1
|
da Silva AL, Bessa CM, Rocha NN, Carvalho EB, Magalhaes RF, Capelozzi VL, Robba C, Pelosi P, Samary CS, Rocco PRM, Silva PL. Pressure-support compared with pressure-controlled ventilation mitigates lung and brain injury in experimental acute ischemic stroke in rats. Intensive Care Med Exp 2023; 11:93. [PMID: 38102452 PMCID: PMC10724101 DOI: 10.1186/s40635-023-00580-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND We aimed to evaluate the pulmonary and cerebral effects of low-tidal volume ventilation in pressure-support (PSV) and pressure-controlled (PCV) modes at two PEEP levels in acute ischemic stroke (AIS). METHODS In this randomized experimental study, AIS was induced by thermocoagulation in 30 healthy male Wistar rats. After 24 h, AIS animals were randomly assigned to PSV or PCV with VT = 6 mL/kg and PEEP = 2 cmH2O (PSV-PEEP2 and PCV-PEEP2) or PEEP = 5 cmH2O (PSV-PEEP5 and PCV-PEEP5) for 2 h. Lung mechanics, arterial blood gases, and echocardiography were evaluated before and after the experiment. Lungs and brain tissue were removed for histologic and molecular biology analysis. The primary endpoint was diffuse alveolar damage (DAD) score; secondary endpoints included brain histology and brain and lung molecular biology markers. RESULTS In lungs, DAD was lower with PSV-PEEP5 than PCV-PEEP5 (p < 0.001); interleukin (IL)-1β was lower with PSV-PEEP2 than PCV-PEEP2 (p = 0.016) and PSV-PEEP5 than PCV-PEEP5 (p = 0.046); zonula occludens-1 (ZO-1) was lower in PCV-PEEP5 than PCV-PEEP2 (p = 0.042). In brain, necrosis, hemorrhage, neuropil edema, and CD45 + microglia were lower in PSV than PCV animals at PEEP = 2 cmH2O (p = 0.036, p = 0.025, p = 0.018, p = 0.011, respectively) and PEEP = 5 cmH2O (p = 0.003, p = 0.003, p = 0.007, p = 0.003, respectively); IL-1β was lower while ZO-1 was higher in PSV-PEEP2 than PCV-PEEP2 (p = 0.009, p = 0.007, respectively), suggesting blood-brain barrier integrity. Claudin-5 was higher in PSV-PEEP2 than PSV-PEEP5 (p = 0.036). CONCLUSION In experimental AIS, PSV compared with PCV reduced lung and brain injury. Lung ZO-1 reduced in PCV with PEEP = 2 versus PEEP = 5 cmH2O, while brain claudin-5 increased in PSV with PEEP = 2 versus PEEP = 5 cmH2O.
Collapse
Affiliation(s)
- Adriana L da Silva
- Laboratory of Pulmonary Investigation, Centro de Ciências da Saúde, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Avenida Carlos Chagas Filho, S/N, Bloco G-014, Ilha Do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Camila M Bessa
- Laboratory of Pulmonary Investigation, Centro de Ciências da Saúde, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Avenida Carlos Chagas Filho, S/N, Bloco G-014, Ilha Do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Nazareth N Rocha
- Laboratory of Pulmonary Investigation, Centro de Ciências da Saúde, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Avenida Carlos Chagas Filho, S/N, Bloco G-014, Ilha Do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil
- Department of Physiology and Pharmacology, Biomedical Institute, Fluminense Federal University, Rio de Janeiro, Brazil
| | - Eduardo B Carvalho
- Laboratory of Pulmonary Investigation, Centro de Ciências da Saúde, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Avenida Carlos Chagas Filho, S/N, Bloco G-014, Ilha Do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Raquel F Magalhaes
- Laboratory of Pulmonary Investigation, Centro de Ciências da Saúde, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Avenida Carlos Chagas Filho, S/N, Bloco G-014, Ilha Do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Vera L Capelozzi
- Department of Pathology, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Chiara Robba
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
- Anesthesia and Critical Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy
| | - Paolo Pelosi
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
- Anesthesia and Critical Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy
| | - Cynthia S Samary
- Laboratory of Pulmonary Investigation, Centro de Ciências da Saúde, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Avenida Carlos Chagas Filho, S/N, Bloco G-014, Ilha Do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil
- Department of Cardiorespiratory and Musculoskeletal Physiotherapy, Faculty of Physiotherapy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Centro de Ciências da Saúde, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Avenida Carlos Chagas Filho, S/N, Bloco G-014, Ilha Do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Pedro L Silva
- Laboratory of Pulmonary Investigation, Centro de Ciências da Saúde, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Avenida Carlos Chagas Filho, S/N, Bloco G-014, Ilha Do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil.
