehensive review of the clinical and multimodality imaging findings of pleural diseases and their differential diagnoses. ©RSNA, 2024 Test Your Knowledge questions for this article are available in the supplemental material.
Collapse
Affiliation(s)
- Aya Yamada
- From the Department of Diagnostic and Interventional Radiology, Nara Medical University, 840 Shijo-cho, Kashihara-city, Nara 634-8522, Japan (A.Y., R.T., T.I., A.M., S.Y., K.M., T.T.); Department of Radiology, Nara Prefecture General Medical Center, Nara, Japan (Y.N.); Division of Diagnostic Imaging, Department of Interventional Radiology, University of Texas MD Anderson Cancer Center, Houston, Tex (K.M.); and Department of Radiology, Osaka University Graduate School of Medicine, Osaka, Japan (M.Y., N.T.)
| | - Ryosuke Taiji
- From the Department of Diagnostic and Interventional Radiology, Nara Medical University, 840 Shijo-cho, Kashihara-city, Nara 634-8522, Japan (A.Y., R.T., T.I., A.M., S.Y., K.M., T.T.); Department of Radiology, Nara Prefecture General Medical Center, Nara, Japan (Y.N.); Division of Diagnostic Imaging, Department of Interventional Radiology, University of Texas MD Anderson Cancer Center, Houston, Tex (K.M.); and Department of Radiology, Osaka University Graduate School of Medicine, Osaka, Japan (M.Y., N.T.)
| | - Yuko Nishimoto
- From the Department of Diagnostic and Interventional Radiology, Nara Medical University, 840 Shijo-cho, Kashihara-city, Nara 634-8522, Japan (A.Y., R.T., T.I., A.M., S.Y., K.M., T.T.); Department of Radiology, Nara Prefecture General Medical Center, Nara, Japan (Y.N.); Division of Diagnostic Imaging, Department of Interventional Radiology, University of Texas MD Anderson Cancer Center, Houston, Tex (K.M.); and Department of Radiology, Osaka University Graduate School of Medicine, Osaka, Japan (M.Y., N.T.)
| | - Takahiro Itoh
- From the Department of Diagnostic and Interventional Radiology, Nara Medical University, 840 Shijo-cho, Kashihara-city, Nara 634-8522, Japan (A.Y., R.T., T.I., A.M., S.Y., K.M., T.T.); Department of Radiology, Nara Prefecture General Medical Center, Nara, Japan (Y.N.); Division of Diagnostic Imaging, Department of Interventional Radiology, University of Texas MD Anderson Cancer Center, Houston, Tex (K.M.); and Department of Radiology, Osaka University Graduate School of Medicine, Osaka, Japan (M.Y., N.T.)
| | - Aki Marugami
- From the Department of Diagnostic and Interventional Radiology, Nara Medical University, 840 Shijo-cho, Kashihara-city, Nara 634-8522, Japan (A.Y., R.T., T.I., A.M., S.Y., K.M., T.T.); Department of Radiology, Nara Prefecture General Medical Center, Nara, Japan (Y.N.); Division of Diagnostic Imaging, Department of Interventional Radiology, University of Texas MD Anderson Cancer Center, Houston, Tex (K.M.); and Department of Radiology, Osaka University Graduate School of Medicine, Osaka, Japan (M.Y., N.T.)
| | - Satoshi Yamauchi
- From the Department of Diagnostic and Interventional Radiology, Nara Medical University, 840 Shijo-cho, Kashihara-city, Nara 634-8522, Japan (A.Y., R.T., T.I., A.M., S.Y., K.M., T.T.); Department of Radiology, Nara Prefecture General Medical Center, Nara, Japan (Y.N.); Division of Diagnostic Imaging, Department of Interventional Radiology, University of Texas MD Anderson Cancer Center, Houston, Tex (K.M.); and Department of Radiology, Osaka University Graduate School of Medicine, Osaka, Japan (M.Y., N.T.)
| | - Kiyoyuki Minamiguchi
- From the Department of Diagnostic and Interventional Radiology, Nara Medical University, 840 Shijo-cho, Kashihara-city, Nara 634-8522, Japan (A.Y., R.T., T.I., A.M., S.Y., K.M., T.T.); Department of Radiology, Nara Prefecture General Medical Center, Nara, Japan (Y.N.); Division of Diagnostic Imaging, Department of Interventional Radiology, University of Texas MD Anderson Cancer Center, Houston, Tex (K.M.); and Department of Radiology, Osaka University Graduate School of Medicine, Osaka, Japan (M.Y., N.T.)
| | - Masahiro Yanagawa
- From the Department of Diagnostic and Interventional Radiology, Nara Medical University, 840 Shijo-cho, Kashihara-city, Nara 634-8522, Japan (A.Y., R.T., T.I., A.M., S.Y., K.M., T.T.); Department of Radiology, Nara Prefecture General Medical Center, Nara, Japan (Y.N.); Division of Diagnostic Imaging, Department of Interventional Radiology, University of Texas MD Anderson Cancer Center, Houston, Tex (K.M.); and Department of Radiology, Osaka University Graduate School of Medicine, Osaka, Japan (M.Y., N.T.)
| | - Noriyuki Tomiyama
- From the Department of Diagnostic and Interventional Radiology, Nara Medical University, 840 Shijo-cho, Kashihara-city, Nara 634-8522, Japan (A.Y., R.T., T.I., A.M., S.Y., K.M., T.T.); Department of Radiology, Nara Prefecture General Medical Center, Nara, Japan (Y.N.); Division of Diagnostic Imaging, Department of Interventional Radiology, University of Texas MD Anderson Cancer Center, Houston, Tex (K.M.); and Department of Radiology, Osaka University Graduate School of Medicine, Osaka, Japan (M.Y., N.T.)
| | - Toshihiro Tanaka
- From the Department of Diagnostic and Interventional Radiology, Nara Medical University, 840 Shijo-cho, Kashihara-city, Nara 634-8522, Japan (A.Y., R.T., T.I., A.M., S.Y., K.M., T.T.); Department of Radiology, Nara Prefecture General Medical Center, Nara, Japan (Y.N.); Division of Diagnostic Imaging, Department of Interventional Radiology, University of Texas MD Anderson Cancer Center, Houston, Tex (K.M.); and Department of Radiology, Osaka University Graduate School of Medicine, Osaka, Japan (M.Y., N.T.)
| |
Collapse
|
3
|
Sourvanos D, Sun H, Zhu TC, Dimofte A, Byrd B, Busch TM, Cengel KA, Neiva R, Fiorellini JP. Three-dimensional printing of the human lung pleural cavity model for PDT malignant mesothelioma. Photodiagnosis Photodyn Ther 2024; 46:104014. [PMID: 38346466 DOI: 10.1016/j.pdpdt.2024.104014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 03/18/2024]
Abstract
OBJECTIVE The primary aim was to investigate emerging 3D printing and optical acquisition technologies to refine and enhance photodynamic therapy (PDT) dosimetry in the management of malignant pleural mesothelioma (MPM). MATERIALS AND METHODS A rigorous digital reconstruction of the pleural lung cavity was conducted utilizing 3D printing and optical scanning methodologies. These reconstructions were systematically assessed against CT-derived data to ascertain their accuracy in representing critical anatomic features and post-resection topographical variations. RESULTS The resulting reconstructions excelled in their anatomical precision, proving instrumental translation for precise dosimetry calculations for PDT. Validation against CT data confirmed the utility of these models not only for enhancing therapeutic planning but also as critical tools for educational and calibration purposes. CONCLUSION The research outlined a successful protocol for the precise calculation of light distribution within the complex environment of the pleural cavity, marking a substantive advance in the application of PDT for MPM. This work holds significant promise for individualizing patient care, minimizing collateral radiation exposure, and improving the overall efficiency of MPM treatments.
Collapse
Affiliation(s)
- Dennis Sourvanos
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, PA, USA; Center for Innovation and Precision Dentistry (CiPD), School of Dental Medicine, School of Engineering, University of Pennsylvania, PA, USA.
| | - Hongjing Sun
- Department of Radiation Oncology, Perelman Center for Advanced Medicine, University of Pennsylvania, PA, USA
| | - Timothy C Zhu
- Department of Radiation Oncology, Perelman Center for Advanced Medicine, University of Pennsylvania, PA, USA
| | - Andreea Dimofte
- Department of Radiation Oncology, Perelman Center for Advanced Medicine, University of Pennsylvania, PA, USA
| | - Brook Byrd
- Department of Radiation Oncology, Perelman Center for Advanced Medicine, University of Pennsylvania, PA, USA
| | - Theresa M Busch
- Department of Radiation Oncology, Perelman Center for Advanced Medicine, University of Pennsylvania, PA, USA
| | - Keith A Cengel
- Department of Radiation Oncology, Perelman Center for Advanced Medicine, University of Pennsylvania, PA, USA
| | - Rodrigo Neiva
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, PA, USA
| | - Joseph P Fiorellini
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, PA, USA
| |
Collapse
|
4
|
Bertin B, Zugman M, Schvartsman G. The Current Treatment Landscape of Malignant Pleural Mesothelioma and Future Directions. Cancers (Basel) 2023; 15:5808. [PMID: 38136353 PMCID: PMC10741667 DOI: 10.3390/cancers15245808] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 11/29/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
The incidence of malignant pleural mesothelioma is expected to increase globally. New treatment options for this malignancy are eagerly awaited to improve the survival and quality of life of patients. The present article highlights the results of recent advances in this field, analyzing data from several relevant trials. The heterogeneous tumor microenvironment and biology, together with the low mutational burden, pose a challenge for treating such tumors. So far, no single biomarker has been soundly correlated with targeted therapy development; thus, combination strategies are often required to improve outcomes. Locally applied vaccines, the expansion of genetically engineered immune cell populations such as T cells, the blockage of immune checkpoints that inhibit anti-tumorigenic responses and chemoimmunotherapy are among the most promising options expected to change the mesothelioma treatment landscape.
Collapse
Affiliation(s)
- Beatriz Bertin
- Faculdade Israelita de Ciências da Saúde Albert Einstein, Hospital Israelita Albert Einstein, São Paulo 05651-901, Brazil;
| | - Miguel Zugman
- Department of Medical Oncology, Hospital Israelita Albert Einstein, São Paulo 05651-901, Brazil;
| | - Gustavo Schvartsman
- Department of Medical Oncology, Hospital Israelita Albert Einstein, São Paulo 05651-901, Brazil;
| |
Collapse
|
5
|
Kaplan MA, Şendur MAN, Cangır AK, Fırat P, Göker E, Kılıçkap S, Oyan B, Büge Öz A, Özdemir F, Özyiğit G. Established and new treatment roadmaps for pleural mesothelioma: opinions of the Turkish Collaborative Group. Curr Probl Cancer 2023; 47:101017. [PMID: 37845104 DOI: 10.1016/j.currproblcancer.2023.101017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 08/16/2023] [Accepted: 09/05/2023] [Indexed: 10/18/2023]
Abstract
Pleural mesothelioma (PM) is a cancer of the pleural surface, which is aggressive and may be rapidly fatal. PM is a rare cancer worldwide, but is a relatively common disease in Turkey. Asbestos exposure is the main risk factor and the most common underlying cause of the disease. There have been significant improvements in diagnoses and treatments of many malignancies; however, there are still therapeutic challenges in PM. In this review, we aimed to increase the awareness of health care professionals, oncologists, and pulmonologists by underlining the unmet needs of patients with PM and by emphasizing the need for a multidisciplinary treatment and management of PM. After reviewing the general information about PM, we further discuss the treatment options for patients with PM using immunotherapy and offer evidence for improvements in the clinical outcomes of these patients because of these newer treatment modalities.
Collapse
Affiliation(s)
- Muhammet Ali Kaplan
- Department of Medical Oncology, Dicle University Hospitals Faculty of Medicine, Diyarbakır, Turkey.
| | - Mehmet Ali Nahit Şendur
- Department of Medical Oncology, Ankara Yıldırım Beyazıt University Faculty of Medicine, Ankara, Turkey
| | - Ayten Kayı Cangır
- Department of Thoracic Surgery, Ankara University Faculty of Medicine, Ibni Sina Hospital, Ankara, Turkey
| | - Pınar Fırat
- Department of Pathology, Koc University School of Medicine, Istanbul, Turkey
| | - Erdem Göker
- Department of Medical Oncology, Ege University Faculty of Medicine, Izmir, Turkey
| | - Saadettin Kılıçkap
- Department of Medical Oncology, Liv Hospital Ankara, Ankara, Turkey; Department of Medical Oncology, Istinye University Faculty of Medicine, Istanbul, Turkey
| | - Başak Oyan
- Department of Medical Oncology, Acıbadem University Faculty of Medicine, Istanbul, Turkey
| | - Ayşim Büge Öz
- Department of Medical Pathology, Istanbul University Cerrahpaşa Faculty of Medicine, Istanbul, Turkey
| | - Feyyaz Özdemir
- Department of Medical Oncology, Karadeniz Technical University, Trabzon, Turkey
| | - Gökhan Özyiğit
- Department of Radiation Oncology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
6
|
Fiorilla I, Martinotti S, Todesco AM, Bonsignore G, Cavaletto M, Patrone M, Ranzato E, Audrito V. Chronic Inflammation, Oxidative Stress and Metabolic Plasticity: Three Players Driving the Pro-Tumorigenic Microenvironment in Malignant Mesothelioma. Cells 2023; 12:2048. [PMID: 37626858 PMCID: PMC10453755 DOI: 10.3390/cells12162048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/30/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Malignant pleural mesothelioma (MPM) is a lethal and rare cancer, even if its incidence has continuously increased all over the world. Asbestos exposure leads to the development of mesothelioma through multiple mechanisms, including chronic inflammation, oxidative stress with reactive oxygen species (ROS) generation, and persistent aberrant signaling. Together, these processes, over the years, force normal mesothelial cells' transformation. Chronic inflammation supported by "frustrated" macrophages exposed to asbestos fibers is also boosted by the release of pro-inflammatory cytokines, chemokines, growth factors, damage-associated molecular proteins (DAMPs), and the generation of ROS. In addition, the hypoxic microenvironment influences MPM and immune cells' features, leading to a significant rewiring of metabolism and phenotypic plasticity, thereby supporting tumor aggressiveness and modulating infiltrating immune cell responses. This review provides an overview of the complex tumor-host interactions within the MPM tumor microenvironment at different levels, i.e., soluble factors, metabolic crosstalk, and oxidative stress, and explains how these players supporting tumor transformation and progression may become potential and novel therapeutic targets in MPM.
