1
|
Proteomics as a Tool for the Study of Mitochondrial Proteome, Its Dysfunctionality and Pathological Consequences in Cardiovascular Diseases. Int J Mol Sci 2023; 24:ijms24054692. [PMID: 36902123 PMCID: PMC10003354 DOI: 10.3390/ijms24054692] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 03/04/2023] Open
Abstract
The focus of this review is on the proteomic approaches applied to the study of the qualitative/quantitative changes in mitochondrial proteins that are related to impaired mitochondrial function and consequently different types of pathologies. Proteomic techniques developed in recent years have created a powerful tool for the characterization of both static and dynamic proteomes. They can detect protein-protein interactions and a broad repertoire of post-translation modifications that play pivotal roles in mitochondrial regulation, maintenance and proper function. Based on accumulated proteomic data, conclusions can be derived on how to proceed in disease prevention and treatment. In addition, this article will present an overview of the recently published proteomic papers that deal with the regulatory roles of post-translational modifications of mitochondrial proteins and specifically with cardiovascular diseases connected to mitochondrial dysfunction.
Collapse
|
2
|
Mitochondrial Features and Expressions of MFN2 and DRP1 during Spermiogenesis in Phascolosoma esculenta. Int J Mol Sci 2022; 23:ijms232415517. [PMID: 36555170 PMCID: PMC9778712 DOI: 10.3390/ijms232415517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/19/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022] Open
Abstract
Mitochondria can fuse or divide, a phenomenon known as mitochondrial dynamics, and their distribution within a cell changes according to the physiological status of the cell. However, the functions of mitochondrial dynamics during spermatogenesis in animals other than mammals and fruit flies are poorly understood. In this study, we analyzed mitochondrial distribution and morphology during spermiogenesis in Sipuncula (Phascolosoma esculenta) and investigated the expression dynamics of mitochondrial fusion-related protein MFN2 and fission-related protein DRP1 during spermiogenesis. The mitochondria, which were elliptic with abundant lamellar cristae, were mainly localized near the nucleus and distributed unilaterally in cells during most stages of spermiogenesis. Their major axis length, average diameter, cross-sectional area, and volume are significantly changed during spermiogenesis. mfn2 and drp1 mRNA and proteins were most highly expressed in coelomic fluid, a spermatid development site for male P. esculenta, and highly expressed in the breeding stage compared to in the non-breeding stage. MFN2 and DRP1 expression levels were higher in components with many spermatids than in spermatid-free components. Immunofluorescence revealed that MFN2 and DRP1 were consistently expressed and that MFN2 co-localizes with mitochondria during spermiogenesis. The results provide evidence for an important role of mitochondrial dynamics during spermiogenesis from morphology and molecular biology in P. esculenta, broadening insights into the role of mitochondrial dynamics in animal spermiogenesis.
Collapse
|
3
|
Vikramdeo KS, Anand S, Khan MA, Khushman M, Heslin MJ, Singh S, Singh AP, Dasgupta S. Detection of mitochondrial DNA mutations in circulating mitochondria-originated extracellular vesicles for potential diagnostic applications in pancreatic adenocarcinoma. Sci Rep 2022; 12:18455. [PMID: 36323735 PMCID: PMC9630429 DOI: 10.1038/s41598-022-22006-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/07/2022] [Indexed: 11/07/2022] Open
Abstract
There is a complete lack of highly sensitive and specific biomarkers for early pancreatic ductal adenocarcinoma (PDAC) diagnosis, limiting multi-modal therapeutic options. Mitochondrial DNA (mtDNA) is an excellent resource for biomarker discovery because of its high copy number and increased mutational frequency in cancer cells. We examined if mtDNA mutations can be detected in circulating extracellular vesicles (EVs) of PDAC patients and used for discerning between cancer and non-cancer subjects. A greater yield of circulating EVs (~ 1.4 fold; p = 0.002) was obtained in PDAC patients (n = 20) than non-cancer (NC) individuals (n = 10). PDAC-EVs contained a higher quantity of total DNA (~ 5.5 folds; p = 0.0001) than NC-EVs and had greater enrichment of mtDNA (~ 14.02-fold; p = 0.0001). PDAC-EVs also had higher levels of cardiolipin (a mitochondrial inner-membrane phospholipid), suggestive of their mitochondrial origin. All mtDNA mutations in PDAC-EVs were unique and frequency was remarkably higher. Most mtDNA mutations (41.5%) in PDAC-EVs were in the respiratory complex-I (RCI) (ND1-ND6), followed by the RCIII gene (CYTB; 11.2%). Among the non-coding genes, D-Loop and RNR2 exhibited the most mutations (15.2% each). Altogether, our study establishes, for the first time, that mtDNA mutations can be detected in circulating EVs and potentially serve as a tool for reliable PDAC diagnosis.