| |
Collapse
|
2
|
Buiteman-Kruizinga LA, van Meenen DMP, Bos LDJ, van der Heiden PLJ, Paulus F, Schultz MJ. A closed-loop ventilation mode that targets the lowest work and force of breathing reduces the transpulmonary driving pressure in patients with moderate-to-severe ARDS. Intensive Care Med Exp 2023; 11:42. [PMID: 37442844 DOI: 10.1186/s40635-023-00527-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 06/01/2023] [Indexed: 07/15/2023] Open
Abstract
INTRODUCTION The driving pressure (ΔP) has an independent association with outcome in patients with acute respiratory distress syndrome (ARDS). INTELLiVENT-Adaptive Support Ventilation (ASV) is a closed-loop mode of ventilation that targets the lowest work and force of breathing. AIM To compare transpulmonary and respiratory system ΔP between closed-loop ventilation and conventional pressure controlled ventilation in patients with moderate-to-severe ARDS. METHODS Single-center randomized cross-over clinical trial in patients in the early phase of ARDS. Patients were randomly assigned to start with a 4-h period of closed-loop ventilation or conventional ventilation, after which the alternate ventilation mode was selected. The primary outcome was the transpulmonary ΔP; secondary outcomes included respiratory system ΔP, and other key parameters of ventilation. RESULTS Thirteen patients were included, and all had fully analyzable data sets. Compared to conventional ventilation, with closed-loop ventilation the median transpulmonary ΔP with was lower (7.0 [5.0-10.0] vs. 10.0 [8.0-11.0] cmH2O, mean difference - 2.5 [95% CI - 2.6 to - 2.1] cmH2O; P = 0.0001). Inspiratory transpulmonary pressure and the respiratory rate were also lower. Tidal volume, however, was higher with closed-loop ventilation, but stayed below generally accepted safety cutoffs in the majority of patients. CONCLUSIONS In this small physiological study, when compared to conventional pressure controlled ventilation INTELLiVENT-ASV reduced the transpulmonary ΔP in patients in the early phase of moderate-to-severe ARDS. This closed-loop ventilation mode also led to a lower inspiratory transpulmonary pressure and a lower respiratory rate, thereby reducing the intensity of ventilation. Trial registration Clinicaltrials.gov, NCT03211494, July 7, 2017. https://clinicaltrials.gov/ct2/show/NCT03211494?term=airdrop&draw=2&rank=1 .
Collapse
Affiliation(s)
- Laura A Buiteman-Kruizinga
- Department of Intensive Care, Reinier de Graaf Hospital, Delft, The Netherlands.
- Department of Intensive Care, Amsterdam University Medical Centers, Location 'AMC', Amsterdam, The Netherlands.
| | - David M P van Meenen
- Department of Intensive Care, Amsterdam University Medical Centers, Location 'AMC', Amsterdam, The Netherlands
- Department of Anesthesia, Amsterdam University Medical Centers, Location 'AMC', Amsterdam, The Netherlands
| | - Lieuwe D J Bos
- Department of Intensive Care, Amsterdam University Medical Centers, Location 'AMC', Amsterdam, The Netherlands
- Department of Respiratory Medicine, Amsterdam University Medical Centers, Location 'AMC', Amsterdam, The Netherlands
| | | | - Frederique Paulus
- Department of Intensive Care, Amsterdam University Medical Centers, Location 'AMC', Amsterdam, The Netherlands
- ACHIEVE, Centre of Applied Research, Faculty of Health, Amsterdam University of Applied Sciences, Amsterdam, The Netherlands
| | - Marcus J Schultz
- Department of Intensive Care, Amsterdam University Medical Centers, Location 'AMC', Amsterdam, The Netherlands
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Mahidol University, Bangkok, Thailand
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
3
|
Li P, Guo W, Fan J, Su C, Zhao X, Xu X. Fluid-structure interaction analysis of airflow, structural mechanics and aerosol dynamics in a four-generation acinar model. JOURNAL OF AEROSOL SCIENCE 2023; 171:106166. [PMID: 36938546 PMCID: PMC10010053 DOI: 10.1016/j.jaerosci.2023.106166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/27/2023] [Accepted: 03/07/2023] [Indexed: 05/05/2023]
Abstract
Elucidating the aerosol dynamics in the pulmonary acinar region is imperative for both health risk assessment and inhalation therapy, especially nowadays with the occurrence of the global COVID-19 pandemic. During respiration, the chest's outward elastic recoil and the lungs' inward elastic recoil lead to a change of transmural pressure, which drives the lungs to expand and contract to inhale and expel airflow and aerosol. In contrast to research using predefined wall motion, we developed a four-generation acinar model and applied an oscillatory pressure on the model outface to generate structure deformation and airflow. With such tools at hand, we performed a computational simulation that addressed both the airflow characteristic, structural mechanics, and aerosol dynamics in the human pulmonary acinar region. Our results showed that there is no recirculating flow in the sac. The structural displacement and stress were found to be positively related to the change of model volume and peaked at the end of inspiration. It was noteworthy that the stress distribution on the acinar wall was significantly heterogeneous, and obvious concentrations of stress were found at the junction of the alveoli and the ducts or the junction of the alveoli and alveoli in the sac. Our result demonstrated the effect of breathing cycles and aerosol diameter on deposition fraction and location of aerosols in the size range of 0.1-5 μm. Multiple respiratory cycles were found necessary for adequate deposition or escape of submicron particles while having a negligible influence on the transport of large particles, which were dominated by gravity. Our study can provide new insights into the further investigation of airflow, structural mechanics, and aerosol dynamics in the acinar depth.