Collapse
Affiliation(s)
- Irene Fiorilla
- Department of Science and Technological Innovation (DISIT), University of Eastern Piedmont, 15121 Alessandria, Italy; (I.F.); (S.M.); (A.M.T.); (G.B.); (M.P.); (E.R.)
- Department of Integrated Activities Research and Innovation (DAIRI), Public Hospital Azienda Ospedaliera “SS. Antonio e Biagio e Cesare Arrigo”, 15121 Alessandria, Italy
| | - Simona Martinotti
- Department of Science and Technological Innovation (DISIT), University of Eastern Piedmont, 15121 Alessandria, Italy; (I.F.); (S.M.); (A.M.T.); (G.B.); (M.P.); (E.R.)
- Department of Integrated Activities Research and Innovation (DAIRI), Public Hospital Azienda Ospedaliera “SS. Antonio e Biagio e Cesare Arrigo”, 15121 Alessandria, Italy
| | - Alberto Maria Todesco
- Department of Science and Technological Innovation (DISIT), University of Eastern Piedmont, 15121 Alessandria, Italy; (I.F.); (S.M.); (A.M.T.); (G.B.); (M.P.); (E.R.)
- Department of Integrated Activities Research and Innovation (DAIRI), Public Hospital Azienda Ospedaliera “SS. Antonio e Biagio e Cesare Arrigo”, 15121 Alessandria, Italy
| | - Gregorio Bonsignore
- Department of Science and Technological Innovation (DISIT), University of Eastern Piedmont, 15121 Alessandria, Italy; (I.F.); (S.M.); (A.M.T.); (G.B.); (M.P.); (E.R.)
- Department of Integrated Activities Research and Innovation (DAIRI), Public Hospital Azienda Ospedaliera “SS. Antonio e Biagio e Cesare Arrigo”, 15121 Alessandria, Italy
| | - Maria Cavaletto
- Department for Sustainable Development and Ecological Transition (DISSTE), University of Eastern Piedmont, 13100 Vercelli, Italy;
| | - Mauro Patrone
- Department of Science and Technological Innovation (DISIT), University of Eastern Piedmont, 15121 Alessandria, Italy; (I.F.); (S.M.); (A.M.T.); (G.B.); (M.P.); (E.R.)
- Department of Integrated Activities Research and Innovation (DAIRI), Public Hospital Azienda Ospedaliera “SS. Antonio e Biagio e Cesare Arrigo”, 15121 Alessandria, Italy
| | - Elia Ranzato
- Department of Science and Technological Innovation (DISIT), University of Eastern Piedmont, 15121 Alessandria, Italy; (I.F.); (S.M.); (A.M.T.); (G.B.); (M.P.); (E.R.)
- Department of Integrated Activities Research and Innovation (DAIRI), Public Hospital Azienda Ospedaliera “SS. Antonio e Biagio e Cesare Arrigo”, 15121 Alessandria, Italy
| | - Valentina Audrito
- Department of Science and Technological Innovation (DISIT), University of Eastern Piedmont, 15121 Alessandria, Italy; (I.F.); (S.M.); (A.M.T.); (G.B.); (M.P.); (E.R.)
- Department of Integrated Activities Research and Innovation (DAIRI), Public Hospital Azienda Ospedaliera “SS. Antonio e Biagio e Cesare Arrigo”, 15121 Alessandria, Italy
| |
Collapse
|
7
|
Wang D, Zhu J, Li N, Lu H, Gao Y, Zhuang L, Chen Z, Mao W. GC-MS-based untargeted metabolic profiling of malignant mesothelioma plasma. PeerJ 2023; 11:e15302. [PMID: 37220527 PMCID: PMC10200095 DOI: 10.7717/peerj.15302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 04/05/2023] [Indexed: 05/25/2023] Open
Abstract
Background Malignant mesothelioma (MM) is a cancer caused mainly by asbestos exposure, and is aggressive and incurable. This study aimed to identify differential metabolites and metabolic pathways involved in the pathogenesis and diagnosis of malignant mesothelioma. Methods By using gas chromatography-mass spectrometry (GC-MS), this study examined the plasma metabolic profile of human malignant mesothelioma. We performed univariate and multivariate analyses and pathway analyses to identify differential metabolites, enriched metabolism pathways, and potential metabolic targets. The area under the receiver-operating curve (AUC) criterion was used to identify possible plasma biomarkers. Results Using samples from MM (n = 19) and healthy control (n = 22) participants, 20 metabolites were annotated. Seven metabolic pathways were disrupted, involving alanine, aspartate, and glutamate metabolism; glyoxylate and dicarboxylate metabolism; arginine and proline metabolism; butanoate and histidine metabolism; beta-alanine metabolism; and pentose phosphate metabolic pathway. The AUC was used to identify potential plasma biomarkers. Using a threshold of AUC = 0.9, five metabolites were identified, including xanthurenic acid, (s)-3,4-hydroxybutyric acid, D-arabinose, gluconic acid, and beta-d-glucopyranuronic acid. Conclusions To the best of our knowledge, this is the first report of a plasma metabolomics analysis using GC-MS analyses of Asian MM patients. Our identification of these metabolic abnormalities is critical for identifying plasma biomarkers in patients with MM. However, additional research using a larger population is needed to validate our findings.
Collapse
Affiliation(s)
- Ding Wang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
- Key Laboratory Diagnosis and Treatment Technology on Thoracic Oncology, Hangzhou, China
| | - Jing Zhu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory Diagnosis and Treatment Technology on Thoracic Oncology, Hangzhou, China
| | - Na Li
- Shaoxing No. 2 Hospital Medical Community General Hospital, Shaoxing, China
| | - Hongyang Lu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory Diagnosis and Treatment Technology on Thoracic Oncology, Hangzhou, China
| | - Yun Gao
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory Diagnosis and Treatment Technology on Thoracic Oncology, Hangzhou, China
| | - Lei Zhuang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
- Key Laboratory Diagnosis and Treatment Technology on Thoracic Oncology, Hangzhou, China
| | - Zhongjian Chen
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory Diagnosis and Treatment Technology on Thoracic Oncology, Hangzhou, China
| | - Weimin Mao
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory Diagnosis and Treatment Technology on Thoracic Oncology, Hangzhou, China
| |
Collapse
|
8
|
Chen S, Huang K, Zou L, Chen L, Hu P. Diagnostic value of SHOX2, RASSF1A gene methylation combined with CEA level detection in malignant pleural effusion. BMC Pulm Med 2023; 23:160. [PMID: 37158875 PMCID: PMC10169317 DOI: 10.1186/s12890-023-02462-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 04/29/2023] [Indexed: 05/10/2023] Open
Abstract
AIM To investigate the diagnostic value of combined detection of SHOX2 and RASSF1A gene methylation with carcinoembryonic antigen (CEA) level in diagnosing malignant pleural effusion. METHODS Between March 2020 and December 2021, we enrolled 68 patients with pleural effusion admitted to the Department of Respiratory and critical care medicine of Foshan Second People's Hospital. The study group included 35 cases of malignant pleural effusion and 33 cases of benign pleural effusion. Methylation of the short homeobox 2 genes (SHOX2) and RAS-related region family 1A gene (RASSF1A) in pleural effusion samples were detected by real-time fluorescence quantitative PCR, and the level of carcinoembryonic antigen (CEA) in pleural effusion samples was detected by immune flow cytometry fluorescence quantitative chemiluminescence. RESULTS SHOX2 or RASSF1A gene methylation was detected in 5 cases in the benign pleural effusion group and 25 patients in the malignant pleural effusion group. The positive rate of SHOX2 or RASSF1A gene methylation in the malignant pleural effusion group was significantly higher than in the benign pleural effusion group (71.4% vs. 15.2%, P < 0.01). Positive CEA (CEA > 5 ng/m) was detected in 1 case in the benign pleural effusion group and 26 patients in the malignant pleural effusion group. The CEA-positive rate in the malignant pleural effusion group was significantly higher than in the benign pleural effusion group (74.3% vs. 3%, P < 0.01). When SHOX2 and RASSF1A gene methylation was combined with CEA detection, 6 cases were positive in the benign pleural effusion group, and 31 patients were positive in the malignant pleural effusion group. The positive rate of combined detection in the malignant pleural effusion group was significantly higher than in the benign pleural effusion group (88.6% vs. 18.2%, P < 0.01). The sensitivity, specificity, accuracy, positive predictive value, negative predictive value, and Youden's index of SHOX2, RASSF1A gene methylation combined with CEA in diagnosing malignant pleural effusion were 88.6%, 81.8%, 85.3%, 83.8%, 87.1% and 0.7 respectively. CONCLUSION The combined detection of SHOX2 and RASSF1A gene methylation with CEA level in pleural effusion has a high diagnostic value for malignant pleural effusion.
Collapse
Affiliation(s)
- Shaosen Chen
- Department of Respiratory and Critical Care Medicine, The Second People's Hospital of Foshan, Foshan, 528000, China
| | - Kunlun Huang
- Department of Respiratory and Critical Care Medicine, The Second People's Hospital of Foshan, Foshan, 528000, China
| | - Lin Zou
- Clinical Laboratory, The Second People's Hospital of Foshan, Foshan, 528000, China
| | - Lu Chen
- Department of Respiratory and Critical Care Medicine, The Second People's Hospital of Foshan, Foshan, 528000, China
| | - Peicun Hu
- Department of Respiratory and Critical Care Medicine, The Second People's Hospital of Foshan, Foshan, 528000, China.
| |
Collapse
|
9
|
Dumoulin DW, Bironzo P, Passiglia F, Scagliotti GV, Aerts JGJV. Rare thoracic cancers: a comprehensive overview of diagnosis and management of small cell lung cancer, malignant pleural mesothelioma and thymic epithelial tumours. Eur Respir Rev 2023; 32:220174. [PMID: 36754434 PMCID: PMC9910338 DOI: 10.1183/16000617.0174-2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/18/2022] [Indexed: 02/10/2023] Open
Abstract
Despite the progress in outcomes seen with immunotherapy in various malignancies, including nonsmall cell lung cancer, the benefits are less in small cell lung cancer, malignant pleural mesothelioma and thymic epithelial tumours. New effective treatment options are needed, guided via more in-depth insights into the pathophysiology of these rare malignancies. This review comprehensively presents an overview of the clinical presentation, diagnostic tools, staging systems, pathophysiology and treatment options for these rare thoracic cancers. In addition, opportunities for further improvement of therapies are discussed.
Collapse
Affiliation(s)
- Daphne W Dumoulin
- Department of Pulmonary Medicine, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Paolo Bironzo
- Department of Oncology, University of Torino, San Luigi Gonzaga Hospital, Orbassano, Italy
| | - Francesco Passiglia
- Department of Oncology, University of Torino, San Luigi Gonzaga Hospital, Orbassano, Italy
| | - Giorgio V Scagliotti
- Department of Oncology, University of Torino, San Luigi Gonzaga Hospital, Orbassano, Italy
| | - Joachim G J V Aerts
- Department of Pulmonary Medicine, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| |
Collapse
|
10
|
Roshini A, Goparaju C, Kundu S, Nandhu MS, Longo SL, Longo JA, Chou J, Middleton FA, Pass HI, Viapiano MS. The extracellular matrix protein fibulin-3/EFEMP1 promotes pleural mesothelioma growth by activation of PI3K/Akt signaling. Front Oncol 2022; 12:1014749. [PMID: 36303838 PMCID: PMC9593058 DOI: 10.3389/fonc.2022.1014749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/28/2022] [Indexed: 11/17/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is an aggressive tumor with poor prognosis and limited therapeutic options. The extracellular matrix protein fibulin-3/EFEMP1 accumulates in the pleural effusions of MPM patients and has been proposed as a prognostic biomarker of these tumors. However, it is entirely unknown whether fibulin-3 plays a functional role on MPM growth and progression. Here, we demonstrate that fibulin-3 is upregulated in MPM tissue, promotes the malignant behavior of MPM cells, and can be targeted to reduce tumor progression. Overexpression of fibulin-3 increased the viability, clonogenic capacity and invasion of mesothelial cells, whereas fibulin-3 knockdown decreased these phenotypic traits as well as chemoresistance in MPM cells. At the molecular level, fibulin-3 activated PI3K/Akt signaling and increased the expression of a PI3K-dependent gene signature associated with cell adhesion, motility, and invasion. These pro-tumoral effects of fibulin-3 on MPM cells were disrupted by PI3K inhibition as well as by a novel, function-blocking, anti-fibulin-3 chimeric antibody. Anti-fibulin-3 antibody therapy tested in two orthotopic models of MPM inhibited fibulin-3 signaling, resulting in decreased tumor cell proliferation, reduced tumor growth, and extended animal survival. Taken together, these results demonstrate for the first time that fibulin-3 is not only a prognostic factor of MPM but also a relevant molecular target in these tumors. Further development of anti-fibulin-3 approaches are proposed to increase early detection and therapeutic impact against MPM.