Collapse
Affiliation(s)
- Kunwar Somesh Vikramdeo
- Cancer Biology Program, Department of Pathology, Mitchell Cancer Institute, College of Medicine, University of South Alabama, 1660 Springhill Avenue, Mobile, AL, 36604, USA
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, 36617, USA
| | - Shashi Anand
- Cancer Biology Program, Department of Pathology, Mitchell Cancer Institute, College of Medicine, University of South Alabama, 1660 Springhill Avenue, Mobile, AL, 36604, USA
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, 36617, USA
| | - Mohammad Aslam Khan
- Cancer Biology Program, Department of Pathology, Mitchell Cancer Institute, College of Medicine, University of South Alabama, 1660 Springhill Avenue, Mobile, AL, 36604, USA
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, 36617, USA
| | - Moh'd Khushman
- Department of Medical Oncology, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA
- Division of Medical Oncology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Martin J Heslin
- Cancer Biology Program, Department of Pathology, Mitchell Cancer Institute, College of Medicine, University of South Alabama, 1660 Springhill Avenue, Mobile, AL, 36604, USA
| | - Seema Singh
- Cancer Biology Program, Department of Pathology, Mitchell Cancer Institute, College of Medicine, University of South Alabama, 1660 Springhill Avenue, Mobile, AL, 36604, USA
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, 36617, USA
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL, 36688, USA
| | - Ajay Pratap Singh
- Cancer Biology Program, Department of Pathology, Mitchell Cancer Institute, College of Medicine, University of South Alabama, 1660 Springhill Avenue, Mobile, AL, 36604, USA.
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, 36617, USA.
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL, 36688, USA.
| | - Santanu Dasgupta
- Cancer Biology Program, Department of Pathology, Mitchell Cancer Institute, College of Medicine, University of South Alabama, 1660 Springhill Avenue, Mobile, AL, 36604, USA.
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, 36617, USA.
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL, 36688, USA.
| |
Collapse
|
4
|
Racial disparities in the genetic landscape of lung cancer. CANCER HEALTH DISPARITIES 2022; 6:210. [PMID: 36819657 PMCID: PMC9937545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Lung cancer has the highest cancer-related mortality worldwide and in the United States. Although reduced tobacco consumption and advancement in therapies have led to a modest decline in lung cancer death rates over the past two decades; the overall survival rate is still disappointing. Moreover, race-associated disparities are also observed, especially in the clinical outcomes. Socioeconomic factors are considered major contributors in cancer health disparities, however, the differences in the genetic landscape of lung cancer among different racial groups have also been reported. In this review, we shed light on the genetic heterogeneity of lung cancer and race-associated differences in genetic alterations to build a framework for future studies to understand the biological basis of lung cancer disparities.
