1
|
Visa MA, Abazeed ME, Avella Patino D. Integrative Approaches in Non-Small Cell Lung Cancer Management: The Role of Radiotherapy. J Clin Med 2024; 13:4296. [PMID: 39124563 PMCID: PMC11312949 DOI: 10.3390/jcm13154296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/15/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Treatment guidelines for non-small cell lung cancer (NSCLC) vary by several factors including pathological stage, patient candidacy, and goal of treatment. With many therapeutics and even more combinations available in the NSCLC clinician's toolkit, a multitude of questions remain unanswered vis-a-vis treatment optimization. While some studies have begun exploring the interplay among the many pillars of NSCLC treatment-surgical resection, radiotherapy, chemotherapy, and immunotherapy-the vast number of combinations and permutations of different therapy modalities in addition to the modulation of each constituent therapy leaves much to be desired in a field that is otherwise rapidly evolving. Given NSCLC's high incidence and lethality, the experimentation of synergistic benefits that combinatorial treatment may confer presents a ripe target for advancement and increased understanding without the cost and burden of novel drug development. This review introduces, synthesizes, and compares prominent NSCLC therapies, placing emphasis on the interplay among types of therapies and the synergistic benefits some combinatorial therapies have demonstrated over the past several years.
Collapse
Affiliation(s)
- Maxime A. Visa
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA;
| | - Mohamed E. Abazeed
- Department of Radiation Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA;
| | - Diego Avella Patino
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA;
| |
Collapse
|
2
|
Zheng Z, Yang T, Li Y, Qu P, Shao Z, Wang Y, Chang W, Umar SM, Wang J, Ding N, Wang W. A future directions of renal cell carcinoma treatment: combination of immune checkpoint inhibition and carbon ion radiotherapy. Front Immunol 2024; 15:1428584. [PMID: 39091498 PMCID: PMC11291258 DOI: 10.3389/fimmu.2024.1428584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/05/2024] [Indexed: 08/04/2024] Open
Abstract
Renal cell carcinoma (RCC) is considered radio- and chemo-resistant. Immune checkpoint inhibitors (ICIs) have demonstrated significant clinical efficacy in advanced RCC. However, the overall response rate of RCC to monotherapy remains limited. Given its immunomodulatory effects, a combination of radiotherapy (RT) with immunotherapy is increasingly used for cancer treatment. Heavy ion radiotherapy, specifically the carbon ion radiotherapy (CIRT), represents an innovative approach to cancer treatment, offering superior physical and biological effectiveness compared to conventional photon radiotherapy and exhibiting obvious advantages in cancer treatment. The combination of CIRT and immunotherapy showed robust effectiveness in preclinical studies of various tumors, thus holds promise for overcoming radiation resistance of RCC and enhancing therapeutic outcomes. Here, we provide a comprehensive review on the biophysical effects of CIRT, the efficacy of combination treatment and the underlying mechanisms involved in, as well as its therapeutic potential specifically within RCC.
Collapse
Affiliation(s)
- Zhouhang Zheng
- Department of Urology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Tianci Yang
- Department of Urology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Yixuan Li
- Department of Urology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Pei Qu
- Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Zhiang Shao
- Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Yuan Wang
- Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Wei Chang
- Department of Urology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, Gansu, China
| | - Shahzad Muhammad Umar
- Department of Urology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, Gansu, China
| | - Jufang Wang
- Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Nan Ding
- Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Wei Wang
- Department of Urology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
3
|
Tubin S. A Partial Tumor Irradiation Approach for Complex Bulky Disease. Semin Radiat Oncol 2024; 34:323-336. [PMID: 38880541 DOI: 10.1016/j.semradonc.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
A large proportion of cancer patients present with unresectable bulky disease at baseline or following treatment failure. The data available in the literature suggest that the vast majority of these patients do not benefit from available standard therapies. Therefore the clinical outcomes are poor; patients are desperate and usually relegated to palliative or best supportive care as the only options. Large tumor masses are usually hypoxic, resistant to radiation and systemic therapy, with extensive regional infiltration of the surrounding critical organs, the presence of which makes it impossible to deliver a radical dose of radiation. Promising data in terms of improved therapeutic ratio where such complex tumors are concerned can be seen with the use of new emerging unconventional radiotherapy techniques known as spatially fractionated radiotherapies (SFRT). One of them is PATHY, or PArtial Tumor irradiation targeting HYpoxic segment, which is characterized by a very short treatment course offering a large spectrum of therapeutic benefits in terms of the symptom relief, quality of life, local tumor control, neoadjuvant and immunomodulatory effects.