Collapse
Affiliation(s)
- Penghui Li
- Department of Medical Support Technology, Institute of Systems Engineering, Academy of Military Sciences, Tianjin, 300161, China
| | - Weiqi Guo
- Department of Building Science, Tsinghua University, Beijing, 100084, China
| | - Jinbo Fan
- Department of Medical Support Technology, Institute of Systems Engineering, Academy of Military Sciences, Tianjin, 300161, China
| | - Chen Su
- Department of Medical Support Technology, Institute of Systems Engineering, Academy of Military Sciences, Tianjin, 300161, China
| | - Xiuguo Zhao
- Department of Medical Support Technology, Institute of Systems Engineering, Academy of Military Sciences, Tianjin, 300161, China
| | - Xinxi Xu
- Department of Medical Support Technology, Institute of Systems Engineering, Academy of Military Sciences, Tianjin, 300161, China
| |
Collapse
|
4
|
de Carvalho EB, Fonseca ACF, Magalhães R, Pinto EF, Samary CDS, Antunes MA, Baldavira CM, da Silveira LKR, Teodoro WR, de Abreu MG, Capelozzi VL, Felix NS, Pelosi P, Rocco PRM, Silva PL. Effects of different fluid management on lung and kidney during pressure-controlled and pressure-support ventilation in experimental acute lung injury. Physiol Rep 2022; 10:e15429. [PMID: 36065867 PMCID: PMC9446390 DOI: 10.14814/phy2.15429] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 07/22/2022] [Accepted: 07/29/2022] [Indexed: 04/24/2023] Open
Abstract
Optimal fluid management is critical during mechanical ventilation to mitigate lung damage. Under normovolemia and protective ventilation, pulmonary tensile stress during pressure-support ventilation (PSV) results in comparable lung protection to compressive stress during pressure-controlled ventilation (PCV) in experimental acute lung injury (ALI). It is not yet known whether tensile stress can lead to comparable protection to compressive stress in ALI under a liberal fluid strategy (LF). A conservative fluid strategy (CF) was compared with LF during PSV and PCV on lungs and kidneys in an established model of ALI. Twenty-eight male Wistar rats received endotoxin intratracheally. After 24 h, they were treated with CF (minimum volume of Ringer's lactate to maintain normovolemia and mean arterial pressure ≥70 mmHg) or LF (~4 times higher than CF) combined with PSV or PCV (VT = 6 ml/kg, PEEP = 3 cmH2 O) for 1 h. Nonventilated animals (n = 4) were used for molecular biology analyses. CF-PSV compared with LF-PSV: (1) decreased the diffuse alveolar damage score (10 [7.8-12] vs. 25 [23-31.5], p = 0.006), mainly due to edema in axial and alveolar parenchyma; (2) increased birefringence for occludin and claudin-4 in lung tissue and expression of zonula-occludens-1 and metalloproteinase-9 in lung. LF compared with CF reduced neutrophil gelatinase-associated lipocalin and interleukin-6 expression in the kidneys in PSV and PCV. In conclusion, CF compared with LF combined with PSV yielded less lung epithelial cell damage in the current model of ALI. However, LF compared with CF resulted in less kidney injury markers, regardless of the ventilatory strategy.
Collapse
Affiliation(s)
- Eduardo Butturini de Carvalho
- Laboratory of Pulmonary Investigation, Institute of Biophysics Carlos Chagas FilhoFederal University of Rio de JaneiroRio de JaneiroRJBrazil
- University of VassourasVassourasRJBrazil
| | - Ana Carolina Fernandes Fonseca
- Laboratory of Pulmonary Investigation, Institute of Biophysics Carlos Chagas FilhoFederal University of Rio de JaneiroRio de JaneiroRJBrazil
| | - Raquel Ferreira Magalhães
- Laboratory of Pulmonary Investigation, Institute of Biophysics Carlos Chagas FilhoFederal University of Rio de JaneiroRio de JaneiroRJBrazil
| | - Eliete Ferreira Pinto
- Laboratory of Pulmonary Investigation, Institute of Biophysics Carlos Chagas FilhoFederal University of Rio de JaneiroRio de JaneiroRJBrazil
| | - Cynthia dos Santos Samary
- Laboratory of Pulmonary Investigation, Institute of Biophysics Carlos Chagas FilhoFederal University of Rio de JaneiroRio de JaneiroRJBrazil
| | - Mariana Alves Antunes
- Laboratory of Pulmonary Investigation, Institute of Biophysics Carlos Chagas FilhoFederal University of Rio de JaneiroRio de JaneiroRJBrazil
| | | | | | | | - Marcelo Gama de Abreu
- Pulmonary Engineering Group, Department of Anaesthesiology and Intensive Care Therapy, Technische Universität DresdenUniversity Hospital Carl Gustav CarusDresdenGermany
- Department of Intensive Care and Resuscitation, Anesthesiology InstituteCleveland ClinicClevelandOhioUSA
- Department of Outcomes Research, Anesthesiology InstituteCleveland ClinicClevelandOhioUSA
| | - Vera Luiza Capelozzi
- Department of Pathology, School of MedicineUniversity of São PauloSão PauloBrazil
| | - Nathane Santanna Felix
- Laboratory of Pulmonary Investigation, Institute of Biophysics Carlos Chagas FilhoFederal University of Rio de JaneiroRio de JaneiroRJBrazil
| | - Paolo Pelosi
- Department of Surgical Sciences and Integrated DiagnosticsUniversity of GenoaGenoaItaly
- Anesthesia and Critical Care, San Martino Policlinico HospitalIRCCS for Oncology and NeurosciencesGenoaItaly
| | - Patrícia Rieken Macêdo Rocco
- Laboratory of Pulmonary Investigation, Institute of Biophysics Carlos Chagas FilhoFederal University of Rio de JaneiroRio de JaneiroRJBrazil
| | - Pedro Leme Silva
- Laboratory of Pulmonary Investigation, Institute of Biophysics Carlos Chagas FilhoFederal University of Rio de JaneiroRio de JaneiroRJBrazil
| |
Collapse
|
5
|
Silva PL, Ball L, Rocco PRM, Pelosi P. Physiological and Pathophysiological Consequences of Mechanical Ventilation. Semin Respir Crit Care Med 2022; 43:321-334. [PMID: 35439832 DOI: 10.1055/s-0042-1744447] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mechanical ventilation is a life-support system used to ensure blood gas exchange and to assist the respiratory muscles in ventilating the lung during the acute phase of lung disease or following surgery. Positive-pressure mechanical ventilation differs considerably from normal physiologic breathing. This may lead to several negative physiological consequences, both on the lungs and on peripheral organs. First, hemodynamic changes can affect cardiovascular performance, cerebral perfusion pressure (CPP), and drainage of renal veins. Second, the negative effect of mechanical ventilation (compression stress) on the alveolar-capillary membrane and extracellular matrix may cause local and systemic inflammation, promoting lung and peripheral-organ injury. Third, intra-abdominal hypertension may further impair lung and peripheral-organ function during controlled and assisted ventilation. Mechanical ventilation should be optimized and personalized in each patient according to individual clinical needs. Multiple parameters must be adjusted appropriately to minimize ventilator-induced lung injury (VILI), including: inspiratory stress (the respiratory system inspiratory plateau pressure); dynamic strain (the ratio between tidal volume and the end-expiratory lung volume, or inspiratory capacity); static strain (the end-expiratory lung volume determined by positive end-expiratory pressure [PEEP]); driving pressure (the difference between the respiratory system inspiratory plateau pressure and PEEP); and mechanical power (the amount of mechanical energy imparted as a function of respiratory rate). More recently, patient self-inflicted lung injury (P-SILI) has been proposed as a potential mechanism promoting VILI. In the present chapter, we will discuss the physiological and pathophysiological consequences of mechanical ventilation and how to personalize mechanical ventilation parameters.