Collapse
|
5
|
Putative role of uncoupling proteins in mitochondria-nucleus communications and DNA damage response. J Biosci 2021. [DOI: 10.1007/s12038-021-00224-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
6
|
Hezavehei M, Mirzaei M, Sharafi M, Wu Y, Gupta V, Fitzhenry M, Kouchesfahani HM, Eftekhari-Yazdi P, Baharvand H, Dalman A, Haynes PA, Shahverdi A, Salekdeh GH. Proteomics study reveals the molecular mechanisms underlying cryotolerance induced by mild sublethal stress in human sperm. Cell Tissue Res 2021; 387:143-157. [PMID: 34729646 DOI: 10.1007/s00441-021-03537-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 10/05/2021] [Indexed: 10/19/2022]
Abstract
The preconditioning of human sperm with sublethal nitrosative stress before cryopreservation can potentially improve the thawed sperm quality. However, the underlying mechanisms behind this protective strategy are not entirely understood. We compared the cryosurvival of human sperm exposed to 0.01 μM nitric oxide (NO) throughout the cryopreservation and used multiplexed quantitative proteomics approach to identify changes in the proteome profile of preconditioned sperm cells. Semen samples were obtained from 30 normospermia donors and then each sample was divided into three equal parts: fresh (F), frozen-control (C), and frozen exposed to nitric oxide (NO). The sperm undergoing mild sublethal stress showed higher values for motility and viability compared to the frozen control sperm. Moreover, out of 2912 identified proteins, 248 proteins were detected as differentially abundant proteins (DAPs) between cryopreserved groups and fresh group (F) (p < 0.05). Gene ontology (GO) analysis of differentially abundant proteins indicated that the abundance of proteins associated with glycolysis, gluconeogenesis, and fertilization processes was reduced while oxidative phosphorylation pathway was increased in abundance in cryopreserved sperm compared to the fresh sperm. Moreover, redox protein such as thioredoxin 17 was increased in abundance in the NO group compared to the control freezing group. Therefore, the pre-conditioning of sperm prior to cryopreservation may play an important role in maintaining the redox balance in mitochondria of sperm after freezing. Overall, our results indicate that arylsulfatase A (ARSA), serine protease 37 (PRSS37), and sperm surface protein (SP17) may potentially serve as protein biomarkers associated with screening the fertilization potential of the thawed sperm.
Collapse
Affiliation(s)
- Maryam Hezavehei
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.,Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Mehdi Mirzaei
- Department of Clinical Medicine, Macquarie University, Sydney, NSW, Australia
| | - Mohsen Sharafi
- Department of Animal Science, College of Agriculture, Tarbiat Modarres University, Tehran, Iran
| | - Yunqi Wu
- Australian Proteome Analysis Facility, Macquarie University, Sydney, NSW, Australia
| | - Vivek Gupta
- Department of Clinical Medicine, Macquarie University, Sydney, NSW, Australia
| | - Matthew Fitzhenry
- Australian Proteome Analysis Facility, Macquarie University, Sydney, NSW, Australia
| | | | - Poopak Eftekhari-Yazdi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| | - Azam Dalman
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Paul A Haynes
- Department of Molecular Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Abdolhossein Shahverdi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
| | - Ghasem Hosseini Salekdeh
- Department of Molecular Sciences, Macquarie University, North Ryde, NSW, Australia. .,Department of Molecular Systems Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
7
|
Zhu Z, Liu Q, Sun J, Bao Z, Wang W. Silencing of PFKFB3 protects podocytes against high glucose‑induced injury by inducing autophagy. Mol Med Rep 2021; 24:765. [PMID: 34490476 PMCID: PMC8430303 DOI: 10.3892/mmr.2021.12405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 05/19/2021] [Indexed: 12/28/2022] Open
Abstract
Diabetic nephropathy (DN) is a diabetic complication that threatens the health of patients with diabetes. In addition, podocyte injury can lead to the occurrence of DN. The protein 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) may be associated with diabetes; however, the effects of PFKFB3 knockdown by small interfering (si)RNA on the growth of podocytes remains unknown. To investigate the mechanism by which PFKFB3 mediates podocyte injury, MPC5 mouse podocyte cells were treated with high-glucose (HG), and cell viability and apoptosis were examined by Cell Counting Kit-8 assay and flow cytometry, respectively. In addition, the expression of autophagy-related proteins were measured using western blot analysis and immunofluorescence staining. Cell migration was investigated using a Transwell assay and phalloidin staining was performed to observe the cytoskeleton. The results revealed that silencing of PFKFB3 significantly promoted MPC5 cell viability and inhibited apoptosis. In addition, the migration of the MPC5 cells was notably downregulated by siPFKFB3. Moreover, PFKFB3 silencing notably reversed the HG-induced decrease in oxygen consumption rate, and the HG-induced increase in extracellular acidification rate was rescued by PFKFB3 siRNA. Furthermore, silencing of PFKFB3 induced autophagy in HG-treated podocytes through inactivating phosphorylated (p-)mTOR, p-AMPKα, LC3 and sirtuin 1, and activating p62. In conclusion, silencing of PFKFB3 may protect podocytes from HG-induced injury by inducing autophagy. Therefore, PFKFB3 may serve as a potential target for treatment of DN.