Collapse
Affiliation(s)
- Slavisa Tubin
- Medaustron Center for Ion Therapy, Marie-Curie Strasse 5, Wiener Neustadt 2700, Austria; Heidelberg University Hospital, Department of Radiation Oncology and Radiation Therapy, Im Neuenheimer Feld 400 69120 Heidelberg; Montefiore Medical Center Radiation Oncology, 111 E 210th St, New York, NY, United States.
| |
Collapse
|
4
|
Han Y, Tian X, Zhai J, Zhang Z. Clinical application of immunogenic cell death inducers in cancer immunotherapy: turning cold tumors hot. Front Cell Dev Biol 2024; 12:1363121. [PMID: 38774648 PMCID: PMC11106383 DOI: 10.3389/fcell.2024.1363121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/23/2024] [Indexed: 05/24/2024] Open
Abstract
Immunotherapy has emerged as a promising cancer treatment option in recent years. In immune "hot" tumors, characterized by abundant immune cell infiltration, immunotherapy can improve patients' prognosis by activating the function of immune cells. By contrast, immune "cold" tumors are often less sensitive to immunotherapy owing to low immunogenicity of tumor cells, an immune inhibitory tumor microenvironment, and a series of immune-escape mechanisms. Immunogenic cell death (ICD) is a promising cellular process to facilitate the transformation of immune "cold" tumors to immune "hot" tumors by eliciting innate and adaptive immune responses through the release of (or exposure to) damage-related molecular patterns. Accumulating evidence suggests that various traditional therapies can induce ICD, including chemotherapy, targeted therapy, radiotherapy, and photodynamic therapy. In this review, we summarize the biological mechanisms and hallmarks of ICD and introduce some newly discovered and technologically innovative inducers that activate the immune system at the molecular level. Furthermore, we also discuss the clinical applications of combing ICD inducers with cancer immunotherapy. This review will provide valuable insights into the future development of ICD-related combination therapeutics and potential management for "cold" tumors.
Collapse
Affiliation(s)
| | | | | | - Zhenyong Zhang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
5
|
Yu B, Gao Y, Li J, Gao F, Zhang J, Li L, Feng X, Zuo D, Jin X, Chen W, Li Q. Killing two birds with one stone: Abscopal effect mechanism and its application prospect in radiotherapy. Crit Rev Oncol Hematol 2024; 196:104325. [PMID: 38462151 DOI: 10.1016/j.critrevonc.2024.104325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/07/2024] [Accepted: 03/07/2024] [Indexed: 03/12/2024] Open
Abstract
Abscopal effects are characterized by the emergence of neoplasms in regions unrelated to the primary radiation therapy site, displaying a gradual attenuation or regression throughout the progression of radiation therapy, which have been of interest to scientists since Mole's proposal in 1953. The incidence of abscopal effects in radiation therapy is intricately linked to the immune system, with both innate and adaptive immune responses playing crucial roles. Biological factors impacting abscopal effects ultimately exert their influence on the intricate workings of the immune system. Although abscopal effects are rarely observed in clinical cases, the underlying mechanism remains uncertain. This article examines the biological and physical factors influencing abscopal effects of radiotherapy. Through a review of preclinical and clinical studies, this article aims to offer a comprehensive understanding of abscopal effects and proposes new avenues for future research in this field. The findings presented in this article serve as a valuable reference for researchers seeking to explore this topic in greater depth.