Collapse
Affiliation(s)
- Arivazhagan Roshini
- Department of Neuroscience and Physiology, State University of New York - Upstate Medical University, Syracuse, NY, United States
| | - Chandra Goparaju
- Department of Cardiothoracic Surgery, Langone Medical Center, New York University School of Medicine, New York, NY, United States
| | - Somanath Kundu
- Department of Neuroscience and Physiology, State University of New York - Upstate Medical University, Syracuse, NY, United States
| | - Mohan S. Nandhu
- Department of Neuroscience and Physiology, State University of New York - Upstate Medical University, Syracuse, NY, United States
| | - Sharon L. Longo
- Department of Neurosurgery, State University of New York - Upstate Medical University, Syracuse, NY, United States
| | - John A. Longo
- Department of Neuroscience and Physiology, State University of New York - Upstate Medical University, Syracuse, NY, United States
| | - Joan Chou
- Department of Neuroscience and Physiology, State University of New York - Upstate Medical University, Syracuse, NY, United States
- Department of Neurosurgery, State University of New York - Upstate Medical University, Syracuse, NY, United States
| | - Frank A. Middleton
- Department of Neuroscience and Physiology, State University of New York - Upstate Medical University, Syracuse, NY, United States
| | - Harvey I. Pass
- Department of Cardiothoracic Surgery, Langone Medical Center, New York University School of Medicine, New York, NY, United States
| | - Mariano S. Viapiano
- Department of Neuroscience and Physiology, State University of New York - Upstate Medical University, Syracuse, NY, United States
- Department of Neurosurgery, State University of New York - Upstate Medical University, Syracuse, NY, United States
- *Correspondence: Mariano S. Viapiano,
| |
Collapse
|
11
|
Martens M, Kreidl F, Ehrhart F, Jean D, Mei M, Mortensen HM, Nash A, Nymark P, Evelo CT, Cerciello F. A Community-Driven, Openly Accessible Molecular Pathway Integrating Knowledge on Malignant Pleural Mesothelioma. Front Oncol 2022; 12:849640. [PMID: 35558518 PMCID: PMC9088009 DOI: 10.3389/fonc.2022.849640] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/29/2022] [Indexed: 12/28/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is a highly aggressive malignancy mainly triggered by exposure to asbestos and characterized by complex biology. A significant body of knowledge has been generated over the decades by the research community which has improved our understanding of the disease toward prevention, diagnostic opportunities and new treatments. Omics technologies are opening for additional levels of information and hypotheses. Given the growing complexity and technological spread of biological knowledge in MPM, there is an increasing need for an integrating tool that may allow scientists to access the information and analyze data in a simple and interactive way. We envisioned that a platform to capture this widespread and fast-growing body of knowledge in a machine-readable and simple visual format together with tools for automated large-scale data analysis could be an important support for the work of the general scientist in MPM and for the community to share, critically discuss, distribute and eventually advance scientific results. Toward this goal, with the support of experts in the field and informed by existing literature, we have developed the first version of a molecular pathway model of MPM in the biological pathway database WikiPathways. This provides a visual and interactive overview of interactions and connections between the most central genes, proteins and molecular pathways known to be involved or altered in MPM. Currently, 455 unique genes and 247 interactions are included, derived after stringent manual curation of an initial 39 literature references. The pathway model provides a directly employable research tool with links to common databases and repositories for the exploration and the analysis of omics data. The resource is publicly available in the WikiPathways database (Wikipathways : WP5087) and continues to be under development and curation by the community, enabling the scientists in MPM to actively participate in the prioritization of shared biological knowledge.
Collapse
Affiliation(s)
- Marvin Martens
- Department of Bioinformatics - BiGCaT, NUTRIM, Maastricht University, Maastricht, Netherlands
| | - Franziska Kreidl
- Department of Bioinformatics - BiGCaT, NUTRIM, Maastricht University, Maastricht, Netherlands
| | - Friederike Ehrhart
- Department of Bioinformatics - BiGCaT, NUTRIM, Maastricht University, Maastricht, Netherlands.,Department of Bioinformatics - BiGCaT, MHeNs, Maastricht University, Maastricht, Netherlands
| | - Didier Jean
- Centre de Recherche des Cordeliers, Inserm, Sorbonne Université, Université de Paris, Functional Genomics of Solid Tumors, Paris, France
| | - Merlin Mei
- Oak Ridge Associated Universities, Research Triangle Park, Durham, NC, United States.,Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, Durham, NC, United States
| | - Holly M Mortensen
- Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, Durham, NC, United States
| | - Alistair Nash
- National Centre for Asbestos Related Diseases, University of Western Australia, Perth, WA, Australia
| | - Penny Nymark
- Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Chris T Evelo
- Department of Bioinformatics - BiGCaT, NUTRIM, Maastricht University, Maastricht, Netherlands.,Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, Maastricht, Netherlands
| | - Ferdinando Cerciello
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
12
|
Sohn EJ. Bioinformatic Analysis of Potential Biomarker for hsa-miR-196b-5p in Mesothelioma. Genet Test Mol Biomarkers 2021; 25:772-780. [PMID: 34874752 DOI: 10.1089/gtmb.2021.0147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Purpose: Malignant pleural mesothelioma is a rare neoplasia with a poor prognosis, and the majority of patients have advanced disease at the time of presentation. Exposure to asbestos is the most important risk factor for malignant pleural mesothelioma. Materials and Methods: To determine the cytotoxicity of geldanamycin in mesothelioma H28 cells, the MTT assay was used. To determine changes in microRNA (miRNA) expression in geldanamycin-treated H28 cells, miRNA microarray analysis was performed. To determine the function of miR-196b-5p, we performed Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses of miR-196b-5p targets predicted by miRwalk. Results: Our data showed that geldanamycin treatment reduced H28 cell viability in a dose-dependent manner. MicroRNA array analyses showed that expression of hsa-miR-196b-5p was downregulated in geldanamycin-treated H28 cells. Geldanamycin regulated miRNAs with roles in processes such as aging, angiogenesis, apoptosis, cell cycle, cell differentiation, cell proliferation, DNA repair, and secretion. Survival analysis showed that decreased expression of hsa-miR-196b-5p was significantly associated with a better outcome in mesothelioma patients. Expression of miR-196b-5p was also significantly associated with the developmental stages of mesothelioma. To narrow down the target genes of miR-196b-5p, we determined the overlap between the predicted target genes of miR-196b-5p and downregulated mRNAs in ovarian cancer based on the Gene Expression Omnibus dataset GSE12345. PDE1A, LAMA4, and PAPPA were identified as both miR-196b-5p targets and downregulated genes in GSE12345 and were thus considered targets of miR-196b-5p. Gene-miRNA expression correlation analysis showed that PDE1A, LAMA4, and PAPPA expression was negatively correlated with miR-196b-5p expression. Conclusions: We suggest that geldanamycin has potential for the treatment of mesothelioma via regulating miR-196b-5p. Furthermore, miR-196b-5p may be a potential biomarker for mesothelioma.
Collapse
Affiliation(s)
- Eun Jung Sohn
- School of Medicine, Pusan National University, Yangsan, Republic of Korea
| |
Collapse
|
13
|
Zhao PC, Xu SN, Huang ZS, Jiang GW, Deng PC, Zhang YM. Hyperbaric oxygen via mediating SIRT1-induced deacetylation of HMGB1 improved cReperfusion inj/reperfusion injury. Eur J Neurosci 2021; 54:7318-7331. [PMID: 34523745 DOI: 10.1111/ejn.15458] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 08/24/2021] [Accepted: 09/02/2021] [Indexed: 12/23/2022]
Abstract
Ischemic stroke leads to severe neurological dysfunction in adults. Hyperbaric oxygen (HBO) induces tolerance to cReperfusion inj/reperfusion (I/R) injury. Therefore, our aims were to investigate whether SIRT1 participates in regulatingin the neuro-protective effect of HBO in a cerebral I/R model and its mechanism. Mice N2a cells were used to construct an oxygen deprivation/reperfusion (OGD/R) model to simulate in vitro brain I/R injury and to evaluate the role of HBO in OGD/R stimulated cells. Cell proliferation was detected using MTT, and apoptosis was determined by flow cytometry. ELISA was used to measure the concentration of TNF-α, IL-1β and IL-6 related inflammatory factors. RT-qPCR and western blot assays were performed to test the expression of SIRT1. Immunoprecipitation was used to detect acetylation of HMGB1. Expression of SIRT1 was obviously reduced after OGD/R treatment in N2a cells, while SIRT1 was obviously enhanced in HBO treated cells. Moreover, knockdown of SIRT1 induced neuro-inflammation damage in cells and HBO effectively improved the inflammatory response in OGD/R treated cells by affecting SIRT1 levels. Furthermore, HBO induced the deacetylation of HMGB1 via regulating SIRT1. Interestingly, HBO via regulating the SIRT1-induced HMGB1 deacetylation and suppressing MMP-9 improved ischemic brain injury. HBO regulated ischemic brain injury via regulation of SIRT1-induced HMGB1 deacetylation, making it a potential treatment for ischemic brain injury treatment.
Collapse
Affiliation(s)
- Peng-Cheng Zhao
- Department of Neurosurgery, Anhui No. 2 Provincial People's Hospital, Hefei, Anhui Province, China.,Clinical College, Anhui Medical University, Hefei, Anhui Province, China
| | - Shao-Nian Xu
- Department of Neurosurgery, Anhui No. 2 Provincial People's Hospital, Hefei, Anhui Province, China
| | - Zhen-Shan Huang
- Department of Neurosurgery, Anhui No. 2 Provincial People's Hospital, Hefei, Anhui Province, China
| | - Guo-Wei Jiang
- Department of Neurosurgery, Anhui No. 2 Provincial People's Hospital, Hefei, Anhui Province, China
| | - Peng-Cheng Deng
- Department of Neurosurgery, Anhui No. 2 Provincial People's Hospital, Hefei, Anhui Province, China
| | - Yong-Ming Zhang
- Department of Neurosurgery, Anhui No. 2 Provincial People's Hospital, Hefei, Anhui Province, China
| |
Collapse
|
14
|
Opitz I, Scherpereel A, Berghmans T, Psallidas I, Glatzer M, Rigau D, Astoul P, Bölükbas S, Boyd J, Coolen J, De Bondt C, De Ruysscher D, Durieux V, Faivre-Finn C, Fennell DA, Galateau-Salle F, Greillier L, Hoda MA, Klepetko W, Lacourt A, McElnay P, Maskell NA, Mutti L, Pairon JC, Van Schil P, van Meerbeeck JP, Waller D, Weder W, Putora PM, Cardillo G. ERS/ESTS/EACTS/ESTRO guidelines for the management of malignant pleural mesothelioma. Eur J Cardiothorac Surg 2021; 58:1-24. [PMID: 32448904 DOI: 10.1093/ejcts/ezaa158] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The European Respiratory Society (ERS)/European Society of Thoracic Surgeons (ESTS)/European Association for Cardio-Thoracic Surgery (EACTS)/European Society for Radiotherapy and Oncology (ESTRO) task force brought together experts to update previous 2009 ERS/ESTS guidelines on management of malignant pleural mesothelioma (MPM), a rare cancer with globally poor outcome, after a systematic review of the 2009-2018 literature. The evidence was appraised using the Grading of Recommendations, Assessment, Development and Evaluation approach. The evidence syntheses were discussed and recommendations formulated by this multidisciplinary group of experts. Diagnosis: pleural biopsies remain the gold standard to confirm the diagnosis, usually obtained by thoracoscopy but occasionally via image-guided percutaneous needle biopsy in cases of pleural symphysis or poor performance status. Pathology: standard staining procedures are insufficient in ∼10% of cases, justifying the use of specific markers, including BAP-1 and CDKN2A (p16) for the separation of atypical mesothelial proliferation from MPM. Staging: in the absence of a uniform, robust and validated staging system, we advise using the most recent 2016 8th TNM (tumour, node, metastasis) classification, with an algorithm for pretherapeutic assessment. Monitoring: patient's performance status, histological subtype and tumour volume are the main prognostic factors of clinical importance in routine MPM management. Other potential parameters should be recorded at baseline and reported in clinical trials. Treatment: (chemo)therapy has limited efficacy in MPM patients and only selected patients are candidates for radical surgery. New promising targeted therapies, immunotherapies and strategies have been reviewed. Because of limited data on the best combination treatment, we emphasize that patients who are considered candidates for a multimodal approach, including radical surgery, should be treated as part of clinical trials in MPM-dedicated centres.