Collapse
Affiliation(s)
- Pedro Leme Silva
- Laboratory of Pulmonary Investigation, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lorenzo Ball
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy.,Department of Anesthesia and Critical Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, Genoa, Italy
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paolo Pelosi
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy.,Department of Anesthesia and Critical Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, Genoa, Italy
| |
Collapse
|
6
|
Nakazawa K, Kodaira A, Matsumoto R, Matsushita T, Yoshikawa R, Ishida Y, Uchino H. Positive end-expiratory pressure setting based on transpulmonary pressure during robot-assisted laparoscopic prostatectomy: an observational intervention study. JA Clin Rep 2022; 8:10. [PMID: 35150377 PMCID: PMC8840948 DOI: 10.1186/s40981-022-00501-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/22/2022] [Accepted: 02/04/2022] [Indexed: 11/10/2022] Open
Abstract
Background In robot-assisted laparoscopic prostatectomy (RALP), concerns include the formation of atelectasis and reduced functional residual capacity. The present study aimed to examine the feasibility of positive end-expiratory pressure (PEEP) setting based on transpulmonary pressure (Ptp) as well as the effects of incremental PEEP on respiratory mechanics, blood gases, cerebral oxygenation (rSO2), and hemodynamics. Methods Fourteen male patients who were scheduled to receive RALP were recruited. Patients received mechanical ventilation (tidal volume of 6 mL kg−1) and were placed in Trendelenburg position with positive-pressure capnoperitoneum. PEEP levels were increased from 0 to 15 cmH2O (5 cmH2O per increase) every 30 min. PEEP levels were assessed where end-expiratory Ptp levels of ≥0 cmH2O were achieved (PtpEEP0). Airway pressure, esophageal pressure, cardiac index, and blood gas and rSO2 values were measured after 30 min at each PEEP step and respiratory mechanics were calculated. Results With increasing PEEP levels from 0 to 15 cmH2O or PtpEEP0, the values of PaO2 and respiratory system compliance increased, and the values of driving pressure decreased. The median PEEP level associated with PtpEEP0 was 15 cmH2O. Respiratory system compliance values were higher at PtpEEP0 than those at PEEP5 (P = 0.02). Driving pressure was significantly lower at PtpEEP0 than at PEEP5 (P = 0.0036). The cardiac index remained unchanged, and the values of rSO2 were higher at PtpEEP0 than at PEEP0 (right; P = 0.0019, left; P = 0.036). Conclusions PEEP setting determined by transpulmonary pressure can help achieve higher respiratory system compliance values and lower driving pressure without disturbing hemodynamic parameters.
Collapse
Affiliation(s)
- Koichi Nakazawa
- Department of Anesthesia, Tokyo Medical University Hospital, 6-7-1 Nishishinjyuku, Shinjyuku-ku, Tokyo, 1600023, Japan.
| | - Ami Kodaira
- Department of Anesthesia, Mitsui Memorial Hospital, Kanda-Izumi-cho 1, Chiyoda-ku, Tokyo, 101-8643, Japan
| | - Rika Matsumoto
- Department of Anesthesia, Tokyo Medical University Hospital, 6-7-1 Nishishinjyuku, Shinjyuku-ku, Tokyo, 1600023, Japan
| | - Tomoko Matsushita
- Department of Anesthesia, Tokyo Medical University Hospital, 6-7-1 Nishishinjyuku, Shinjyuku-ku, Tokyo, 1600023, Japan
| | - Ryotaro Yoshikawa
- Department of Anesthesia, Tokyo Medical University Hospital, 6-7-1 Nishishinjyuku, Shinjyuku-ku, Tokyo, 1600023, Japan
| | - Yusuke Ishida
- Department of Anesthesia, Tokyo Medical University Hospital, 6-7-1 Nishishinjyuku, Shinjyuku-ku, Tokyo, 1600023, Japan
| | - Hiroyuki Uchino
- Department of Anesthesia, Tokyo Medical University Hospital, 6-7-1 Nishishinjyuku, Shinjyuku-ku, Tokyo, 1600023, Japan
| |
Collapse
|
7
|
Fabo C, Oszlanyi A, Lantos J, Rarosi F, Horvath T, Barta Z, Nemeth T, Szabo Z. Non-intubated Thoracoscopic Surgery-Tips and Tricks From Anesthesiological Aspects: A Mini Review. Front Surg 2022; 8:818456. [PMID: 35223971 PMCID: PMC8873170 DOI: 10.3389/fsurg.2021.818456] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 12/30/2021] [Indexed: 11/13/2022] Open
Abstract
Background In the last few decades, surgical techniques have been developed in thoracic surgery, and minimally invasive strategies such as multi-and uniportal video-assisted thoracic surgery (VATS) have become more favorable even for major pulmonary resections. With this surgical evolution, the aesthetic approach has also changed, and a paradigm shift has occurred. The traditional conception of general anesthesia, muscle relaxation, and intubation has been re-evaluated, and spontaneous breathing plays a central role in our practice by performing non-intubated thoracoscopic surgeries (NITS-VATS). Methods We performed a computerized search of the medical literature (PubMed, Google Scholar, Scopus) to identify relevant articles in non-intubated thoracoscopic surgery using the following terms [(non-intubated) OR (non-intubated) OR (awake) OR (tubeless) OR (regional anesthesia)] AND [(VATS) OR (NIVATS)], as well as their Medical Subject Headings (MeSH) terms. Results Based on the outcomes of the reviewed literature and our practice, it seems that pathophysiological concerns can be overcome by proper surgical and anesthetic management. All risks are compensated by the advantageous physiological changes that result in better patient outcomes. With the maintenance of spontaneous breathing, the incidence of potential adverse effects of mechanical ventilation, such as ventilator-induced lung injury and consequent postoperative pulmonary complications, can be reduced. The avoidance of muscle relaxants also results in the maintenance of contraction of the dependent hemidiaphragm and lower airway pressure levels, which may lead to better ventilation-perfusion matching. These techniques can be challenging for surgeons as well as for anesthetists; hence, a good knowledge of physiological and pathophysiological changes, clear inclusion and exclusion and intraoperative conversion criteria, and good communication between team members are essential. Conclusion NITS-VATS seems to be a feasible and safe method in selected patients with evolving importance as a part of the minimally invasive surgical and anesthetic conception and has a role in reducing perioperative complications, which is crucial in the thoracic surgical patient population.