Collapse
Affiliation(s)
- Boyi Yu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, Gansu Province 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuting Gao
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; College of Life Sciences, Northwest Normal University, Gansu Province, Lanzhou 730070, China
| | - Jiaxin Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, Gansu Province 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feifei Gao
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, Gansu Province 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiahao Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; School of Public Health, Lanzhou University, Lanzhou, Gansu Province 730000, China
| | - Linjing Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, Gansu Province 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xianglong Feng
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, Gansu Province 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dashan Zuo
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, Gansu Province 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaodong Jin
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, Gansu Province 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Weiqiang Chen
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, Gansu Province 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Qiang Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, Gansu Province 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
6
|
Skalina KA, Małachowska B, Sindhu KK, Thompson M, Nehlsen AD, Salgado LR, Dovey Z, Hasan S, Guha C, Tang J. Combining theranostic/particle therapy with immunotherapy for the treatment of GU malignancies. BJUI COMPASS 2024; 5:334-344. [PMID: 38481668 PMCID: PMC10927934 DOI: 10.1002/bco2.316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 11/10/2023] [Indexed: 11/01/2024] Open
Abstract
Particle therapy and radiopharmaceuticals are emerging fields in the treatment of genitourinary cancers. With these novel techniques and the ever-growing immunotherapy options, the combinations of these therapies have the potential to improve current cancer cure rates. However, the most effective sequence and combination of these therapies is unknown and is a question that is actively being explored in multiple ongoing clinical trials. Here, we review the immunological effects of particle therapy and the available radiopharmaceuticals and discuss how best to combine these therapies.
Collapse
Affiliation(s)
- Karin A. Skalina
- Department of Radiation OncologyMontefiore Medical Center/Albert Einstein College of MedicineBronxNew YorkUSA
| | - Beata Małachowska
- Department of Radiation OncologyMontefiore Medical Center/Albert Einstein College of MedicineBronxNew YorkUSA
| | - Kunal K. Sindhu
- Department of Radiation OncologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Marcher Thompson
- Department of Radiation OncologyAIS Cancer Center/Adventist HealthBakersfieldCaliforniaUSA
| | - Anthony D. Nehlsen
- Department of Radiation OncologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Lucas Resende Salgado
- Department of Radiation OncologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Zachary Dovey
- Department of UrologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | | | - Chandan Guha
- Department of Radiation OncologyMontefiore Medical Center/Albert Einstein College of MedicineBronxNew YorkUSA
| | - Justin Tang
- Department of Radiation OncologyMontefiore Medical Center/Albert Einstein College of MedicineBronxNew YorkUSA
| |
Collapse
|
7
|
Liu R, Geng Y, Luo H, Zhang Q, Yang Z, Li S, Sun S, Liu Z, Dong M, Du T, Che T, Wang X. Carbon ion irradiation combined with PD-1 inhibitor trigger abscopal effect in Lewis lung cancer via a threshold dose. J Cancer 2024; 15:2245-2259. [PMID: 38495488 PMCID: PMC10937268 DOI: 10.7150/jca.91559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/15/2024] [Indexed: 03/19/2024] Open
Abstract
Background and goal: Carbon ion beam is radio-biologically more efficient than photons and is beneficial for treating radio-resistant tumors. Several animal experiments with tumor-bearing suggest that carbon ion beam irradiation in combination with immunotherapy yields better results, especially in controlling distant metastases. This implies that carbon ion induces a different anti-tumor immune response than photon beam. More complex molecular mechanisms need to be uncovered. This in vivo and in vitro experiment was carried out in order to examine the radio-immune effects and the mechanism of action of carbon ion beam versus X-ray in combination with PD-1 inhibitors. Methods and Materials: Lewis lung adenocarcinoma cells and C57BL/6 mice were used to create a tumor-bearing mouse model, with the non-irradiated tumor growing on the right hind leg and the irradiated tumor on the left rear. 10Gy carbon ion beam or X-ray radiation, either alone or in combination with PD-1 inhibitor, were used to treat the left back tumor. The expression of