1
|
Zhao H, Fu X, Zhang Y, Chen C, Wang H. The Role of Pyroptosis and Autophagy in the Nervous System. Mol Neurobiol 2024; 61:1271-1281. [PMID: 37697221 PMCID: PMC10896877 DOI: 10.1007/s12035-023-03614-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/23/2023] [Indexed: 09/13/2023]
Abstract
Autophagy is a conservative self-degradation system, which includes the two major processes of enveloping abnormal proteins, organelles and other macromolecules, and transferring them into lysosomes for the subsequent degradation. It holds the stability of the intracellular environment under stress. So far, three types of autophagy have been found: microautophagy, chaperone-mediated autophagy and macroautophagy. Many diseases have the pathological process of autophagy dysfunction, such as nervous system diseases. Pyroptosis is one kind of programmed cell death mediated by gasdermin (GSDM). In this process of pyroptosis, the activated caspase-3, caspase-4/5/11, or caspase-1 cleaves GSDM into the N-terminal pore-forming domain (PFD). The oligomer of PFD combines with the cell membrane to form membrane holes, thus leading to pyroptosis. Pyroptosis plays a key role in multiple tissues and organs. Many studies have revealed that autophagy and pyroptosis participate in the nervous system, but the mechanisms need to be fully clarified. Here, we focused on the recent articles on the role and mechanism of pyroptosis and autophagy in the pathological processes of the nervous system.
Collapse
Affiliation(s)
- Huijie Zhao
- Institute of Chronic Disease Risks Assessment, Henan University, Jinming Avenue, Kaifeng, 475004, China
| | - Xiaodi Fu
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Yanting Zhang
- School of Clinical Medicine, Henan University, Kaifeng, 475004, Henan, China
| | - Chaoran Chen
- Institute of Nursing and Health, School of Nursing and Health, Henan University, Jinming Avenue, Kaifeng, 475004, China
| | - Honggang Wang
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, Henan, China.
| |
Collapse
|
2
|
Linthwaite VL, Pawloski W, Pegg HB, Townsend PD, Thomas MJ, So VKH, Brown AP, Hodgson DRW, Lorimer GH, Fushman D, Cann MJ. Ubiquitin is a carbon dioxide-binding protein. SCIENCE ADVANCES 2021; 7:eabi5507. [PMID: 34559559 PMCID: PMC8462908 DOI: 10.1126/sciadv.abi5507] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
The identification of CO2-binding proteins is crucial to understanding CO2-regulated molecular processes. CO2 can form a reversible posttranslational modification through carbamylation of neutral N-terminal α-amino or lysine ε-amino groups. We have previously developed triethyloxonium (TEO) ion as a chemical proteomics tool for covalent trapping of carbamates, and here, we deploy TEO to identify ubiquitin as a mammalian CO2-binding protein. We use 13C-NMR spectroscopy to demonstrate that CO2 forms carbamates on the ubiquitin N terminus and ε-amino groups of lysines 6, 33, 48, and 63. We demonstrate that biologically relevant pCO2 levels reduce ubiquitin conjugation at lysine-48 and down-regulate ubiquitin-dependent NF-κB pathway activation. Our results show that ubiquitin is a CO2-binding protein and demonstrates carbamylation as a viable mechanism by which mammalian cells can respond to fluctuating pCO2.