Collapse
Affiliation(s)
- Csongor Fabo
- Department of Anesthesiology and Intensive Care, University of Szeged, Szeged, Hungary
| | - Adam Oszlanyi
- Department of Cardiac Surgery, Zala County St. Raphael Hospital, Zalaegerszeg, Hungary
| | - Judit Lantos
- Department of Neurology, Bács- Kiskun County Hospital, Kecskemét, Hungary
| | - Ferenc Rarosi
- Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary
| | | | - Zsanett Barta
- Department of Surgery, University of Szeged, Szeged, Hungary
| | - Tibor Nemeth
- Department of Surgery, University of Szeged, Szeged, Hungary
| | - Zsolt Szabo
- Ars Medica Laser Surgery Hospital, Budapest, Hungary
- *Correspondence: Zsolt Szabo
| |
Collapse
|
8
|
Baron R, Kadlecek S, Loza L, Xin Y, Amzajerdian F, Duncan I, Hamedani H, Rizi R. Deriving Regionally Specific Biomarkers of Emphysema and Small Airways Disease Using Variable Threshold Parametric Response Mapping on Volumetric Lung CT Images. Acad Radiol 2022; 29 Suppl 2:S127-S136. [PMID: 34272162 PMCID: PMC8755853 DOI: 10.1016/j.acra.2021.05.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 02/03/2023]
Abstract
PURPOSE This study aims to develop and validate a parametric response mapping (PRM) methodology to accurately identify diseased regions of the lung by using variable thresholds to account for alterations in regional lung function between the gravitationally-independent (anterior) and gravitationally-dependent (posterior) lung in CT images acquired in the supine position. METHODS 34 male Sprague-Dawley rats (260-540 g) were imaged, 4 of which received elastase injection (100 units/kg) as a model for emphysema (EMPH). Gated volumetric CT was performed at end-inspiration (EI) and end-expiration (EE) on separate groups of free-breathing (n = 20) and ventilated (n = 10) rats in the supine position. To derive variable thresholds for the new PRM methodology, voxels were first grouped into 100 bins based on the fractional distance along the anterior-to-posterior direction. Lower limits of normal (LLN) for x-ray attenuation in each bin were set by determining the smallest region that enclosed 98% of voxels from healthy, ventilated animals. RESULTS When utilizing fixed thresholds in the conventional PRM methodology, a distinct posterior-anterior gradient was seen, in which nearly the entire posterior region of the lung was identified as HEALTHY, while the anterior lung was labeled as significantly less so (t(29) = -3.27, p = 0.003). In both cohorts, %SAD progressively increased from posterior to anterior, while %HEALTHY lung decreased in the same direction. After applying our PRM methodology with variable thresholds to the same rat images, the posterior-anterior trend in %SAD quantification was removed from all rats and the significant increase of diseased lung in the anterior was removed. CONCLUSIONS The PRM methodology using variable thresholds provides regionally specific markers of %SAD and %EMPH by correcting for alterations in regional lung function associated with the naturally occurring vertical gradient of dependent vs. non-dependent lung density and compliance.