molecules linked to immunogenicity and the infiltration of CD8+ T lymphocytes into tumor tissues were both identified using immunohistochemistry. IFN-β in mouse serum was measured using an ELISA, while CD8+ T cells in mouse peripheral blood were measured using flow cytometry. Lewis cells were exposed to different dose of X-ray and carbon ion. TREX1, PD-L1, and IFN-β alterations in mRNA and protein levels were identified using Western blot or RT-PCR, respectively. TREX1 knockdown was created by siRNA transfection and exposed to various radiations. Using the CCK8 test, EdU assay, and flow cytometry, changes in cell viability, proliferation, and apoptosis rate were discovered. Results: Bilateral tumors were significantly inhibited by the use of carbon ion or X-ray in combination with PD-1, particularly to non-irradiated tumor(p<0.05). The percentage of infiltrating CD8+ T cells and the level of IFN-β expression were both raised by 10Gy carbon ion irradiation in the irradiated side tumor, although PD-L1 and TREX1 expression levels were also elevated. Lewis cell in vitro experiment further demonstrated that both X-ray and carbon ion irradiation can up-regulate the expression levels of PD-L1 and TREX1 with dose-dependent in tumors, particularly the trend of up-regulation TREX1 is more apparent at a higher dose in carbon ion, i.e. 8 or 10Gy, while the level of IFN-β is decreased. IFN-β levels were considerably raised under hypofractionated doses of carbon ion radiation by gene silencing TREX1. Conclusions: By enhancing tumor immunogenicity and increasing CD8+T infiltration in TME through a threshold dosage, X-ray or carbon ion radiation and PD-1 inhibitors improve anti-tumor activity and cause abscopal effect in Lewis lung adenocarcinoma-bearing mice. TREX1 is a possible therapeutic target and prognostic marker.
Collapse
Affiliation(s)
- Ruifeng Liu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Heavy Ion Medicine Center, Hospital of economic and Technological Development Zone, Wuhan Renmin Hospital of University, Wuhan, China
| | - Yichao Geng
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- The affiliated cancer hospital of Guizhou Medical University, Guiyang, China
| | - Hongtao Luo
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Qiuning Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Zhen Yang
- Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Shan Li
- The affiliated cancer hospital of Guizhou Medical University, Guiyang, China
| | - Shilong Sun
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Zhiqiang Liu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Meng Dong
- The affiliated cancer hospital of Guizhou Medical University, Guiyang, China
| | - Tianqi Du
- The affiliated cancer hospital of Guizhou Medical University, Guiyang, China
| | - Tuanjie Che
- Key Laboratory of Functional Genomics and Molecular Diagnostics of Gansu Province, Lanzhou, China
| | - Xiaohu Wang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Key Laboratory of Functional Genomics and Molecular Diagnostics of Gansu Province, Lanzhou, China
| |
Collapse
|
8
|
Helm A, Fournier C. High-LET charged particles: radiobiology and application for new approaches in radiotherapy. Strahlenther Onkol 2023; 199:1225-1241. [PMID: 37872399 PMCID: PMC10674019 DOI: 10.1007/s00066-023-02158-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 09/17/2023] [Indexed: 10/25/2023]
Abstract
The number of patients treated with charged-particle radiotherapy as well as the number of treatment centers is increasing worldwide, particularly regarding protons. However, high-linear energy transfer (LET) particles, mainly carbon ions, are of special interest for application in radiotherapy, as their special physical features result in high precision and hence lower toxicity, and at the same time in increased efficiency in cell inactivation in the target region, i.e., the tumor. The radiobiology of high-LET particles differs with respect to DNA damage repair, cytogenetic damage, and cell death type, and their increased LET can tackle cells' resistance to hypoxia. Recent developments and perspectives, e.g., the return of high-LET particle therapy to the US with a center planned at Mayo clinics, the application of carbon ion radiotherapy using cost-reducing cyclotrons and the application of helium is foreseen to increase the interest in this type of radiotherapy. However, further preclinical research is needed to better understand the differential radiobiological mechanisms as opposed to photon radiotherapy, which will help to guide future clinical studies for optimal exploitation of high-LET particle therapy, in particular related to new concepts and innovative approaches. Herein, we summarize the basics and recent progress in high-LET particle radiobiology with a focus on carbon ions and discuss the implications of current knowledge for charged-particle radiotherapy. We emphasize the potential of high-LET particles with respect to immunogenicity and especially their combination with immunotherapy.