Collapse
Affiliation(s)
- Isabelle Opitz
- Department of Thoracic Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Arnaud Scherpereel
- Department of Pulmonary and Thoracic Oncology, French National Network of Clinical Expert Centers for Malignant Pleural Mesothelioma Management (Mesoclin), Lille, France.,Department of Pulmonary and Thoracic Oncology, University Lille, CHU Lille, INSERM U1189, OncoThAI, Lille, France
| | | | - Ioannis Psallidas
- Oxford Centre for Respiratory Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Markus Glatzer
- Department of Radiation Oncology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - David Rigau
- Iberoamerican Cochrane Center, Barcelona, Spain
| | - Philippe Astoul
- Department of Thoracic Oncology, Pleural Diseases and Interventional Pulmonology, Hôpital Nord, Aix-Marseille University, Marseille, France
| | - Servet Bölükbas
- Department of Thoracic Surgery, Evang, Kliniken Essen-Mitte, Essen, Germany
| | | | - Johan Coolen
- Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Charlotte De Bondt
- Department of Pulmonology and Thoracic Oncology, Antwerp University and Antwerp University Hospital, Antwerp, Belgium
| | - Dirk De Ruysscher
- Department of Radiation Oncology (Maastro Clinic), Maastricht University Medical Center+, GROW Research Institute, Maastricht, Netherlands
| | - Valerie Durieux
- Bibliothèque des Sciences de la Santé, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Corinne Faivre-Finn
- The Christie NHS Foundation Trust, The University of Manchester, Manchester, UK
| | - Dean A Fennell
- Leicester Cancer Research Centre, University of Leicester and University of Leicester Hospitals NHS Trust, Leicester, UK
| | - Francoise Galateau-Salle
- Department of Biopathology, National Reference Center for Pleural Malignant Mesothelioma and Rare Peritoneal Tumors MESOPATH, Centre Leon Berard, Lyon, France
| | - Laurent Greillier
- Department of Multidisciplinary Oncology and Therapeutic Innovations, Aix Marseille University, Assistance Publique Hôpitaux de Marseille, Inserm UMR1068, CNRS UMR7258, Marseille, France
| | - Mir Ali Hoda
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Walter Klepetko
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Aude Lacourt
- University Bordeaux, INSERM, Bordeaux Population Health Research Center, Team EPICENE, UMR 1219, Bordeaux, France
| | | | - Nick A Maskell
- Academic Respiratory Unit, Bristol Medical School, University of Bristol, Bristol, UK
| | - Luciano Mutti
- Teaching Hospital Vercelli/Gruppo Italiano, Vercelli, Italy
| | - Jean-Claude Pairon
- INSERM U955, GEIC2O, Université Paris-Est Créteil, Service de Pathologies professionnelles et de l'Environnement, Institut Santé -Travail Paris-Est, CHI Créteil, Créteil, France
| | - Paul Van Schil
- Department of Thoracic and Vascular Surgery, Antwerp University and Antwerp University Hospital, Antwerp, Belgium
| | - Jan P van Meerbeeck
- Department of Pulmonology and Thoracic Oncology, Antwerp University and Antwerp University Hospital, Antwerp, Belgium
| | - David Waller
- Barts Thorax Centre, St Bartholomew's Hospital, London, UK
| | - Walter Weder
- Department of Thoracic Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Paul Martin Putora
- Department of Radiation Oncology, Kantonsspital St. Gallen, St. Gallen, Switzerland.,Department of Radiation Oncology, University of Bern, Bern, Switzerland
| | - Giuseppe Cardillo
- Unit of Thoracic Surgery, Azienda Ospedaliera San Camillo Forlanini, Rome, Italy
| |
Collapse
|
15
|
Davis AP, Kao SC, Clarke SJ, Boyer M, Pavlakis N. Emerging biological therapies for the treatment of malignant pleural mesothelioma. Expert Opin Emerg Drugs 2021; 26:179-192. [PMID: 33945357 DOI: 10.1080/14728214.2021.1924670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Introduction: Malignant pleural mesothelioma (MPM) has limited treatment options with minimal new therapy approvals for unresectable disease in the past 15 years. However, considerable work has occurred to develop immunotherapies and biomarker driven therapy to improve patient outcomes over this period.Areas covered: This review examines current standard of care systemic therapy in the first- and second line setting. The last 12 months has seen 2 significant trials (Checkmate 743 and CONFIRM) which provide evidence supporting the role of immunotherapy in the management of MPM. Further trials are underway to assess the role of combination chemoimmunotherapy and personalized therapy. Additionally, a large number of clinical trials are ongoing to assess the efficacy of oncoviral, dendritic cell, anti-mesothelin and chimeric antigen receptor T cell therapy in the treatment of MPM.Expert opinion: Recent Phase III trial results have established a role for immunotherapy in the management of MPM. The optimal sequencing and combination of chemotherapy and immunotherapy remains to be determined. Novel therapies for MPM are promising however efficacy remains to be determined and issues remain regarding access to and delivery of these therapies.
Collapse
Affiliation(s)
- Alexander P Davis
- Department of Medical Oncology, Chris O'Brien Lifehouse, Camperdown, Australia
| | - Steven C Kao
- Department of Medical Oncology, Chris O'Brien Lifehouse, Camperdown, Australia.,Asbestos Disease Research Institute, Rhodes, Australia.,Sydney Medical School, The University of Sydney, Sydney, Australia
| | - Stephen J Clarke
- Sydney Medical School, The University of Sydney, Sydney, Australia.,Department of Medical Oncology, Royal North Shore Hospital, St Leonards, Australia.,Genesis Care, St Leonards, Australia
| | - Michael Boyer
- Department of Medical Oncology, Chris O'Brien Lifehouse, Camperdown, Australia.,Sydney Medical School, The University of Sydney, Sydney, Australia
| | - Nick Pavlakis
- Sydney Medical School, The University of Sydney, Sydney, Australia.,Department of Medical Oncology, Royal North Shore Hospital, St Leonards, Australia.,Genesis Care, St Leonards, Australia
| |
Collapse
|
16
|
Tanrıverdi Z, Meteroglu F, Yüce H, Şenyiğit A, Işcan M, Unüvar S. The usefulness of biomarkers in diagnosis of asbestos-induced malignant pleural mesothelioma. Hum Exp Toxicol 2021; 40:1817-1824. [PMID: 33998299 DOI: 10.1177/09603271211017324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
INTRODUCTION Malignant pleural mesothelioma (MPM) is a malignant tumor that is associated mostly with asbestos exposure. The present study was to evaluates the diagnostic value of neopterin, periostin, YKL-40, Tenascin-C (TNC), and Indolamine 2,3-dioxygenase (IDO) as noninvasive markers of malign pleural mesothelioma. METHODS Included in the study were 30 patients diagnosed with malign pleural mesothelioma, and 25 people as a control group. Biomarker levels were determined using an enzyme immunoassay . A Mann-Whitney U test and Spearman correlation methods were used for the statistical analysis. RESULTS All evaluated biomarkers were found to be significantly higher in the MPM group than in the control group (p < 0.05). There was no effect of such variables as gender, age or MPMsubtype on the parameters (p > 0.05) in the patient group. All biomarkers were positively correlated with each other (p < 0.001). CONCLUSIONS The current non-invasive biomarkers that can be used in the diagnosis of MPM yielded significant results and can make important contributions to the early diagnosis of MPM.
Collapse
Affiliation(s)
- Zübeyde Tanrıverdi
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, 37520İnönü University, Malatya, Turkey
| | - Fatih Meteroglu
- Department of Thoracic Surgery, Faculty of Medicine, 37507Dicle University, Diyarbakır, Turkey
| | - Hande Yüce
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, 37520İnönü University, Malatya, Turkey
| | - Abdurrahman Şenyiğit
- Department of Chest Diseases, Faculty of Medicine, 37507Dicle University, Diyarbakır, Turkey
| | - Mümtaz Işcan
- Faculty of Pharmacy, 64188Cyprus International University, Nicosia, Cyprus
| | - Songül Unüvar
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, 37520İnönü University, Malatya, Turkey
| |
Collapse
|
17
|
Identification of Redox-Sensitive Transcription Factors as Markers of Malignant Pleural Mesothelioma. Cancers (Basel) 2021; 13:cancers13051138. [PMID: 33799965 PMCID: PMC7961847 DOI: 10.3390/cancers13051138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 03/03/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Malignant pleural mesothelioma is a lung tumor associated with asbestos exposure, with a poor prognosis, and a difficult pharmacological approach. Asbestos exposure is very toxic for the lungs, which counteract this toxic effect by activating some antioxidant defense proteins. When these proteins are more active that in normal conditions, as in several cancers, these tumors become able to survive and resist to stress or chemotherapy. In our laboratory, we collected cellular samples of mesothelioma and non-transformed mesothelium from Hospital’s Biobank and we evaluated these proteins. Our results demonstrated these proteins are upregulated in mesothelioma cells and not in non-transformed mesothelium. This event could be associated to toxic effects evoked by asbestos exposure, highlighting the need in the future to monitor asbestos-exposed people by measuring biomarkers identified, in the attempt to identify them as possible predictive markers and potential pharmacological targets addressed to improve mesothelioma prognosis. Abstract Although asbestos has been banned in most countries around the world, malignant pleural mesothelioma (MPM) is a current problem. MPM is an aggressive tumor with a poor prognosis, so it is crucial to identify new markers in the preventive field. Asbestos exposure induces oxidative stress and its carcinogenesis has been linked to a strong oxidative damage, event counteracted by antioxidant systems at the pulmonary level. The present study has been focused on some redox-sensitive transcription factors that regulate cellular antioxidant defense and are overexpressed in many tumors, such as Nrf2 (Nuclear factor erythroid 2-related factor 2), Ref-1 (Redox effector factor 1), and FOXM1 (Forkhead box protein M1). The research was performed in human mesothelial and MPM cells. Our results have clearly demonstrated an overexpression of Nrf2, Ref-1, and FOXM1 in mesothelioma towards mesothelium, and a consequent activation of downstream genes controlled by these factors, which in turn regulates antioxidant defense. This event is mediated by oxidative free radicals produced when mesothelial cells are exposed to asbestos fibers. We observed an increased expression of Nrf2, Ref-1, and FOXM1 towards untreated cells, confirming asbestos as the mediator of oxidative stress evoked at the mesothelium level. These factors can therefore be considered predictive biomarkers of MPM and potential pharmacological targets in the treatment of this aggressive cancer.
Collapse
|
18
|
Opitz I, Furrer K. Preoperative Identification of Benefit from Surgery for Malignant Pleural Mesothelioma. Thorac Surg Clin 2021; 30:435-449. [PMID: 33012431 DOI: 10.1016/j.thorsurg.2020.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In the absence of standardized treatment algorithms for patients with malignant pleural mesothelioma, one of the main difficulties remains patient allocation to therapies with potential benefit. This article discusses clinical, radiologic, pathologic, and molecular prognostic factors as well as genetic background leading to preoperative identification of benefit from surgery, which have been investigated over the past years to simplify and at the same time specify patient selection for surgical treatment.
Collapse
Affiliation(s)
- Isabelle Opitz
- Department of Thoracic Surgery, University Hospital Zurich, Raemistrasse 100, Zurich 8091, Switzerland.
| | - Katarzyna Furrer
- Department of Thoracic Surgery, University Hospital Zurich, Raemistrasse 100, Zurich 8091, Switzerland
| |
Collapse
|
19
|
Lacerenza S, Ciregia F, Giusti L, Bonotti A, Greco V, Giannaccini G, D'Antongiovanni V, Fallahi P, Pieroni L, Cristaudo A, Lucacchini A, Mazzoni MR, Foddis R. Putative Biomarkers for Malignant Pleural Mesothelioma Suggested by Proteomic Analysis of Cell Secretome. Cancer Genomics Proteomics 2020; 17:225-236. [PMID: 32345664 DOI: 10.21873/cgp.20183] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 01/24/2020] [Accepted: 02/28/2020] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Malignant pleural mesothelioma (MPM) a rare neoplasm linked to asbestos exposure is characterized by a poor prognosis. Soluble mesothelin is currently considered the most specific diagnostic biomarker. The aim of the study was to identify novel biomarkers by proteomic analysis of two MPM cell lines secretome. MATERIALS AND METHODS The protein patterns of MPM cells secretome were examined and compared to a non-malignant mesothelial cell line using two-dimensional gel electrophoresis coupled to mass spectrometry. Serum levels of candidate biomarkers were determined in MPM patients and control subjects. RESULTS Two up-regulated proteins involved in cancer biology, prosaposin and quiescin Q6 sulfhydryl oxidase 1, were considered candidate biomarkers. Serum levels of both proteins were significantly higher in MPM patients than control subjects. Combining the data of each receiver-operating characteristic analysis predicted a good diagnostic accuracy. CONCLUSION A panel of the putative biomarkers represents a promising tool for MPM diagnosis.