Collapse
Affiliation(s)
- Ryan Baron
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Steve Kadlecek
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Luis Loza
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yi Xin
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Faraz Amzajerdian
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ian Duncan
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hooman Hamedani
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rahim Rizi
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
9
|
İnci K, Boyacı N, Kara İ, Gürsel G. Assessment of different computing methods of inspiratory transpulmonary pressure in patients with multiple mechanical problems. J Clin Monit Comput 2021; 36:1173-1180. [PMID: 34480238 PMCID: PMC8415196 DOI: 10.1007/s10877-021-00751-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 08/24/2021] [Indexed: 11/15/2022]
Abstract
While plateau airway pressure alone is an unreliable estimate of lung overdistension inspiratory transpulmonary pressure (PL) is an important parameter to reflect it in patients with ARDS and there is no concensus about which computation method should be used to calculate it. Recent studies suggest that different formulas may lead to different tidal volume and PEEP settings. The aim of this study is to compare 3 different inspiratory PL measurement method; direct measurement (PLD), elastance derived (PLE) and release derived (PLR) methods in patients with multiple mechanical abnormalities. 34 patients were included in this prospective observational study. Measurements were obtained during volume controlled mechanical ventilation in sedated and paralyzed patients. During the study day airway and eosephageal pressures, flow, tidal volume were measured and elastance, inspiratory PLE, PLD and PLR were calculated. Mean age of the patients was 67 ± 15 years and APACHE II score was 27 ± 7. Most frequent diagnosis of the patients were pneumonia (71%), COPD exacerbation(56%), pleural effusion (55%) and heart failure(50%). Mean plateau pressure of the patients was 22 ± 5 cmH2O and mean respiratory system elastance was 36.7 ± 13 cmH2O/L. EL/ERS% was 0.75 ± 0.35%. Mean expiratory transpulmonary pressure was 0.54 ± 7.7 cmH2O (min: − 21, max: 12). Mean PLE (18 ± 9 H2O) was significantly higher than PLD (13 ± 9 cmH2O) and PLR methods (11 ± 9 cmH2O). There was a good aggreement and there was no bias between the measurements in Bland–Altman analysis. The estimated bias was similar between the PLD and PLE (− 3.12 ± 11 cmH2O) and PLE and PLR (3.9 ± 10.9 cmH2O) measurements. Our results suggest that standardization of calculation method of inspiratory PL is necessary before using it routinely to estimate alveolar overdistension.
Collapse
Affiliation(s)
- Kamil İnci
- Critical Care Training Programme, Division of Critical Care, Department of Internal Medicine, School of Medicine, Gazi University, Ankara, Turkey
| | - Nazlıhan Boyacı
- Critical Care Training Programme, Division of Critical Care, Department of Internal Medicine, School of Medicine, Gazi University, Ankara, Turkey
| | - İskender Kara
- Critical Care Training Programme, Division of Critical Care, Department of Anaesthesiology, School of Medicine, Gazi University, Ankara, Turkey.
| | - Gül Gürsel
- Critical Care Training Programme, Department of Pulmonary Critical Care Medicine, School of Medicine, Gazi University, Ankara, Turkey
| |
Collapse
|
10
|
Battaglini D, Robba C, Ball L, Silva PL, Cruz FF, Pelosi P, Rocco PRM. Noninvasive respiratory support and patient self-inflicted lung injury in COVID-19: a narrative review. Br J Anaesth 2021; 127:353-364. [PMID: 34217468 PMCID: PMC8173496 DOI: 10.1016/j.bja.2021.05.024] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/17/2021] [Accepted: 05/16/2021] [Indexed: 12/20/2022] Open
Abstract
COVID-19 pneumonia is associated with hypoxaemic respiratory failure, ranging from mild to severe. Because of the worldwide shortage of ICU beds, a relatively high number of patients with respiratory failure are receiving prolonged noninvasive respiratory support, even when their clinical status would have required invasive mechanical ventilation. There are few experimental and clinical data reporting that vigorous breathing effort during spontaneous ventilation can worsen lung injury and cause a phenomenon that has been termed patient self-inflicted lung injury (P-SILI). The aim of this narrative review is to provide an overview of P-SILI pathophysiology and the role of noninvasive respiratory support in COVID-19 pneumonia. Respiratory mechanics, vascular compromise, viscoelastic properties, lung inhomogeneity, work of breathing, and oesophageal pressure swings are discussed. The concept of P-SILI has been widely investigated in recent years, but controversies persist regarding its mechanisms. To minimise the risk of P-SILI, intensivists should better understand its underlying pathophysiology to optimise the type of noninvasive respiratory support provided to patients with COVID-19 pneumonia, and decide on the optimal timing of intubation for these patients.
Collapse
Affiliation(s)
- Denise Battaglini
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, Genoa, Italy; Department of Medicine, University of Barcelona, Barcelona, Spain
| | - Chiara Robba
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, Genoa, Italy; Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
| | - Lorenzo Ball
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, Genoa, Italy; Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
| | - Pedro L Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; COVID-19 Virus Network, Ministry of Science, Technology, and Innovation, Brasilia, Brazil
| | - Fernanda F Cruz
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; COVID-19 Virus Network, Ministry of Science, Technology, and Innovation, Brasilia, Brazil
| | - Paolo Pelosi
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, Genoa, Italy; Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; COVID-19 Virus Network, Ministry of Science, Technology, and Innovation, Brasilia, Brazil.
| |
Collapse
|
11
|
Scaramuzzo G, Spadaro S, Spinelli E, Waldmann AD, Bohm SH, Ottaviani I, Montanaro F, Gamberini L, Marangoni E, Mauri T, Volta CA. Calculation of Transpulmonary Pressure From Regional Ventilation Displayed by Electrical Impedance Tomography in Acute Respiratory Distress Syndrome. Front Physiol 2021; 12:693736. [PMID: 34349666 PMCID: PMC8327175 DOI: 10.3389/fphys.2021.693736] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 06/14/2021] [Indexed: 01/21/2023] Open
Abstract
Transpulmonary driving pressure (DPL) corresponds to the cyclical stress imposed on the lung parenchyma during tidal breathing and, therefore, can be used to assess the risk of ventilator-induced lung injury (VILI). Its measurement at the bedside requires the use of esophageal pressure (Peso), which is sometimes technically challenging. Recently, it has been demonstrated how in an animal model of ARDS, the transpulmonary pressure (PL) measured with Peso calculated with the absolute values method (PL = Paw—Peso) is equivalent to the transpulmonary pressure directly measured using pleural sensors in the central-dependent part of the lung. We hypothesized that, since the PL derived from Peso reflects the regional behavior of the lung, it could exist a relationship between regional parameters measured by electrical impedance tomography (EIT) and driving PL (DPL). Moreover, we explored if, by integrating airways pressure data and EIT data, it could be possible to estimate non-invasively DPL and consequently lung elastance (EL) and elastance-derived inspiratory PL (PI). We analyzed 59 measurements from 20 patients with ARDS. There was a significant intra-patient correlation between EIT derived regional compliance in regions of interest (ROI1) (r = 0.5, p = 0.001), ROI2 (r = −0.68, p < 0.001), and ROI3 (r = −0.4, p = 0.002), and DPL. A multiple linear regression successfully predicted DPL based on respiratory system elastance (Ers), ideal body weight (IBW), roi1%, roi2%, and roi3% (R2 = 0.84, p < 0.001). The corresponding Bland-Altmann analysis showed a bias of −1.4e-007 cmH2O and limits of agreement (LoA) of −2.4–2.4 cmH2O. EL and PI calculated using EIT showed good agreement (R2 = 0.89, p < 0.001 and R2 = 0.75, p < 0.001) with the esophageal derived correspondent variables. In conclusion, DPL has a good correlation with EIT-derived parameters in the central lung. DPL, PI, and EL can be estimated with good accuracy non-invasively combining information coming from EIT and airway pressure.