Collapse
Affiliation(s)
- Zhengming Zhu
- Department of Nephrology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang 310007, P.R. China
| | - Qingsheng Liu
- Department of Geriatrics, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang 310007, P.R. China
| | - Jianshi Sun
- Department of Nephrology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P.R. China
| | - Ziyang Bao
- Department of Nephrology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang 310007, P.R. China
| | - Weiwei Wang
- Department of Nephrology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang 310007, P.R. China
| |
Collapse
|
8
|
Zhao H, Pan X. Mitochondrial Ca 2+ and cell cycle regulation. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 362:171-207. [PMID: 34253295 DOI: 10.1016/bs.ircmb.2021.02.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
It has been demonstrated for more than 40 years that intracellular calcium (Ca2+) controls a variety of cellular functions, including mitochondrial metabolism and cell proliferation. Cytosolic Ca2+ fluctuation during key stages of the cell cycle can lead to mitochondrial Ca2+ uptake and subsequent activation of mitochondrial oxidative phosphorylation and a range of signaling. However, the relationship between mitochondrial Ca2+ and cell cycle progression has long been neglected because the molecule responsible for Ca2+ uptake has been unknown. Recently, the identification of the mitochondrial Ca2+ uniporter (MCU) has led to key advances. With improved Ca2+ imaging and detection, effects of MCU-mediated mitochondrial Ca2+ have been observed at different stages of the cell cycle. Elevated Ca2+ signaling boosts ATP and ROS production, remodels cytosolic Ca2+ pathways and reprograms cell fate-determining networks. These findings suggest that manipulating mitochondrial Ca2+ signaling may serve as a potential strategy in the control of many crucial biological events, such as tumor development and cell division in hematopoietic stem cells (HSCs). In this review, we summarize the current understanding of the role of mitochondrial Ca2+ signaling during different stages of the cell cycle and highlight the potential physiological and pathological significance of mitochondrial Ca2+ signaling.
Collapse
Affiliation(s)
- Haixin Zhao
- State Key Laboratory of Experimental Haematology, Institute of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xin Pan
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China.
| |
Collapse
|
9
|
Di Nottia M, Verrigni D, Torraco A, Rizza T, Bertini E, Carrozzo R. Mitochondrial Dynamics: Molecular Mechanisms, Related Primary Mitochondrial Disorders and Therapeutic Approaches. Genes (Basel) 2021; 12:247. [PMID: 33578638 PMCID: PMC7916359 DOI: 10.3390/genes12020247] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/02/2021] [Accepted: 02/04/2021] [Indexed: 02/06/2023] Open
Abstract
Mitochondria do not exist as individual entities in the cell-conversely, they constitute an interconnected community governed by the constant and opposite process of fission and fusion. The mitochondrial fission leads to the formation of smaller mitochondria, promoting the biogenesis of new organelles. On the other hand, following the fusion process, mitochondria appear as longer and interconnected tubules, which enhance the communication with other organelles. Both fission and fusion are carried out by a small number of highly conserved guanosine triphosphatase proteins and their interactors. Disruption of this equilibrium has been associated with several pathological conditions, ranging from cancer to neurodegeneration, and mutations in genes involved in mitochondrial fission and fusion have been reported to be the cause of a subset of neurogenetic disorders.