Collapse
Affiliation(s)
| | - Wes Pawloski
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, College Park, MD 20742, USA
| | - Hamish B. Pegg
- Department of Biosciences, Durham University, Durham DH1 3LE, UK
| | | | | | - Victor K. H. So
- Department of Biosciences, Durham University, Durham DH1 3LE, UK
| | - Adrian P. Brown
- Department of Biosciences, Durham University, Durham DH1 3LE, UK
| | - David R. W. Hodgson
- Department of Chemistry, Durham University, Durham DH1 3LE, UK
- Biophysical Sciences Institute, Durham University, Durham DH1 3LE, UK
| | - George H. Lorimer
- Biophysics Program, Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA
| | - David Fushman
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, College Park, MD 20742, USA
| | - Martin J. Cann
- Department of Biosciences, Durham University, Durham DH1 3LE, UK
- Biophysical Sciences Institute, Durham University, Durham DH1 3LE, UK
| |
Collapse
|
3
|
Kryvenko V, Wessendorf M, Tello K, Herold S, Morty RE, Seeger W, Vadász I. Hypercapnia-induces IRE1α-driven Endoplasmic Reticulum-associated Degradation of the Na,K-ATPase β-subunit. Am J Respir Cell Mol Biol 2021; 65:615-629. [PMID: 34192507 DOI: 10.1165/rcmb.2021-0114oc] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is often associated with elevated levels of CO2 (hypercapnia) and impaired alveolar fluid clearance. Misfolding of the Na,K-ATPase (NKA), a key molecule involved in both alveolar epithelial barrier tightness and in resolution of alveolar edema, in the endoplasmic reticulum (ER) may decrease plasma membrane (PM) abundance of the transporter. Here, we investigated how hypercapnia affects the NKA β-subunit (NKA-β) in the ER. Exposing murine precision-cut lung slices (PCLS) and human alveolar epithelial A549 cells to elevated CO2 levels led to a rapid decrease of NKA-β abundance in the ER and at the cell surface. Knockdown of ER alpha-mannosidase I (MAN1B1) and ER degradation enhancing alpha-mannosidase like protein 1 by siRNA or treatment with the MAN1B1 inhibitor, kifunensine rescued loss of NKA-β in the ER, suggesting ER-associated degradation (ERAD) of the enzyme. Furthermore, hypercapnia activated the unfolded protein response (UPR) by promoting phosphorylation of inositol-requiring enzyme 1α (IRE1α) and treatment with a siRNA against IRE1α prevented the decrease of NKA-β in the ER. Of note, the hypercapnia-induced phosphorylation of IRE1α was triggered by a Ca2+-dependent mechanism. Additionally, inhibition of the inositol trisphosphate receptor decreased phosphorylation levels of IRE1α in PCLS and A549 cells, suggesting that Ca2+ efflux from the ER might be responsible for IRE1α activation and ERAD of NKA-β. In conclusion, here we provide evidence that hypercapnia attenuates maturation of the regulatory subunit of NKA by activating IRE1α and promoting ERAD, which may contribute to impaired alveolar epithelial integrity in patients with ARDS and hypercapnia.
Collapse
Affiliation(s)
- Vitalii Kryvenko
- Justus Liebig University, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Department of Internal Medicine, Giessen, Germany.,The Cardio-Pulmonary Institute, Giessen, Germany
| | - Miriam Wessendorf
- Justus Liebig University, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Department of Internal Medicine, Giessen, Germany
| | - Khodr Tello
- Justus Liebig University, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Department of Internal Medicine, Giessen, Germany.,The Cardio-Pulmonary Institute, Giessen, Germany
| | - Susanne Herold
- Justus Liebig University, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Department of Internal Medicine, Giessen, Germany.,The Cardio-Pulmonary Institute, Giessen, Germany
| | - Rory E Morty
- Justus Liebig University, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Department of Internal Medicine, Giessen, Germany.,The Cardio-Pulmonary Institute, Giessen, Germany.,Max-Planck-Institute for Heart and Lung Research, Department of Lung Development and Remodeling, Bad Nauheim, Germany
| | - Werner Seeger
- Justus Liebig University, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Department of Internal Medicine, Giessen, Germany.,The Cardio-Pulmonary Institute, Giessen, Germany.,Max-Planck-Institute for Heart and Lung Research, Department of Lung Development and Remodeling, Bad Nauheim, Germany.,Justus Liebig University, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Department of Internal Medicine, Giessen, Germany
| | - István Vadász
- Justus Liebig University, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Department of Internal Medicine, Giessen, Germany.,The Cardio-Pulmonary Institute, Giessen, Germany;
| |
Collapse
|
4
|