Collapse
Affiliation(s)
- Gaetano Scaramuzzo
- Department of Translational Medicine and for Romagna, University of Ferrara, Ferrara, Italy
| | - Savino Spadaro
- Department of Translational Medicine and for Romagna, University of Ferrara, Ferrara, Italy
| | - Elena Spinelli
- Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Andreas D Waldmann
- Department of Anesthesiology and Intensive Care Medicine, Rostock University Medical Center, Rostock, Germany
| | - Stephan H Bohm
- Department of Anesthesiology and Intensive Care Medicine, Rostock University Medical Center, Rostock, Germany
| | - Irene Ottaviani
- Department of Translational Medicine and for Romagna, University of Ferrara, Ferrara, Italy
| | - Federica Montanaro
- Department of Translational Medicine and for Romagna, University of Ferrara, Ferrara, Italy
| | - Lorenzo Gamberini
- Department of Anaesthesia, Intensive Care and Prehospital Emergency, Ospedale Maggiore Carlo Alberto Pizzardi, Bologna, Italy
| | - Elisabetta Marangoni
- Department of Translational Medicine and for Romagna, University of Ferrara, Ferrara, Italy
| | - Tommaso Mauri
- Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplant, University of Milan, Milan, Italy
| | - Carlo Alberto Volta
- Department of Translational Medicine and for Romagna, University of Ferrara, Ferrara, Italy
| |
Collapse
|
12
|
Pelosi P, Ball L, Barbas CSV, Bellomo R, Burns KEA, Einav S, Gattinoni L, Laffey JG, Marini JJ, Myatra SN, Schultz MJ, Teboul JL, Rocco PRM. Personalized mechanical ventilation in acute respiratory distress syndrome. Crit Care 2021; 25:250. [PMID: 34271958 PMCID: PMC8284184 DOI: 10.1186/s13054-021-03686-3] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 07/08/2021] [Indexed: 01/22/2023] Open
Abstract
A personalized mechanical ventilation approach for patients with adult respiratory distress syndrome (ARDS) based on lung physiology and morphology, ARDS etiology, lung imaging, and biological phenotypes may improve ventilation practice and outcome. However, additional research is warranted before personalized mechanical ventilation strategies can be applied at the bedside. Ventilatory parameters should be titrated based on close monitoring of targeted physiologic variables and individualized goals. Although low tidal volume (VT) is a standard of care, further individualization of VT may necessitate the evaluation of lung volume reserve (e.g., inspiratory capacity). Low driving pressures provide a target for clinicians to adjust VT and possibly to optimize positive end-expiratory pressure (PEEP), while maintaining plateau pressures below safety thresholds. Esophageal pressure monitoring allows estimation of transpulmonary pressure, but its use requires technical skill and correct physiologic interpretation for clinical application at the bedside. Mechanical power considers ventilatory parameters as a whole in the optimization of ventilation setting, but further studies are necessary to assess its clinical relevance. The identification of recruitability in patients with ARDS is essential to titrate and individualize PEEP. To define gas-exchange targets for individual patients, clinicians should consider issues related to oxygen transport and dead space. In this review, we discuss the rationale for personalized approaches to mechanical ventilation for patients with ARDS, the role of lung imaging, phenotype identification, physiologically based individualized approaches to ventilation, and a future research agenda.
Collapse
Affiliation(s)
- Paolo Pelosi
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, Genoa, Italy.
- Department of Surgical Sciences and Integrated Diagnostic (DISC), University of Genoa, Viale Benedetto XV 16, Genoa, Italy.