Collapse
Affiliation(s)
- Alexander Helm
- Biophysics Department, GSI Helmholtz Center for Heavy Ion Research, Darmstadt, Germany
| | - Claudia Fournier
- Biophysics Department, GSI Helmholtz Center for Heavy Ion Research, Darmstadt, Germany.
| |
Collapse
|
9
|
Wang J, Ma J, Tai Z, Li L, Zhang T, Cheng T, Yu J, Zhu Q, Bao L, Chen Z. Nanocarrier-Mediated Immunogenic Cell Death for Melanoma Treatment. Int J Nanomedicine 2023; 18:7149-7172. [PMID: 38059000 PMCID: PMC10697015 DOI: 10.2147/ijn.s434582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/20/2023] [Indexed: 12/08/2023] Open
Abstract
Melanoma, a highly aggressive skin tumor, exhibits notable features including heterogeneity, a high mutational load, and innate immune escape. Despite advancements in melanoma treatment, current immunotherapies fail to fully exploit the immune system's maximum potential. Activating immunogenic cell death (ICD) holds promise in enhancing tumor cell immunogenicity, stimulating immune amplification response, improving drug sensitivity, and eliminating tumors. Nanotechnology-enabled ICD has emerged as a compelling therapeutic strategy for augmenting cancer immunotherapy. Nanoparticles possess versatile attributes, such as prolonged blood circulation, stability, and tumor-targeting capabilities, rendering them ideal for drug delivery. In this review, we elucidate the mechanisms underlying ICD induction and associated therapeutic strategies. Additionally, we provide a concise overview of the immune stress response associated with ICD and explore the potential synergistic benefits of combining ICD induction methods with the utilization of nanocarriers.
Collapse
Affiliation(s)
- Jiandong Wang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, People’s Republic of China
- Department of Pharmacy, Third Affiliated Hospital of Naval Medical University, Shanghai, People’s Republic of China
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui, People’s Republic of China
| | - Jinyuan Ma
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, People’s Republic of China
- Shanghai Engineering Research Center of External Chinese Medicine, Shanghai, 200443, People’s Republic of China
| | - Zongguang Tai
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, People’s Republic of China
- Shanghai Engineering Research Center of External Chinese Medicine, Shanghai, 200443, People’s Republic of China
| | - Lisha Li
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, People’s Republic of China
- Shanghai Engineering Research Center of External Chinese Medicine, Shanghai, 200443, People’s Republic of China
| | - Tingrui Zhang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, People’s Republic of China
- Shanghai Engineering Research Center of External Chinese Medicine, Shanghai, 200443, People’s Republic of China
| | - Tingting Cheng
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, People’s Republic of China
- Department of Pharmacy, Third Affiliated Hospital of Naval Medical University, Shanghai, People’s Republic of China
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui, People’s Republic of China
| | - Junxia Yu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, People’s Republic of China
- Department of Pharmacy, Third Affiliated Hospital of Naval Medical University, Shanghai, People’s Republic of China
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui, People’s Republic of China
| | - Quangang Zhu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, People’s Republic of China
- Shanghai Engineering Research Center of External Chinese Medicine, Shanghai, 200443, People’s Republic of China
| | - Leilei Bao
- Department of Pharmacy, Third Affiliated Hospital of Naval Medical University, Shanghai, People’s Republic of China
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, People’s Republic of China
- Shanghai Engineering Research Center of External Chinese Medicine, Shanghai, 200443, People’s Republic of China
| |
Collapse
|
10
|
Huang Q, Hu J, Chen L, Lin W, Yang J, Hu W, Gao J, Zhang H, Lu JJ, Kong L. Carbon ion radiotherapy combined with immunotherapy: synergistic anti-tumor efficacy and preliminary investigation of ferroptosis. Cancer Immunol Immunother 2023; 72:4077-4088. [PMID: 37777634 PMCID: PMC10700413 DOI: 10.1007/s00262-023-03544-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/05/2023] [Indexed: 10/02/2023]