Kryvenko V, Wessendorf M, Morty RE, Herold S, Seeger W, Vagin O, Dada LA, Sznajder JI, Vadász I. Hypercapnia Impairs Na,K-ATPase Function by Inducing Endoplasmic Reticulum Retention of the β-Subunit of the Enzyme in Alveolar Epithelial Cells. Int J Mol Sci 2020; 21:E1467. [PMID: 32098115 PMCID: PMC7073107 DOI: 10.3390/ijms21041467] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 02/16/2020] [Accepted: 02/17/2020] [Indexed: 01/02/2023] Open
Abstract
Alveolar edema, impaired alveolar fluid clearance, and elevated CO2 levels (hypercapnia) are hallmarks of the acute respiratory distress syndrome (ARDS). This study investigated how hypercapnia affects maturation of the Na,K-ATPase (NKA), a key membrane transporter, and a cell adhesion molecule involved in the resolution of alveolar edema in the endoplasmic reticulum (ER). Exposure of human alveolar epithelial cells to elevated CO2 concentrations caused a significant retention of NKA-β in the ER and, thus, decreased levels of the transporter in the Golgi apparatus. These effects were associated with a marked reduction of the plasma membrane (PM) abundance of the NKA-α/β complex as well as a decreased total and ouabain-sensitive ATPase activity. Furthermore, our study revealed that the ER-retained NKA-β subunits were only partially assembled with NKA α-subunits, which suggests that hypercapnia modifies the ER folding environment. Moreover, we observed that elevated CO2 levels decreased intracellular ATP production and increased ER protein and, particularly, NKA-β oxidation. Treatment with α-ketoglutaric acid (α-KG), which is a metabolite that has been shown to increase ATP levels and rescue mitochondrial function in hypercapnia-exposed cells, attenuated the deleterious effects of elevated CO2 concentrations and restored NKA PM abundance and function. Taken together, our findings provide new insights into the regulation of NKA in alveolar epithelial cells by elevated CO2 levels, which may lead to the development of new therapeutic approaches for patients with ARDS and hypercapnia.
Collapse
Affiliation(s)
- Vitalii Kryvenko
- Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), 35392 Giessen, Germany; (V.K.); (M.W.); (R.E.M.); (S.H.); (W.S.)
- The Cardio-Pulmonary Institute (CPI), 35392 Giessen, Germany
| | - Miriam Wessendorf
- Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), 35392 Giessen, Germany; (V.K.); (M.W.); (R.E.M.); (S.H.); (W.S.)
| | - Rory E. Morty
- Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), 35392 Giessen, Germany; (V.K.); (M.W.); (R.E.M.); (S.H.); (W.S.)
- The Cardio-Pulmonary Institute (CPI), 35392 Giessen, Germany
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Susanne Herold
- Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), 35392 Giessen, Germany; (V.K.); (M.W.); (R.E.M.); (S.H.); (W.S.)
- The Cardio-Pulmonary Institute (CPI), 35392 Giessen, Germany
| | - Werner Seeger
- Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), 35392 Giessen, Germany; (V.K.); (M.W.); (R.E.M.); (S.H.); (W.S.)
- The Cardio-Pulmonary Institute (CPI), 35392 Giessen, Germany
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Olga Vagin
- Department of Physiology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA;
- Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
| | - Laura A. Dada
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (L.A.D.); (J.I.S.)
| | - Jacob I. Sznajder
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (L.A.D.); (J.I.S.)
| | - István Vadász
- Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), 35392 Giessen, Germany; (V.K.); (M.W.); (R.E.M.); (S.H.); (W.S.)
- The Cardio-Pulmonary Institute (CPI), 35392 Giessen, Germany
| |
Collapse
|
5
|
Balnis J, Korponay TC, Jaitovich A. AMP-Activated Protein Kinase (AMPK) at the Crossroads Between CO 2 Retention and Skeletal Muscle Dysfunction in Chronic Obstructive Pulmonary Disease (COPD). Int J Mol Sci 2020; 21:E955. [PMID: 32023946 PMCID: PMC7037951 DOI: 10.3390/ijms21030955] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/22/2020] [Accepted: 01/28/2020] [Indexed: 12/17/2022] Open
Abstract
Skeletal muscle dysfunction is a major comorbidity in chronic obstructive pulmonary disease (COPD) and other pulmonary conditions. Chronic CO2 retention, or hypercapnia, also occur in some of these patients. Both muscle dysfunction and hypercapnia associate with higher mortality in these populations. Over the last years, we have established a mechanistic link between hypercapnia and skeletal muscle dysfunction, which is regulated by AMPK and causes depressed anabolism via reduced ribosomal biogenesis and accelerated catabolism via proteasomal degradation. In this review, we discuss the main findings linking AMPK with hypercapnic pulmonary disease both in the lungs and skeletal muscles, and also outline potential avenues for future research in the area based on knowledge gaps and opportunities to expand mechanistic research with translational implications.