Collapse
Affiliation(s)
| | | | | | | | | | - Rosalba Carrozzo
- Laboratory of Molecular Medicine, Unit of Muscular and Neurodegenerative Disorders, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (M.D.N.); (D.V.); (A.T.); (T.R.); (E.B.)
| |
Collapse
|
10
|
Zakirova EG, Muzyka VV, Mazunin IO, Orishchenko KE. Natural and Artificial Mechanisms of Mitochondrial Genome Elimination. Life (Basel) 2021; 11:life11020076. [PMID: 33498399 PMCID: PMC7909434 DOI: 10.3390/life11020076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 01/11/2023] Open
Abstract
The generally accepted theory of the genetic drift of mitochondrial alleles during mammalian ontogenesis is based on the presence of a selective bottleneck in the female germline. However, there is a variety of different theories on the pathways of genetic regulation of mitochondrial DNA (mtDNA) dynamics in oogenesis and adult somatic cells. The current review summarizes present knowledge on the natural mechanisms of mitochondrial genome elimination during mammalian development. We also discuss the variety of existing and developing methodologies for artificial manipulation of the mtDNA heteroplasmy level. Understanding of the basics of mtDNA dynamics will shed the light on the pathogenesis and potential therapies of human diseases associated with mitochondrial dysfunction.
Collapse
Affiliation(s)
- Elvira G. Zakirova
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.G.Z.); (V.V.M.)
| | - Vladimir V. Muzyka
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.G.Z.); (V.V.M.)
- Department of Genetic Technologies, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Ilya O. Mazunin
- Skolkovo Institute of Science and Technology, 143026 Skolkovo, Russia;
| | - Konstantin E. Orishchenko
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.G.Z.); (V.V.M.)
- Department of Genetic Technologies, Novosibirsk State University, 630090 Novosibirsk, Russia
- Correspondence:
| |
Collapse
|
11
|
Calderón-Garcidueñas L, Torres-Jardón R, Franco-Lira M, Kulesza R, González-Maciel A, Reynoso-Robles R, Brito-Aguilar R, García-Arreola B, Revueltas-Ficachi P, Barrera-Velázquez JA, García-Alonso G, García-Rojas E, Mukherjee PS, Delgado-Chávez R. Environmental Nanoparticles, SARS-CoV-2 Brain Involvement, and Potential Acceleration of Alzheimer's and Parkinson's Diseases in Young Urbanites Exposed to Air Pollution. J Alzheimers Dis 2020; 78:479-503. [PMID: 32955466 DOI: 10.3233/jad-200891] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alzheimer's and Parkinson's diseases (AD, PD) have a pediatric and young adult onset in Metropolitan Mexico City (MMC). The SARS-CoV-2 neurotropic RNA virus is triggering neurological complications and deep concern regarding acceleration of neuroinflammatory and neurodegenerative processes already in progress. This review, based on our MMC experience, will discuss two major issues: 1) why residents chronically exposed to air pollution are likely to be more susceptible to SARS-CoV-2 systemic and brain effects and 2) why young people with AD and PD already in progress will accelerate neurodegenerative processes. Secondary mental consequences of social distancing and isolation, fear, financial insecurity, violence, poor health support, and lack of understanding of the complex crisis are expected in MMC residents infected or free of SARS-CoV-2. MMC residents with pre-SARS-CoV-2 accumulation of misfolded proteins diagnostic of AD and PD and metal-rich, magnetic nanoparticles damaging key neural organelles are an ideal host for neurotropic SARS-CoV-2 RNA virus invading the body through the same portals damaged by nanoparticles: nasal olfactory epithelium, the gastrointestinal tract, and the alveolar-capillary portal. We urgently need MMC multicenter retrospective-prospective neurological and psychiatric population follow-up and intervention strategies in place in case of acceleration of neurodegenerative processes, increased risk of suicide, and mental disease worsening. Identification of vulnerable populations and continuous effort to lower air pollution ought to be critical steps.