| | - Lorenzo Ball
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, Genoa, Italy
- Department of Surgical Sciences and Integrated Diagnostic (DISC), University of Genoa, Viale Benedetto XV 16, Genoa, Italy
| | - Carmen S V Barbas
- Pneumology and Intensive Care Medicine, University of São Paulo, São Paulo, Brazil
- Adult Intensive Care Unit, Albert Einstein Hospital, São Paulo, Brazil
| | - Rinaldo Bellomo
- Department of Intensive Care, Austin Hospital, Melbourne, VIC, Australia
- Department of Epidemiology and Preventive Medicine, Australian and New Zealand Intensive Care Research Centre, Monash University, Melbourne, VIC, Australia
- Data Analytics Research and Evaluation Centre, The University of Melbourne and Austin Hospital, Melbourne, Australia
- Department of Intensive Care, Royal Melbourne Hospital, Melbourne, VIC, Australia
- Department of Critical Care, The University of Melbourne, Melbourne, Australia
| | - Karen E A Burns
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
- Unity Health Toronto-St. Michael's Hospital, Li Ka Shing Knowledge Institute, Toronto, ON, Canada
| | - Sharon Einav
- Intensive Care Unit of the Shaare Zedek Medical Medical Centre, Hebrew University Faculty of Medicine, Jerusalem, Israel
| | - Luciano Gattinoni
- Department of Anaesthesiology, Emergency, and Intensive Care Medicine, University of Göttingen, Göttingen, Germany
| | - John G Laffey
- Anaesthesia and Intensive Care Medicine, University Hospital Galway, and School of Medicine, National University of Ireland, Galway, Ireland
| | - John J Marini
- University of Minnesota and Regions Hospital, St. Paul, MN, USA
| | - Sheila N Myatra
- Department of Anaesthesiology, Critical Care and Pain, Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, India
| | - Marcus J Schultz
- Mahidol Oxford Tropical Medicine Research Unit (MORU), Mahidol University, Bangkok, Thailand
- Department of Intensive Care, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Jean Louis Teboul
- Service de Médecine Intensive-Réanimation, Hôpital Bicêtre, Inserm UMR S_999, AP-HP Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
13
|
Scaramuzzo G, Spadaro S, Waldmann AD, Böhm SH, Ragazzi R, Marangoni E, Alvisi V, Spinelli E, Mauri T, Volta CA. Heterogeneity of regional inflection points from pressure-volume curves assessed by electrical impedance tomography. Crit Care 2019; 23:119. [PMID: 30992054 PMCID: PMC6469223 DOI: 10.1186/s13054-019-2417-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 04/01/2019] [Indexed: 11/10/2022] Open
Abstract
Background The pressure-volume (P-V) curve has been suggested as a bedside tool to set mechanical ventilation; however, it reflects a global behavior of the lung without giving information on the regional mechanical properties. Regional P-V (PVr) curves derived from electrical impedance tomography (EIT) could provide valuable clinical information at bedside, being able to explore the regional mechanics of the lung. In the present study, we hypothesized that regional P-V curves would provide different information from those obtained from global P-V curves, both in terms of upper and lower inflection points. Therefore, we constructed pressure-volume curves for each pixel row from non-dependent to dependent lung regions of patients affected by acute hypoxemic respiratory failure (AHRF) and acute respiratory distress syndrome (ARDS). Methods We analyzed slow-inflation P-V maneuvers data from 12 mechanically ventilated patients. During the inflation, the pneumotachograph was used to record flow and airway pressure while the EIT signals were recorded digitally. From each maneuver, global respiratory system P-V curve (PVg) and PVr curves were obtained, each one corresponding to a pixel row within the EIT image. PVg and PVr curves were fitted using a sigmoidal equation, and the upper (UIP) and lower (LIP) inflection points for each curve were mathematically identified; LIP and UIP from PVg were respectively called LIPg and UIPg. From each measurement, the highest regional LIP (LIPrMAX) and the lowest regional UIP (UIPrMIN) were identified and the pressure difference between those two points was defined as linear driving pressure (ΔPLIN). Results A significant difference (p < 0.001) was found between LIPrMAX (15.8 [9.2–21.1] cmH2O) and LIPg (2.9 [2.2–8.9] cmH2O); in all measurements, the LIPrMAX was higher than the corresponding LIPg. We found a significant difference (p < 0.005) between UIPrMIN (30.1 [23.5–37.6] cmH2O) and UIPg (40.5 [34.2–45] cmH2O), the UIPrMIN always being lower than the corresponding UIPg. Median ΔPLIN was 12.6 [7.4–20.8] cmH2O and in 56% of cases was < 14 cmH2O. Conclusions Regional inflection points derived by EIT show high variability reflecting lung heterogeneity. Regional P-V curves obtained by EIT could convey more sensitive information than global lung mechanics on the pressures within which all lung regions express linear compliance. Trial registration Clinicaltrials.gov, NCT02907840. Registered on 20 September 2016. Electronic supplementary material The online version of this article (10.1186/s13054-019-2417-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gaetano Scaramuzzo
- Department of Morphology, Surgery and Experimental Medicine, Intensive Care Unit, University of Ferrara, Azienda Ospedaliera - Universitaria Sant'Anna Hospital, Via Aldo Moro, Ferrara, Italy
| | - Savino Spadaro
- Department of Morphology, Surgery and Experimental Medicine, Intensive Care Unit, University of Ferrara, Azienda Ospedaliera - Universitaria Sant'Anna Hospital, Via Aldo Moro, Ferrara, Italy.
| | - Andreas D Waldmann
- Department of Anesthesiology and Intensive Care Medicine, Rostock University Medical Center, Rostock, Germany
| | - Stephan H Böhm
- Department of Anesthesiology and Intensive Care Medicine, Rostock University Medical Center, Rostock, Germany
| | - Riccardo Ragazzi
- Department of Morphology, Surgery and Experimental Medicine, Intensive Care Unit, University of Ferrara, Azienda Ospedaliera - Universitaria Sant'Anna Hospital, Via Aldo Moro, Ferrara, Italy
| | - Elisabetta Marangoni
- Department of Morphology, Surgery and Experimental Medicine, Intensive Care Unit, University of Ferrara, Azienda Ospedaliera - Universitaria Sant'Anna Hospital, Via Aldo Moro, Ferrara, Italy
| | - Valentina Alvisi
- Department of Morphology, Surgery and Experimental Medicine, Intensive Care Unit, University of Ferrara, Azienda Ospedaliera - Universitaria Sant'Anna Hospital, Via Aldo Moro, Ferrara, Italy
| | - Elena Spinelli
- Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) Ca' Granda, University of Milan, Milan, Italy
| | - Tommaso Mauri
- Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) Ca' Granda, University of Milan, Milan, Italy
| | - Carlo Alberto Volta
- Department of Morphology, Surgery and Experimental Medicine, Intensive Care Unit, University of Ferrara, Azienda Ospedaliera - Universitaria Sant'Anna Hospital, Via Aldo Moro, Ferrara, Italy
| |
Collapse
|