Collapse
Affiliation(s)
- Joseph Balnis
- Division of Pulmonary and Critical Care Medicine, Albany Medical College, Albany, NY 12208, USA; (J.B.); (T.C.K.)
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
| | - Tanner C. Korponay
- Division of Pulmonary and Critical Care Medicine, Albany Medical College, Albany, NY 12208, USA; (J.B.); (T.C.K.)
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
| | - Ariel Jaitovich
- Division of Pulmonary and Critical Care Medicine, Albany Medical College, Albany, NY 12208, USA; (J.B.); (T.C.K.)
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
| |
Collapse
|
6
|
Burgraff NJ, Neumueller SE, Buchholz KJ, LeClaire J, Hodges MR, Pan L, Forster HV. Brainstem serotonergic, catecholaminergic, and inflammatory adaptations during chronic hypercapnia in goats. FASEB J 2019; 33:14491-14505. [PMID: 31670983 DOI: 10.1096/fj.201901288rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Despite the prevalence of CO2 retention in human disease, little is known about the adaptive neurobiological effects of chronic hypercapnia. We have recently shown 30-d exposure to increased inspired CO2 (InCO2) leads to a steady-state ventilation that exceeds the level predicted by the sustained acidosis and the acute CO2/H+ chemoreflex, suggesting plasticity within respiratory control centers. Based on data showing brainstem changes in aminergic and inflammatory signaling during carotid body denervation-induced hypercapnia, we hypothesized chronic hypercapnia per se will lead to similar changes. We found that: 1) increased InCO2 increased IL-1β in the medullary raphe (MR), ventral respiratory column, and cuneate nucleus after 24 h, but not after 30 d of hypercapnia; 2) the number of serotonergic and total neurons were reduced within the MR and ventrolateral medulla following 30 d of increased InCO2; 3) markers of tryptophan metabolism were altered following 24 h, but not 30 d of InCO2; and 4) there were few changes in brainstem amine levels following 24 h or 30 d of increased InCO2. We conclude that these changes may contribute to initiating or maintaining respiratory neuroplasticity during chronic hypercapnia but alone do not account for ventilatory acclimatization to chronic increased InCO2.-Burgraff, N. J., Neumueller, S. E., Buchholz, K. J., LeClaire, J., Hodges, M. R., Pan, L., Forster, H. V. Brainstem serotonergic, catecholaminergic, and inflammatory adaptations during chronic hypercapnia in goats.
Collapse
Affiliation(s)
- Nicholas J Burgraff
- Department of Physiology, Medical College of Wisconsin, Wauwatosa, Wisconsin, USA
| | - Suzanne E Neumueller
- Department of Physiology, Medical College of Wisconsin, Wauwatosa, Wisconsin, USA
| | - Kirstyn J Buchholz
- Department of Physiology, Medical College of Wisconsin, Wauwatosa, Wisconsin, USA
| | - John LeClaire
- Department of Physiology, Medical College of Wisconsin, Wauwatosa, Wisconsin, USA
| | - Matthew R Hodges
- Department of Physiology, Medical College of Wisconsin, Wauwatosa, Wisconsin, USA.,Neuroscience Research Center Medical College of Wisconsin, Wauwatosa, Wisconsin, USA
| | - Lawrence Pan
- Department of Physical Therapy, Marquette University, Milwaukee, Wisconsin, USA
| | - Hubert V Forster
- Department of Physiology, Medical College of Wisconsin, Wauwatosa, Wisconsin, USA.,Neuroscience Research Center Medical College of Wisconsin, Wauwatosa, Wisconsin, USA.,Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin, USA
| |
Collapse
|
7
|
|