Collapse
Affiliation(s)
| | - Ricardo Torres-Jardón
- Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Maricela Franco-Lira
- Colegio de Bachilleres Militarizado, "General Mariano Escobedo", Monterrey, N.L., México
| | - Randy Kulesza
- Auditory Research Center, Lake Erie College of Osteopathic Medicine, Erie, PA, USA
| | | | | | | | | | | | | | | | | | - Partha S Mukherjee
- Interdisciplinary Statistical Research Unit, Indian Statistical Institute, Kolkata, India
| | | |
Collapse
|
12
|
Underwood E, Redell JB, Zhao J, Moore AN, Dash PK. A method for assessing tissue respiration in anatomically defined brain regions. Sci Rep 2020; 10:13179. [PMID: 32764697 PMCID: PMC7413397 DOI: 10.1038/s41598-020-69867-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 07/16/2020] [Indexed: 12/28/2022] Open
Abstract
The survival and function of brain cells requires uninterrupted ATP synthesis. Different brain structures subserve distinct neurological functions, and therefore have different energy production/consumption requirements. Typically, mitochondrial function is assessed following their isolation from relatively large amounts of starting tissue, making it difficult to ascertain energy production/failure in small anatomical locations. In order to overcome this limitation, we have developed and optimized a method to measure mitochondrial function in brain tissue biopsy punches excised from anatomically defined brain structures, including white matter tracts. We describe the procedures for maintaining tissue viability prior to performing the biopsy punches, as well as provide guidance for optimizing punch size and the drug doses needed to assess various aspects of mitochondrial respiration. We demonstrate that our method can be used to measure mitochondrial respiration in anatomically defined subfields within the rat hippocampus. Using this method, we present experimental results which show that a mild traumatic brain injury (mTBI, often referred to as concussion) causes differential mitochondrial responses within these hippocampal subfields and the corpus callosum, novel findings that would have been difficult to obtain using traditional mitochondrial isolation methods. Our method is easy to implement and will be of interest to researchers working in the field of brain bioenergetics and brain diseases.
Collapse
Affiliation(s)
- Erica Underwood
- Department of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, 77030, USA
| | - John B Redell
- Department of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, 77030, USA
| | - Jing Zhao
- Department of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, 77030, USA
| | - Anthony N Moore
- Department of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, 77030, USA
| | - Pramod K Dash
- Department of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, 77030, USA.
| |
Collapse
|
13
|
Bennett JP, Keeney PM. Alzheimer's and Parkinson's brain tissues have reduced expression of genes for mtDNA OXPHOS Proteins, mitobiogenesis regulator PGC-1α protein and mtRNA stabilizing protein LRPPRC (LRP130). Mitochondrion 2020; 53:154-157. [PMID: 32497722 DOI: 10.1016/j.mito.2020.05.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/18/2020] [Accepted: 05/26/2020] [Indexed: 12/31/2022]
Abstract
We used RNA sequencing (RNA-seq) to quantitate gene expression in total RNA extracts of vulnerable brain tissues from Alzheimer's disease (AD, frontal cortical ribbon) and Parkinson's disease (PD, ventral midbrain) subjects and phenotypically negative control subjects. Paired-end sequencing files were processed with HISAT2 aligner/Cufflinks quantitation against the hg38 human genome. We observed a significant decrease in gene expression of all mtDNA OXPHOS genes in AD and PD tissues. Gene expression of the master mitochondrial biogenesis regulator PGC-1α (PPARGC1A) was significantly reduced in AD; expression of genes for mitochondrial transcription factors A (TFAM) and B1/B2 (TFB1M/TFB2M) were not significantly changed in AD and PD tissues. 2-way ANOVAs showed significant reduction in AD brain Complex I subunits' expressions and nearly significant reductions in PD brain. We found a significant reduction in both AD and PD brain samples of expression of genes for leucine-rich pentatricopeptide repeat containing (LRPPRC, a.k.a. LRP130), a known mtRNA-stabilizing protein. Our findings suggest that AD and PD brain tissues have a reduction in mitochondrial ATP production derived from a reduction of mitobiogenesis and mtRNA stability. If true, increased brain expression of PGC-1α and/or LRPPRC may improve bioenergetics of AD and PD and alter the course of neurodegeneration in both conditions. (201 words).
Collapse
Affiliation(s)
- James P Bennett
- Neurodegeneration Therapeutics, Inc., Charlottesville, VA 22901, United States.
| | - Paula M Keeney
- Neurodegeneration Therapeutics, Inc., Charlottesville, VA 22901, United States
| |
Collapse
|