Collapse
Affiliation(s)
| | - Federica Ciregia
- Department of Pharmacy, University of Pisa, Pisa, Italy.,Department of Rheumatology, GIGA Research, Centre Hospitalier Universitaire (CHU) de Liège, Liège, Belgium
| | - Laura Giusti
- School of Pharmacy, University of Camerino, Camerino, Italy.,Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Alessandra Bonotti
- Department of Translational Research and New Medical and Surgical Technologies, Occupational Medicine Unit, University-Hospital of Pisa, Pisa, Italy
| | - Viviana Greco
- Institute of Biochemistry and Clinical Chemistry, Università Cattolica del Sacro Cuore, Rome, Italy.,Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | | | | | - Poupak Fallahi
- Department of Translational Research and New Medical and Surgical Technologies, Occupational Medicine Unit, University-Hospital of Pisa, Pisa, Italy
| | - Luisa Pieroni
- Proteomics and Metabonomics Unit, IRCCS-Fondazione Santa Lucia, Rome, Italy
| | - Alfonso Cristaudo
- Department of Translational Research and New Medical and Surgical Technologies, Occupational Medicine Unit, University-Hospital of Pisa, Pisa, Italy
| | - Antonio Lucacchini
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Rudy Foddis
- Department of Translational Research and New Medical and Surgical Technologies, Occupational Medicine Unit, University-Hospital of Pisa, Pisa, Italy
| |
Collapse
|
20
|
Duong BTV, Wu L, Green BJ, Bavaghar-Zaeimi F, Wang Z, Labib M, Zhou Y, Cantu FJP, Jeganathan T, Popescu S, Pantea J, de Perrot M, Kelley SO. A liquid biopsy for detecting circulating mesothelial precursor cells: A new biomarker for diagnosis and prognosis in mesothelioma. EBioMedicine 2020; 61:103031. [PMID: 33045471 PMCID: PMC7553233 DOI: 10.1016/j.ebiom.2020.103031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Malignant pleural mesothelioma (MPM) is an aggressive cancer related to asbestos exposure. Early diagnosis is challenging due to generic symptoms and a lack of biomarkers. We previously demonstrated that mesothelial precursor cells (MPC) characterized by mesothelin (MSLN)+CD90+CD34+ could be implicated in the development of mesothelioma after asbestos exposure. Here, we aimed to determine the clinical significance of detecting MPC in blood for early-stage diagnosis and prognosis of mesothelioma. METHODS Due to the rarity of MPC in blood, it is challenging to identify this cell population using conventional techniques. Hence, we have developed a microfluidic liquid biopsy platform called MesoFind that utilizes an immunomagnetic, mesothelin capture strategy coupled with immunofluorescence to identify rare populations of cells at high sensitivity and precision. To validate our technique, we compared this approach to flow cytometry for the detection of MPC in murine blood and lavage samples. Upon successful validation of the murine samples, we then proceeded to examine circulating MPC in 23 patients with MPM, 23 asbestos-exposed individuals (ASB), and 10 healthy donors (HD) to evaluate their prognostic and diagnostic value. FINDING MPC were successfully detected in the blood of murine samples using MesoFind but were undetectable with flow cytometry. Circulating MPC were significantly higher in patients with epithelioid MPM compared to HD and ASB. The MPC subpopulation, MSLN+ and CD90+, were upregulated in ASB compared to HD suggesting an early role in pleural damage from asbestos. The MPC subpopulation, MSLN+ and CD34+, in contrast, were detected in advanced MPM and associated with markers of poor prognosis, suggesting a predominant role during cancer progression. INTERPRETATION The identification of circulating MPC presents an attractive solution for screening and early diagnosis of epithelioid mesothelioma. The presence of different subtypes of MPC have a prognostic value that could be of assistance with clinical decisions in patients with MPM. FUNDING Princess Margaret Hospital Foundation Mesothelioma Research Fund, Toronto General & Western Hospital Foundation.
Collapse
Affiliation(s)
- Bill T V Duong
- Department of Chemistry, University of Toronto, 80 St George St., Toronto, Ontario M5S 3H6, Canada
| | - Licun Wu
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, 101 College St., Toronto, Ontario M5G 1L7, Canada
| | - Brenda J Green
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, 164 College St., Toronto, Ontario M5S 3G9, Canada
| | - Fatemeh Bavaghar-Zaeimi
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, 101 College St., Toronto, Ontario M5G 1L7, Canada; Division of Thoracic Surgery, Toronto General Hospital and Princess Margaret Cancer Centre, University Health Network, 200 Elizabeth St., Toronto, Ontario M5G 2C4, Canada
| | - Zongjie Wang
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, 164 College St., Toronto, Ontario M5S 3G9, Canada; The Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Rd., Toronto, Ontario M5S 3G4, Canada
| | - Mahmoud Labib
- Department of Pharmaceutical Sciences, University of Toronto, 144 College St., Toronto, Ontario M5S 3M2, Canada
| | - Yuxiao Zhou
- Department of Pharmaceutical Sciences, University of Toronto, 144 College St., Toronto, Ontario M5S 3M2, Canada
| | - Fernando J P Cantu
- Department of Pharmaceutical Sciences, University of Toronto, 144 College St., Toronto, Ontario M5S 3M2, Canada
| | - Thurgaa Jeganathan
- Department of Pharmaceutical Sciences, University of Toronto, 144 College St., Toronto, Ontario M5S 3M2, Canada
| | - Sandra Popescu
- Department of Pharmaceutical Sciences, University of Toronto, 144 College St., Toronto, Ontario M5S 3M2, Canada
| | - Jennifer Pantea
- Department of Pharmaceutical Sciences, University of Toronto, 144 College St., Toronto, Ontario M5S 3M2, Canada
| | - Marc de Perrot
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, 101 College St., Toronto, Ontario M5G 1L7, Canada; Division of Thoracic Surgery, Toronto General Hospital and Princess Margaret Cancer Centre, University Health Network, 200 Elizabeth St., Toronto, Ontario M5G 2C4, Canada; Department of Immunology, University of Toronto, 27 King's College Circle, Toronto, Ontario M5S 1A1, Canada.
| | - Shana O Kelley
- Department of Chemistry, University of Toronto, 80 St George St., Toronto, Ontario M5S 3H6, Canada; Institute for Biomaterials and Biomedical Engineering, University of Toronto, 164 College St., Toronto, Ontario M5S 3G9, Canada; Department of Pharmaceutical Sciences, University of Toronto, 144 College St., Toronto, Ontario M5S 3M2, Canada; Department of Biochemistry, University of Toronto, 27 King's College Circle, Toronto, Ontario M5S 1A1, Canada.
| |
Collapse
|
21
|
Abstract
Malignant pleural mesothelioma (MPM) is a rare, aggressive malignancy of the pleural lining associated with asbestos exposure in greater than 80% of cases. It is characterized by molecular heterogeneity both between patients and within individual tumors. Next-generation sequencing technology and novel computational techniques have resulted in a greater understanding of the epigenetic, genetic, and transcriptomic hallmarks of MPM. This article reviews these features and discusses the implications of advances in MPM molecular biology in clinical practice.
Collapse
|
22
|
Rozitis E, Johnson B, Cheng YY, Lee K. The Use of Immunohistochemistry, Fluorescence in situ Hybridization, and Emerging Epigenetic Markers in the Diagnosis of Malignant Pleural Mesothelioma (MPM): A Review. Front Oncol 2020; 10:1742. [PMID: 33014860 PMCID: PMC7509088 DOI: 10.3389/fonc.2020.01742] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 08/04/2020] [Indexed: 12/13/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is an aggressive asbestos related disease that is generally considered to be difficult to diagnose, stage and treat. The diagnostic process is continuing to evolve and requires highly skilled pathology input, and generally an extensive list of biomarkers for definitive diagnosis. Diagnosis of MPM requires histological evidence of invasion by malignant mesothelial cells often confirmed by various immunohistochemical biomarkers in order to separate it from pleural metastatic carcinoma. Often when invasion of neoplastic mesothelial cells into adjacent tissue is not apparent, further immunohistochemical testing - namely BAP1 and MTAP, as well as FISH testing for loss of p16 (CDKN2A) are used to separate reactive mesothelial proliferation due to benign processes, from MPM. Various combinations of these markers, such as BAP1 and/or MTAP immunohistochemistry alongside FISH testing for loss of p16, have shown excellent sensitivity and specificity in the diagnosis of MPM. Additionally, over the recent years, research into epigenetic marker use in the diagnosis of MPM has gained momentum. Although still in their research stages, various markers in DNA methylation, long non-coding RNA, micro RNA, circular RNA, and histone modifications have all been found to support diagnosis of MPM with generally good sensitivity and specificity. Many of these studies are however, limited by small sample sizes or other study limitations and further research into the area would be beneficial. Epigenetic markers show promise for use in the future to facilitate the diagnosis of MPM.
Collapse
Affiliation(s)
- Eric Rozitis
- Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Ben Johnson
- Asbestos Diseases Research Institute, Concord, NSW, Australia
| | - Yuen Yee Cheng
- Asbestos Diseases Research Institute, Concord, NSW, Australia
| | - Kenneth Lee
- Sydney Medical School, The University of Sydney, Sydney, NSW, Australia.,Asbestos Diseases Research Institute, Concord, NSW, Australia.,Anatomical Pathology Department, NSW Health Pathology, Concord Repatriation General Hospital, Concord, NSW, Australia
| |
Collapse
|
23
|
Silvestri R, Pucci P, De Santi C, Dell’Anno I, Miglietta S, Corrado A, Nicolí V, Marolda D, Cipollini M, Pellegrino E, Evangelista M, Bonotti A, Foddis R, Cristaudo A, Landi S, Gemignani F. Variation rs2235503 C > A Within the Promoter of MSLN Affects Transcriptional Rate of Mesothelin and Plasmatic Levels of the Soluble Mesothelin-Related Peptide. Front Genet 2020; 11:975. [PMID: 33014022 PMCID: PMC7461867 DOI: 10.3389/fgene.2020.00975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 07/31/2020] [Indexed: 01/24/2023] Open
Abstract
Soluble mesothelin-related peptide (SMRP) is a promising biomarker for malignant pleural mesothelioma (MPM), but several confounding factors can reduce SMRP-based test's accuracy. The identification of these confounders could improve the diagnostic performance of SMRP. In this study, we evaluated the sequence of 1,000 base pairs encompassing the minimal promoter region of the MSLN gene to identify expression quantitative trait loci (eQTL) that can affect SMRP. We assessed the association between four MSLN promoter variants and SMRP levels in a cohort of 72 MPM and 677 non-MPM subjects, and we carried out in vitro assays to investigate their functional role. Our results show that rs2235503 is an eQTL for MSLN associated with increased levels of SMRP in non-MPM subjects. Furthermore, we show that this polymorphic site affects the accuracy of SMRP, highlighting the importance of evaluating the individual's genetic background and giving novel insights to refine SMRP specificity as a diagnostic biomarker.
Collapse
Affiliation(s)
| | - Perla Pucci
- Department of Biology, University of Pisa, Pisa, Italy
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Chiara De Santi
- Department of Biology, University of Pisa, Pisa, Italy
- Department of Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | | | - Simona Miglietta
- Department of Biology, University of Pisa, Pisa, Italy
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), San Raffaele Scientific Institute (IRCCS), Milan, Italy
| | - Alda Corrado
- Department of Biology, University of Pisa, Pisa, Italy
- Department of Bioscience, University of Milan, Milan, Italy
| | - Vanessa Nicolí
- Department of Biology, University of Pisa, Pisa, Italy
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| | | | | | | | | | - Alessandra Bonotti
- Preventive and Occupational Medicine, University Hospital of Pisa, Pisa, Italy
| | - Rudy Foddis
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| | - Alfonso Cristaudo
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| | - Stefano Landi
- Department of Biology, University of Pisa, Pisa, Italy
| | | |
Collapse
|
24
|
Scherpereel A, Opitz I, Berghmans T, Psallidas I, Glatzer M, Rigau D, Astoul P, Bölükbas S, Boyd J, Coolen J, De Bondt C, De Ruysscher D, Durieux V, Faivre-Finn C, Fennell D, Galateau-Salle F, Greillier L, Hoda MA, Klepetko W, Lacourt A, McElnay P, Maskell NA, Mutti L, Pairon JC, Van Schil P, van Meerbeeck JP, Waller D, Weder W, Cardillo G, Putora PM. ERS/ESTS/EACTS/ESTRO guidelines for the management of malignant pleural mesothelioma. Eur Respir J 2020; 55:13993003.00953-2019. [PMID: 32451346 DOI: 10.1183/13993003.00953-2019] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 10/17/2019] [Indexed: 12/23/2022]
Abstract
The European Respiratory Society (ERS)/European Society of Thoracic Surgeons (ESTS)/European Association for Cardio-Thoracic Surgery (EACTS)/European Society for Radiotherapy and Oncology (ESTRO) task force brought together experts to update previous 2009 ERS/ESTS guidelines on management of malignant pleural mesothelioma (MPM), a rare cancer with globally poor outcome, after a systematic review of the 2009-2018 literature. The evidence was appraised using the Grading of Recommendations, Assessment, Development and Evaluation approach. The evidence syntheses were discussed and recommendations formulated by this multidisciplinary group of experts. Diagnosis: pleural biopsies remain the gold standard to confirm the diagnosis, usually obtained by thoracoscopy but occasionally via image-guided percutaneous needle biopsy in cases of pleural symphysis or poor performance status. Pathology: standard staining procedures are insufficient in ∼10% of cases, justifying the use of specific markers, including BAP-1 and CDKN2A (p16) for the separation of atypical mesothelial proliferation from MPM. Staging: in the absence of a uniform, robust and validated staging system, we advise using the most recent 2016 8th TNM (tumour, node, metastasis) classification, with an algorithm for pre-therapeutic assessment. Monitoring: patient's performance status, histological subtype and tumour volume are the main prognostic factors of clinical importance in routine MPM management. Other potential parameters should be recorded at baseline and reported in clinical trials. Treatment: (chemo)therapy has limited efficacy in MPM patients and only selected patients are candidates for radical surgery. New promising targeted therapies, immunotherapies and strategies have been reviewed. Because of limited data on the best combination treatment, we emphasise that patients who are considered candidates for a multimodal approach, including radical surgery, should be treated as part of clinical trials in MPM-dedicated centres.
Collapse
Affiliation(s)
- Arnaud Scherpereel
- Pulmonary and Thoracic Oncology, Univ. Lille, CHU Lille, INSERM U1189, OncoThAI, Lille, France .,French National Network of Clinical Expert Centers for Malignant Pleural Mesothelioma Management (Mesoclin), Lille, France
| | - Isabelle Opitz
- Dept of Thoracic Surgery, University Hospital Zurich, Zurich, Switzerland
| | | | - Ioannis Psallidas
- Oxford Centre for Respiratory Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Markus Glatzer
- Dept of Radiation Oncology, Kantonsspital St Gallen, St Gallen, Switzerland
| | - David Rigau
- Iberoamerican Cochrane Center, Barcelona, Spain
| | - Philippe Astoul
- Dept of Thoracic Oncology, Pleural Diseases and Interventional Pulmonology, Hôpital Nord, Aix-Marseille University, Marseille, France
| | - Servet Bölükbas
- Dept of Thoracic Surgery, Evang, Kliniken Essen-Mitte, Essen, Germany
| | | | - Johan Coolen
- Dept of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Charlotte De Bondt
- Dept of Pulmonology and Thoracic Oncology, Antwerp University and Antwerp University Hospital, Antwerp, Belgium
| | - Dirk De Ruysscher
- Dept of Radiation Oncology (Maastro Clinic), Maastricht University Medical Center+, GROW Research Institute, Maastricht, The Netherlands
| | - Valerie Durieux
- Bibliothèque des Sciences de la Santé, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Corinne Faivre-Finn
- The Christie NHS Foundation Trust, The University of Manchester, Manchester, UK
| | - Dean Fennell
- Leicester Cancer Research Centre, University of Leicester and University of Leicester Hospitals NHS Trust, Leicester, UK
| | - Francoise Galateau-Salle
- National Reference Center for Pleural Malignant Mesothelioma and Rare Peritoneal Tumors MESOPATH, Dept of Biopathology, Centre Leon Berard, Lyon, France
| | - Laurent Greillier
- Aix Marseille University, Assistance Publique Hôpitaux de Marseille, Inserm UMR1068, CNRS UMR7258, Dept of Multidisciplinary Oncology and Therapeutic Innovations, Marseille, France
| | - Mir Ali Hoda
- Dept of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Walter Klepetko
- Dept of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Aude Lacourt
- Univ. Bordeaux, INSERM, Bordeaux Population Health Research Center, team EPICENE, UMR 1219, Bordeaux, France
| | | | - Nick A Maskell
- Academic Respiratory Unit, Bristol Medical School, University of Bristol, Bristol, UK
| | - Luciano Mutti
- Teaching Hosp. Vercelli/Gruppo Italiano Mesotelioma, Italy
| | - Jean-Claude Pairon
- INSERM U955, Equipe 4, Université Paris-Est Créteil, and Service de Pathologies professionnelles et de l'Environnement, Institut Santé-Travail Paris-Est, CHI Créteil, Créteil, France
| | - Paul Van Schil
- Dept Thoracic and Vascular Surgery, Antwerp University and Antwerp University Hospital, Antwerp, Belgium
| | - Jan P van Meerbeeck
- Dept of Pulmonology and Thoracic Oncology, Antwerp University and Antwerp University Hospital, Antwerp, Belgium
| | - David Waller
- Barts Thorax Centre, St Bartholomew's Hospital, London, UK
| | - Walter Weder
- Dept of Thoracic Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Giuseppe Cardillo
- Unit of Thoracic Surgery, Azienda Ospedaliera San Camillo Forlanini, Rome, Italy
| | - Paul Martin Putora
- Dept of Radiation Oncology, Kantonsspital St Gallen, St Gallen, Switzerland.,Dept of Radiation Oncology, University of Bern, Bern, Switzerland
| |
Collapse
|
25
|
Pippa R, Boffo S, Odero MD, Giordano A. Data mining analysis of the PP2A cell cycle axis in mesothelioma patients. J Cell Physiol 2019; 235:5284-5292. [PMID: 31858592 DOI: 10.1002/jcp.29414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 12/04/2019] [Indexed: 12/15/2022]
Abstract
Mesothelioma is an aggressive tumor that affects thousands of people every year. The therapeutic options for patients are limited; hence, a better understanding of mesothelioma biology is crucial to improve patient survival. To find new molecular targets and therapeutic strategies related to the protein phosphatase 2A (PP2A) network, we analyzed the gene expression of known PP2A inhibitors in mesothelioma patient samples. Our analysis disclosed a general overexpression of all PP2A-negative regulators in mesothelioma patients. Moreover, the expression of ANP32E and CIP2A genes, increased in 16% and 11% of cases, positively correlates with the ones of all the other PP2A regulators and the ones of the main cyclins and CDKs, suggesting the existence of a feed-forward loop that might contribute to the mesothelioma progression via PP2A inactivation. Overall, our study indicates the existence of a strategic and targetable axis between PP2A inhibitors (ANP32E and CIP2A) and cell cycle regulators (cyclin B2/CDK1) and provides a valuable rationale for using a personalized combinational therapy approach to improve mesothelioma patient survival.
Collapse
Affiliation(s)
- Raffaella Pippa
- Hematology/Oncology Program, Centro de Investigación Médica Aplicada (CIMA), University of Navarra, Pamplona, Spain
| | - Silvia Boffo
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania
| | - Maria D Odero
- University of Navarra, Centro de Investigación Médica Aplicada (CIMA), Pamplona, Spain.,CIBERONC Instituto de Salud Carlos III, Madrid, Spain.,Biochemistry and Genetics Department, University of Navarra, Pamplona, Spain.,IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania.,Department of Medical Biotechnology University of Siena, Siena, Italy
| |
Collapse
|
26
|
Stockhammer P, Ploenes T, Theegarten D, Schuler M, Maier S, Aigner C, Hegedus B. Detection of TGF-β in pleural effusions for diagnosis and prognostic stratification of malignant pleural mesothelioma. Lung Cancer 2019; 139:124-132. [PMID: 31778960 DOI: 10.1016/j.lungcan.2019.11.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 11/13/2019] [Accepted: 11/17/2019] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Malignant pleural mesothelioma (MPM) is an aggressive malignancy with dismal prognosis but variable course of disease. To support diagnosis and to risk stratify patients, more reliable biomarkers are warranted. Emerging evidence underlines a functional role of transforming growth factor-beta (TGF-β) in MPM tumorigenesis though its utility as a clinical biomarker remains unexplored. MATERIALS AND METHODS Corresponding pleural effusions and serum samples taken at primary diagnosis were analyzed for TGF-β by ELISA, and for mesothelin (SMRP) by chemiluminescence enzyme immunoassay. Tumor load was quantified in MPM patients by volumetric analysis of chest CT scans. All findings were correlated with clinicopathological characteristics. RESULTS In total 48 MPM patients, 24 patients with non-malignant pleural disease (NMPD) and 30 patients with stage IV lung cancer were enrolled in this study. Pleural effusions from MPM patients had significantly higher TGF-β levels than from NMPD or lung cancer patients (p < 0.0001; AUC for MPM vs NMPD: 0.78, p = 0.0001). Both epithelioid and non-epithelioid MPM were associated with higher TGF-β levels (epithelioid: p < 0.05; non-epithelioid: p < 0.0001) and levels of TGF-β correlated with disease stage (p = 0.003) and with tumor volume (p = 0.002). Interestingly, high TGF-β levels in pleural effusion, but not in serum, was significantly associated with inferior overall survival (TGF-beta ≥14.36 ng/mL: HR 3.45, p = 0.0001). This correlation was confirmed by multivariate analysis. In contrast, effusion SMRP levels were exclusively high in epithelioid MPM, negatively correlated with effusion TGF-β levels and did not provide prognostic information. CONCLUSION TGF-β levels determined in pleural effusion may be a promising biomarker for diagnosis and prognostic stratification of MPM.
Collapse
Affiliation(s)
- Paul Stockhammer
- Department of Thoracic Surgery, Ruhrlandklinik, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Tueschener Weg 40, 45239, Essen, Germany; Division of Thoracic Surgery, Department of Surgery, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
| | - Till Ploenes
- Department of Thoracic Surgery, Ruhrlandklinik, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Tueschener Weg 40, 45239, Essen, Germany
| | - Dirk Theegarten
- Institute of Pathology, University Hospital Essen, University Duisburg-Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Martin Schuler
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Hufelandstraße 55, 45147, Essen, Germany; German Cancer Consortium (DKTK), Partner Site University Hospital Essen, 45122, Essen, Germany
| | - Sandra Maier
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University Duisburg-Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Clemens Aigner
- Department of Thoracic Surgery, Ruhrlandklinik, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Tueschener Weg 40, 45239, Essen, Germany; German Cancer Consortium (DKTK), Partner Site University Hospital Essen, 45122, Essen, Germany
| | - Balazs Hegedus
- Department of Thoracic Surgery, Ruhrlandklinik, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Tueschener Weg 40, 45239, Essen, Germany.
| |
Collapse
|
27
|
Skok K, Hladnik G, Grm A, Crnjac A. Malignant Pleural Effusion and Its Current Management: A Review. MEDICINA (KAUNAS, LITHUANIA) 2019; 55:E490. [PMID: 31443309 PMCID: PMC6723530 DOI: 10.3390/medicina55080490] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 07/17/2019] [Accepted: 08/12/2019] [Indexed: 12/24/2022]
Abstract
Malignant pleural effusion (MPE) is an exudative effusion with malignant cells. MPE is a common symptom and accompanying manifestation of metastatic disease. It affects up to 15% of all patients with cancer and is the most common in lung, breast cancer, lymphoma, gynecological malignancies and malignant mesothelioma. In the last year, many studies were performed focusing on the pathophysiological mechanisms of MPE. With the advancement in molecular techniques, the importance of tumor-host cell interactions is becoming more apparent. Additionally, the process of pathogenesis is greatly affected by activating mutations of EGFR, KRAS, PIK3CA, BRAF, MET, EML4/ALK and RET, which correlate with an increased incidence of MPE. Considering all these changes, the authors aim to present a literature review of the newest findings, review of the guidelines and pathophysiological novelties in this field. Review of the just recently, after seven years published, practice guidelines, as well as analysis of more than 70 articles from the Pubmed, Medline databases that were almost exclusively published in indexed journals in the last few years, have relevance and contribute to the better understanding of the presented topic. MPE still presents a severe medical condition in patients with advanced malignancy. Recent findings in the field of pathophysiological mechanisms of MPE emphasize the role of molecular factors and mutations in the dynamics of the disease and its prognosis. Treatment guidelines offer a patient-centric approach with the use of new scoring systems, an out of hospital approach and ultrasound. The current guidelines address multiple areas of interest bring novelties in the form of validated prediction tools and can, based on evidence, improve patient outcomes. However, the role of biomarkers in a clinical setting, possible new treatment modalities and certain specific situations still present a challenge for new research.
Collapse
Affiliation(s)
- Kristijan Skok
- Faculty of Medicine, University of Maribor, Institute of Biomedical Sciences, Taborska Ulica 8, SI-2000 Maribor, Slovenia.
| | - Gaja Hladnik
- Faculty of Medicine, University of Maribor, Taborska Ulica 8, SI-2000 Maribor, Slovenia
| | - Anja Grm
- Faculty of Medicine, University of Maribor, Taborska Ulica 8, SI-2000 Maribor, Slovenia
| | - Anton Crnjac
- Faculty of Medicine, University of Maribor, Taborska Ulica 8, SI-2000 Maribor, Slovenia.
- Department of thoracic surgery, University Medical Centre Maribor, Ljubljanska 5, SI-2000 Maribor, Slovenia.
| |
Collapse
|
28
|
Gillezeau CN, van Gerwen M, Ramos J, Liu B, Flores R, Taioli E. Biomarkers for malignant pleural mesothelioma: a meta-analysis. Carcinogenesis 2019; 40:1320-1331. [DOI: 10.1093/carcin/bgz103] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 05/13/2019] [Accepted: 06/04/2019] [Indexed: 02/07/2023] Open
Abstract
Abstract
Malignant pleural mesothelioma (MPM) is a rare but aggressive cancer, and early detection is associated with better survival. Mesothelin, fibulin-3 and osteopontin have been suggested as screening biomarkers. The study conducted a meta-analysis of the mean differences of mesothelin, osteopontin and fibulin-3 in blood and pleural samples. PubMed searches were conducted for studies that measured levels of mesothelin, osteopontin and fibulin-3 in participants with MPM compared with malignancy, benign lung disease or healthy participants. Thirty-two studies with mesothelin levels, 12 studies with osteopontin levels and 9 studies with fibulin-3 levels were included in the meta-analysis. Statistically significant mean differences were seen between MPM patients and all other comparison groups for mesothelin blood and pleural levels. Statistically significant differences in blood osteopontin levels were seen between participants with benign lung disease and healthy participants compared with participants with MPM, but not when comparing participants with cancer with MPM participants. There were not enough studies that reported osteopontin levels in pleural fluid to complete a meta-analysis. Statistically significant differences were seen in both blood and pleural levels of fibulin-3 in MPM patients compared with all other groups. On the basis of these results, mesothelin and fibulin-3 levels appear to be significantly lower in all control groups compared with those with MPM, making them good candidates for screening biomarkers. Osteopontin may be a useful biomarker for screening healthy individuals or those with benign lung disease but would not be useful for screening patients with malignancies.
Collapse
Affiliation(s)
- Christina N Gillezeau
- Institute for Translational Epidemiology and Department of Population Health Science and Policy, New York, NY, USA
| | - Maaike van Gerwen
- Institute for Translational Epidemiology and Department of Population Health Science and Policy, New York, NY, USA
| | - Julio Ramos
- Institute for Translational Epidemiology and Department of Population Health Science and Policy, New York, NY, USA
| | - Bian Liu
- Institute for Translational Epidemiology and Department of Population Health Science and Policy, New York, NY, USA
| | - Raja Flores
- Department of Thoracic Surgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Emanuela Taioli
- Institute for Translational Epidemiology and Department of Population Health Science and Policy, New York, NY, USA
| |
Collapse
|
29
|
Evaluation of Matrix Metalloproteinase 9 Serum Concentration as a Biomarker in Malignant Mesothelioma. DISEASE MARKERS 2019; 2019:1242964. [PMID: 31191742 PMCID: PMC6525906 DOI: 10.1155/2019/1242964] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/14/2019] [Accepted: 04/03/2019] [Indexed: 12/12/2022]
Abstract
Background Malignant mesothelioma (MM) is a rare, but fatal disease with few treatment options. The diagnosis and treatment response are challenging in MM. Therefore, the search for novel diagnostic and prognostic biomarkers is ongoing. The aim of our study was to investigate matrix metalloproteinase 9 (MMP9) as a potential serum biomarker of treatment response and survival in MM. We also investigated the influence of genetic polymorphisms on MMP9 serum levels. Methods We included 110 patients with MM that have been previously genotyped for common MMP9 polymorphisms. Serum samples were collected before treatment, at the end of chemotherapy, and at the time of progression. MMP9 serum levels were measured using enzyme-linked immunosorbent assay kits. The role of serum MMP9 and MMP9 polymorphisms in treatment response was determined using the nonparametric tests and logistic or Cox regression. Results Median serum MMP9 was 706.7 (499.6-1224.9) ng/ml before treatment, 440.5 (255.9-685.2) ng/ml after chemotherapy, and 502.8 (307.2-851.4) ng/ml at disease progression. After chemotherapy, 87 (79.8%) patients had lower serum MMP9, with the median change of -286.3 (-607.3 to -70.2) ng/ml (P < 0.001). At disease progression, 47 (65.3%) patients had lower serum MMP9 compared to pretreatment values, with the median change of -163.7 (-466.6 to 108.6) ng/ml (P = 0.001). Patients with higher performance status had higher serum MMP9 before treatment (P = 0.010). Among investigated polymorphisms, only rs17576 was associated with serum MMP9 levels before treatment (P = 0.041). Conclusion Median serum MMP9 levels differed significantly before and after treatment of MM, but failed to reach significance as a standalone biomarker. The contribution of MMP9 serum levels and MMP9 polymorphisms to a composite diagnostic and prognostic biomarker should be further tested.
Collapse
|
30
|
Smeele P, d'Almeida SM, Meiller C, Chéné AL, Liddell C, Cellerin L, Montagne F, Deshayes S, Benziane S, Copin MC, Hofman P, Le Pimpec-Barthes F, Porte H, Scherpereel A, Grégoire M, Jean D, Blanquart C. Brain-derived neurotrophic factor, a new soluble biomarker for malignant pleural mesothelioma involved in angiogenesis. Mol Cancer 2018; 17:148. [PMID: 30309369 PMCID: PMC6180566 DOI: 10.1186/s12943-018-0891-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 09/14/2018] [Indexed: 02/07/2023] Open
Abstract
Malignant pleural mesothelioma (MPM) is a rare and aggressive cancer related to asbestos exposure. The discovery of soluble biomarkers with diagnostic/prognostic and/or therapeutic properties would improve therapeutic care of MPM patients. Currently, soluble biomarkers described present weaknesses preventing their use in clinic. This study aimed at evaluating brain-derived neurotrophic factor (BDNF), we previously identified using transcriptomic approach, in MPM. We observed that high BDNF expression, at the mRNA level in tumors or at the protein level in pleural effusions (PE), was a specific hallmark of MPM samples. This protein presented significant but limited diagnostic properties (area under the curve (AUC) = 0.6972, p < 0.0001). Interestingly, high BDNF gene expression and PE concentration were predictive of shorter MPM patient survival (13.0 vs 8.3 months, p < 0.0001, in PE). Finally, BDNF did not affect MPM cell oncogenic properties but was implicated in PE-induced angiogenesis. In conclusion, BDNF appears to be a new interesting biomarker for MPM and could also be a new therapeutic target regarding its implication in angiogenesis.
Collapse
Affiliation(s)
- Patrick Smeele
- CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France
| | - Sènan Mickaël d'Almeida
- CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France.,Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Clément Meiller
- INSERM, UMR-1162, Functional Genomics of Solid Tumors, Université Paris Descartes, Université Paris Diderot, Université Paris 13, Paris, France
| | - Anne-Laure Chéné
- CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France.,Service d'Oncologie Médicale Thoracique et Digestive, Hôpital Laënnec, CHU de Nantes, Nantes, France
| | - Charly Liddell
- CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France.,Service d'Anatomie Pathologique, Hôpital Laënnec, CHU de Nantes, Nantes, France
| | - Laurent Cellerin
- CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France.,Service d'Oncologie Médicale Thoracique et Digestive, Hôpital Laënnec, CHU de Nantes, Nantes, France
| | - François Montagne
- INSERM, UMR-1162, Functional Genomics of Solid Tumors, Université Paris Descartes, Université Paris Diderot, Université Paris 13, Paris, France.,Service de Chirurgie Thoracique, Hôpital Calmette, CHRU Lille, Lille, France
| | - Sophie Deshayes
- CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France
| | - Sarah Benziane
- Pulmonary and Thoracic Oncology, CHU de Lille, Univ. Lille, INSERM U1019, CIIL Institut Pasteur de Lille, F59000, Lille, France.,French National Network of Clinical Expert Centers for Malignant Pleural Mesothelioma Management (MESOCLIN), F59000, Lille, France
| | - Marie-Christine Copin
- Univ. Lille, CHU Lille, Institut de Pathologie et Tumorothèque du C2RC, Avenue Oscar Lambret, F-59000, Lille, France
| | - Paul Hofman
- Laboratory of Clinical and Experimental Pathology and Hospital-related Biobank (BB-0033-00025), University Côte d'Azur, Nice, France
| | - Françoise Le Pimpec-Barthes
- INSERM, UMR-1162, Functional Genomics of Solid Tumors, Université Paris Descartes, Université Paris Diderot, Université Paris 13, Paris, France.,Département de Chirurgie Thoracique et Transplantation pulmonaire, Hôpital Européen Georges Pompidou, Paris, France
| | - Henri Porte
- Service de Chirurgie Thoracique, Hôpital Calmette, CHRU Lille, Lille, France
| | - Arnaud Scherpereel
- Pulmonary and Thoracic Oncology, CHU de Lille, Univ. Lille, INSERM U1019, CIIL Institut Pasteur de Lille, F59000, Lille, France.,French National Network of Clinical Expert Centers for Malignant Pleural Mesothelioma Management (MESOCLIN), F59000, Lille, France
| | - Marc Grégoire
- CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France
| | - Didier Jean
- INSERM, UMR-1162, Functional Genomics of Solid Tumors, Université Paris Descartes, Université Paris Diderot, Université Paris 13, Paris, France
| | | |
Collapse
|
31
|
Brusselmans L, Arnouts L, Millevert C, Vandersnickt J, van Meerbeeck JP, Lamote K. Breath analysis as a diagnostic and screening tool for malignant pleural mesothelioma: a systematic review. Transl Lung Cancer Res 2018; 7:520-536. [PMID: 30450290 PMCID: PMC6204411 DOI: 10.21037/tlcr.2018.04.09] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 04/10/2018] [Indexed: 12/14/2022]
Abstract
Malignant pleural mesothelioma (MPM) is a tumour related to a historical exposure to asbestos fibres. Currently, the definite diagnosis is made only by the histological examination of a biopsy obtained through an invasive thoracoscopy. However, diagnosis is made too late for curative treatment because of non-specific symptoms mainly appearing at advanced stage disease. Hence, due to its biologic aggressiveness and the late diagnosis, survival rate is low and the patients' outcome poor. In addition, radiological imaging, like computed tomographic scans, and blood biomarkers are found not to be sensitive enough to be used as an early diagnostic tool. Detection in an early stage is assumed to improve the patients' outcome but is hampered due to non-specific and late symptomology. Hence, there is a need for a new screening and diagnostic test which could improve the patients' outcome. Despite extensive research has focused on blood biomarkers, not a single has been shown clinically useful, and therefore research recently shifted to "breathomics" techniques to recognize specific volatile organic compounds (VOCs) in the breath of the patient as potential non-invasive biomarkers for disease. In this review, we summarize the acquired knowledge about using breath analysis for diagnosing and monitoring MPM and asbestos-related disorders (ARD). Gas chromatography-mass spectrometry (GC-MS), the gold standard of breath analysis, appears to be the method with the highest accuracy (97%) to differentiate MPM patients from at risk asbestos-exposed subjects. There have already been found some interesting biomarkers that are significantly elevated in asbestosis (NO, 8-isoprostane, leukotriene B4, α-Pinene…) and MPM (cyclohexane) patients. Regrettably, the different techniques and the plethora of studies suffer some limitations. Most studies are pilot studies with the inclusion of a limited number of patients. Nevertheless, given the promising results and easy sampling methods, we can conclude that breath analysis may become a useful tool in the future to screen for MPM, but further research is warranted.
Collapse
Affiliation(s)
- Lisa Brusselmans
- Laboratory of Experimental Medicine and Paediatrics, Antwerp University, Wilrijk, Belgium
| | - Lieselot Arnouts
- Laboratory of Experimental Medicine and Paediatrics, Antwerp University, Wilrijk, Belgium
| | - Charissa Millevert
- Laboratory of Experimental Medicine and Paediatrics, Antwerp University, Wilrijk, Belgium
| | - Joyce Vandersnickt
- Laboratory of Experimental Medicine and Paediatrics, Antwerp University, Wilrijk, Belgium
| | - Jan P. van Meerbeeck
- Laboratory of Experimental Medicine and Paediatrics, Antwerp University, Wilrijk, Belgium
- Internal Medicine, Ghent University, Ghent, Belgium
- Department of Pneumology, Antwerp University Hospital, Edegem, Belgium
| | - Kevin Lamote
- Laboratory of Experimental Medicine and Paediatrics, Antwerp University, Wilrijk, Belgium
- Internal Medicine, Ghent University, Ghent, Belgium
| |
Collapse
|
32
|
Wang S, Chen X. Identification of potential biomarkers in cervical cancer with combined public mRNA and miRNA expression microarray data analysis. Oncol Lett 2018; 16:5200-5208. [PMID: 30250588 PMCID: PMC6144068 DOI: 10.3892/ol.2018.9323] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 07/23/2018] [Indexed: 12/31/2022] Open
Abstract
Cervical cancer is the fourth most prevalent malignancy in females worldwide. Early diagnosis is key to improving survival rates. Molecular biomarkers are an important method for diagnosing a number of types of cancer, including cervical cancer. The present study utilized public data from three mRNA microarray datasets and one microRNA dataset to analyze the key genes involved in cervical cancer. The mRNA and microRNA expression profile datasets (GSE9750, GSE46857, GSE67522 and GSE30656) were downloaded from the Gene Expression Omnibus database (GEO). Differentially expressed genes (DEGs) and microRNAs (DEMs) were screened using the online tool GEO2R. By using the DEGs consistent across the three mRNA datasets, a functional and pathway enrichment analysis was performed using the Database for Annotation, Visualization and Integrated Discovery. A protein-protein interaction (PPI) network was constructed and module analysis performed using the Search Tool for the Retrieval of Interacting Genes. Validated target genes of the DEMs were identified using the miRecords website. Using the identified target genes of the DEMs, a survival analysis was performed using the OncoLnc online tool. A total of 73 DEGs and 19 DEMs were screened from the microarray expression profile datasets. ‘Integrin-mediated’, ‘proteolysis’ and ‘phosphoinositide 3 kinase-protein kinase 3’ signaling pathways were the most enriched in the DEGs. Three of the DEGs, including Ras homolog family member B (RhoB), stathmin 1 (STMN1) and cyclin D1 (CCNB1) were validated DEM target genes. The OncoLnc survival analysis identified that RhoB was associated with a significantly longer overall survival, whereas STMN1 was associated with a significantly reduced overall survival time in patients with cervical cancer. Finally, data from The Cancer Genome Atlas revealed an association between the mRNA expression levels of RhoB and STMN1, and the overall survival time for patients with cervical cancer. In conclusion, RhoB and STMN1 were identified as key genes that may provide potential targets for cervical cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Sizhe Wang
- Department of Women Health Care, Beijing Chaoyang District Maternal and Child Health Care Hospital, Beijing 100000, P.R. China
| | - Xiaojin Chen
- Department of Women Health Care, Beijing Chaoyang District Maternal and Child Health Care Hospital, Beijing 100000, P.R. China
| |
Collapse
|
33
|
Røe OD. Mesothelioma diagnosis and prognosis, are we moving beyond histology and performance status towards circulating biomarkers? J Thorac Dis 2018; 10:S1956-S1961. [PMID: 30023090 DOI: 10.21037/jtd.2018.06.12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Oluf Dimitri Røe
- Department of Clinical Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, NO 7491, Norway.,Cancer Clinic, Levanger Hospital, Nord-Trøndelag Hospital Trust, Levanger, NO 7600, Norway.,Department of Oncology & Clinical Cancer Research Center, Department of Clinical Medicine, Aalborg University Hospital, Aalborg, DK 9000, Denmark
| |
Collapse
|
34
|
Augeri S, Capano S, Morone S, Fissolo G, Giacomino A, Peola S, Drace Z, Rapa I, Novello S, Volante M, Righi L, Ferrero E, Ortolan E, Funaro A. Soluble CD157 in pleural effusions: a complementary tool for the diagnosis of malignant mesothelioma. Oncotarget 2018; 9:22785-22801. [PMID: 29854315 PMCID: PMC5978265 DOI: 10.18632/oncotarget.25237] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 04/07/2018] [Indexed: 12/17/2022] Open
Abstract
Background CD157/Bst1 glycoprotein is expressed in >85% of malignant pleural mesotheliomas and is a marker of enhanced tumor aggressiveness. Results In vitro, mesothelial cells (malignant and non-malignant) released CD157 in soluble form or as an exosomal protein. In vivo, sCD157 is released and can be measured in pleural effusions by ELISA. Significantly higher levels of effusion sCD157 were detected in patients with malignant pleural mesothelioma than in patients with non-mesothelioma tumors or with non-malignant conditions. In our patient cohort, the area under the receiver-operating characteristic curve for sCD157 that discriminated malignant pleural mesothelioma from all other causes of pleural effusion was 0.685, cut-off (determined by the Youden Index) = 23.66 ng/ml (62.3% sensitivity; 73.93% specificity). Using a cut-off that yielded 95.58% specificity, measurement of sCD157 in cytology-negative effusions increased sensitivity of malignant pleural mesothelioma diagnosis from 34.42% to 49.18%. Conclusions Evaluation of soluble CD157 in pleural effusions provides a diagnostic aid in malignant mesothelioma. Methods Soluble CD157 (sCD157) was detected biochemically in culture supernatants of malignant and non-malignant mesothelial cells, and in pleural effusions from various pathological conditions. An ELISA system was established to measure the concentration of sCD157 in fluids, and extended to analyze sCD157 in pleural effusions from a cohort of 295 patients.
Collapse
Affiliation(s)
- Stefania Augeri
- Laboratory of Immunogenetics, Department of Medical Sciences, University of Torino, Torino 10126, Italy
| | - Stefania Capano
- Laboratory of Immunogenetics, Department of Medical Sciences, University of Torino, Torino 10126, Italy
| | - Simona Morone
- Laboratory of Immunogenetics, Department of Medical Sciences, University of Torino, Torino 10126, Italy
| | - Giulia Fissolo
- Laboratory of Immunogenetics, Department of Medical Sciences, University of Torino, Torino 10126, Italy
| | - Alice Giacomino
- Laboratory of Immunogenetics, Department of Medical Sciences, University of Torino, Torino 10126, Italy
| | - Silvia Peola
- Laboratory of Immunogenetics, Department of Medical Sciences, University of Torino, Torino 10126, Italy
| | - Zahida Drace
- Laboratory of Immunogenetics, Department of Medical Sciences, University of Torino, Torino 10126, Italy
| | - Ida Rapa
- Department of Oncology, University of Torino, San Luigi Hospital, Torino 10043, Italy
| | - Silvia Novello
- Department of Oncology, University of Torino, San Luigi Hospital, Torino 10043, Italy
| | - Marco Volante
- Department of Oncology, University of Torino, San Luigi Hospital, Torino 10043, Italy
| | - Luisella Righi
- Department of Oncology, University of Torino, San Luigi Hospital, Torino 10043, Italy
| | - Enza Ferrero
- Laboratory of Immunogenetics, Department of Medical Sciences, University of Torino, Torino 10126, Italy
| | - Erika Ortolan
- Laboratory of Immunogenetics, Department of Medical Sciences, University of Torino, Torino 10126, Italy
| | - Ada Funaro
- Laboratory of Immunogenetics, Department of Medical Sciences, University of Torino, Torino 10126, Italy
| |
Collapse
|
35
|
Singh AS, Heery R, Gray SG. In Silico and In Vitro Analyses of LncRNAs as Potential Regulators in the Transition from the Epithelioid to Sarcomatoid Histotype of Malignant Pleural Mesothelioma (MPM). Int J Mol Sci 2018; 19:ijms19051297. [PMID: 29701689 PMCID: PMC5983793 DOI: 10.3390/ijms19051297] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/23/2018] [Accepted: 04/24/2018] [Indexed: 02/06/2023] Open
Abstract
Malignant pleural mesothelioma (MPM) is a rare malignancy, with extremely poor survival rates. At present, treatment options are limited, with no second line chemotherapy for those who fail first line therapy. Extensive efforts are ongoing in a bid to characterise the underlying molecular mechanisms of mesothelioma. Recent research has determined that between 70–90% of our genome is transcribed. As only 2% of our genome is protein coding, the roles of the remaining proportion of non-coding RNA in biological processes has many applications, including roles in carcinogenesis and epithelial–mesenchymal transition (EMT), a process thought to play important roles in MPM pathogenesis. Non-coding RNAs can be separated loosely into two subtypes, short non-coding RNAs (<200 nucleotides) or long (>200 nucleotides). A significant body of evidence has emerged for the roles of short non-coding RNAs in MPM. Less is known about the roles of long non-coding RNAs (lncRNAs) in this disease setting. LncRNAs have been shown to play diverse roles in EMT, and it has been suggested that EMT may play a role in the aggressiveness of MPM histological subsets. In this report, using both in vitro analyses on mesothelioma patient material and in silico analyses of existing RNA datasets, we posit that various lncRNAs may play important roles in EMT within MPM, and we review the current literature regarding these lncRNAs with respect to both EMT and MPM.
Collapse
Affiliation(s)
- Anand S Singh
- Thoracic Oncology Research Group, Trinity Translational Medical Institute, St. James's Hospital, Dublin D08 W9RT, Ireland.
- MSc in Translational Oncology Program, Trinity College Dublin, Dublin 2, Ireland.
| | - Richard Heery
- Thoracic Oncology Research Group, Trinity Translational Medical Institute, St. James's Hospital, Dublin D08 W9RT, Ireland.
- MSc in Translational Oncology Program, Trinity College Dublin, Dublin 2, Ireland.
| | - Steven G Gray
- Thoracic Oncology Research Group, Trinity Translational Medical Institute, St. James's Hospital, Dublin D08 W9RT, Ireland.
- HOPE Directorate, St. James's Hospital, Dublin 8, Ireland.
- Department of Clinical Medicine, Trinity College Dublin, Dublin 8, Ireland.
- Labmed Directorate, St. James's Hospital, Dublin 8, Ireland.
| |
Collapse
|
36
|
Ahmadzada T, Reid G, Kao S. Biomarkers in malignant pleural mesothelioma: current status and future directions. J Thorac Dis 2018; 10:S1003-S1007. [PMID: 29850181 DOI: 10.21037/jtd.2018.04.31] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Tamkin Ahmadzada
- Sydney Medical School, The University of Sydney, Sydney, Australia
| | - Glen Reid
- Sydney Medical School, The University of Sydney, Sydney, Australia.,Asbestos Diseases Research Institute (ADRI), Sydney, Australia
| | - Steven Kao
- Asbestos Diseases Research Institute (ADRI), Sydney, Australia.,Department of Medical Oncology, Chris O'Brien Lifehouse, Sydney, NSW, Australia
| |
Collapse
|
37
|
Zhao Q, Sun X, Liu C, Li T, Cui J, Qin C. Expression of the microRNA-143/145 cluster is decreased in hepatitis B virus-associated hepatocellular carcinoma and may serve as a biomarker for tumorigenesis in patients with chronic hepatitis B. Oncol Lett 2018; 15:6115-6122. [PMID: 29616093 PMCID: PMC5876422 DOI: 10.3892/ol.2018.8117] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 07/07/2017] [Indexed: 12/18/2022] Open
Abstract
The aims of the present study were to identify the expression profile of microRNA (miR)-143/145 in hepatitis B virus (HBV)-associated hepatocellular carcinoma (HCC), explore its association with prognosis and investigate whether the serum miR-143/145 expression levels may serve as a diagnostic indicator of HBV-associated HCC. The microRNA (miRNA) chromatin immunoprecipitation dataset was obtained from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus databases, and analyzed using the Wilcoxon signed-rank test. It was observed that the expression of miR-143 and miR-145 was decreased 1.5-fold in HBV-associated HCC samples compared with non-tumor tissue in the TCGA and the GSE22058 datasets (P<0.01). Using the reverse transcription-quantitative polymerase chain reaction, it was further confirmed that miR-143/145 and their host gene MIR143HG were downregulated in HBV-associated HCC tissues compared with corresponding distal non-tumor tissues. The lower level of miR-143 and miR-145 expression was associated with tumor differentiation, and may thus be responsible for a poor prognosis of patients with HBV-associated HCC. The receiver-operating characteristic (ROC) curves were used to explore the potential value of miR-143 and miR-145 as biomarkers for predicting HBV-associated HCC tumorigenesis. In serum, miR-143/145 were identified to be significantly decreased in patients with HBV-associated HCC compared with negative control patients, and their associated areas under the ROC curves were calculated at 0.813 and 0.852 (P<0.05), with each having a sensitivity and a specificity close to 0.80. These results indicated that the decreased expression of the miR-143/145 cluster and their host gene MIR143HG in HBV-associated HCC tissue was associated with prognosis, and each of these miRNAs may serve as a valuable diagnostic biomarker for predicting HBV-associated HCC tumorigenesis.
Collapse
Affiliation(s)
- Qi Zhao
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Xiangfei Sun
- Department of Cardiovasular Surgery, Qilu Hospital of Shandong University, Qingdao, Shandong 266035, P.R. China
| | - Chao Liu
- Department of Computer Science and Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA.,Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Tao Li
- Department of Infectious Diseases, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Juan Cui
- Department of Computer Science and Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Chengyong Qin
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
38
|
SFRP Tumour Suppressor Genes Are Potential Plasma-Based Epigenetic Biomarkers for Malignant Pleural Mesothelioma. DISEASE MARKERS 2017; 2017:2536187. [PMID: 29386699 PMCID: PMC5745727 DOI: 10.1155/2017/2536187] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 10/16/2017] [Indexed: 12/31/2022]
Abstract
Malignant pleural mesothelioma (MPM) is associated with asbestos exposure. Asbestos can induce chronic inflammation which in turn can lead to silencing of tumour suppressor genes. Wnt signaling pathway can be affected by chronic inflammation and is aberrantly activated in many cancers including colon and MPM. SFRP genes are antagonists of Wnt pathway, and SFRPs are potential tumour suppressors in colon, gastric, breast, ovarian, and lung cancers and mesothelioma. This study investigated the expression and DNA methylation of SFRP genes in MPM cells lines with and without demethylation treatment. Sixty-six patient FFPE samples were analysed and have showed methylation of SFRP2 (56%) and SFRP5 (70%) in MPM. SFRP2 and SFRP5 tumour-suppressive activity in eleven MPM lines was confirmed, and long-term asbestos exposure led to reduced expression of the SFRP1 and SFRP2 genes in the mesothelium (MeT-5A) via epigenetic alterations. Finally, DNA methylation of SFRPs is detectable in MPM patient plasma samples, with methylated SFRP2 and SFRP5 showing a tendency towards greater abundance in patients. These data suggested that SFRP genes have tumour-suppresive activity in MPM and that methylated DNA from SFRP gene promoters has the potential to serve as a biomarker for MPM patient plasma.
Collapse
|
39
|
Abstract
Mesothelin (MSLN) is considered a promising target for cancer therapy. Originally extracted in 1992 after the immunization of mice with a human ovarian cancer (OC) cell line and cloned in 1996, MSLN seems to be involved in cell adhesion and metastasis. MSLN is prevalent in mesothelia tissues but is expressed in several human cancers, such as OC, pancreatic cancer, mesothelioma, and lung cancer. Amatuximab (MORAb-009) is a mouse-human chimeric monoclonal antibody with a selective affinity for MSLN. The principal mechanism of action comprises inhibition of binding of MSLN with the antigen CA125/MUC16. The highest phase of development is actually a Phase II trial (MORAb-009-201, Europe). In this review, we describe the mechanism of action of amatuximab and other MSLN-targeting novel drugs, along with a discussion about the expected efficacy, safety, and toxicity of this promising group of agents and implications for future research and clinical practice.
Collapse
Affiliation(s)
- Paolo Baldo
- Pharmacy Unit, Directorate Department, CRO Aviano-IRCCS National Cancer Institute, Aviano, Italy
| | - Sara Cecco
- Pharmacy Unit, Directorate Department, CRO Aviano-IRCCS National Cancer Institute, Aviano, Italy
| |
Collapse
|