Abstract
Carbon ion radiotherapy (CIRT) may yield satisfactory clinical outcomes for patients who are resistant to radiotherapy. However, the therapeutic impact of carbon ions is still limited in certain recurring or refractory tumors. Therefore, we aimed to evaluate the synergistic anti-tumor effects of immune checkpoint inhibitors (ICIs) in combination with CIRT. We then explored the involvement of ferroptosis in a preliminary investigation. A tumor-bearing mouse model was established, and mice were inoculated subcutaneously with B16-OVA cells into the flanks of both hind legs. Mice were assigned to four groups to receive CIRT, ICIs, or combined treatment. Thereafter, we conducted transcriptome sequencing (RNA-seq), bioinformatics analysis, and various immune-related experiments on the available tumor tissues to investigate differences in the synergistic anticancer effects and potential mechanisms across the groups. The combination therapies significantly improved the survival of mice and inhibited tumor growth, both at local and distant sites. Based on bioinformatics and RNA-seq data, immune-related pathways and genes, immune cell infiltration, and the production of cytokines and chemokines were the most enhanced in the combined treatment group compared to other groups. Finally, we identified a potential role for ferroptosis in the development of local anti-tumor synergy during CIRT combination treatment. In conclusion, this study showed that CIRT and ICIs can enhance the anti-tumor immune effects. We also proposed that ferroptosis may induce anti-tumor effects in CIRT combination therapy, offering a unique perspective on its ability to enhance immunotherapy responses.
Collapse
Affiliation(s)
- Qingting Huang
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, 201321, China
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, 201321, China
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, 201321, China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, 201321, China
| | - Jiyi Hu
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, 201321, China
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, 201321, China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, 201321, China
| | - Li Chen
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, 201321, China
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, 201321, China
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, 201321, China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, 201321, China
| | - Wanzun Lin
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, 201321, China
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, 201321, China
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, 201321, China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, 201321, China
| | - Jing Yang
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, 201321, China
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, 201321, China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, 201321, China
| | - Weixu Hu
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, 201321, China
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, 201321, China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, 201321, China
| | - Jing Gao
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, 201321, China
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, 201321, China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, 201321, China
| | - Haojiong Zhang
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, 201321, China
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, 201321, China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, 201321, China
| | - Jiade Jay Lu
- Department of Radiation Oncology, Proton and Heavy Ion Center, Heyou International Hospital, Foshan, 528000, China.
| | - Lin Kong
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, 201321, China.
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, 201321, China.
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, 201321, China.
| |
Collapse
|
11
|
Jeon SH, Song C, Eom KY, Kim IA, Kim JS. Modulation of CD8 + T Cell Responses by Radiotherapy-Current Evidence and Rationale for Combination with Immune Checkpoint Inhibitors. Int J Mol Sci 2023; 24:16691. [PMID: 38069014 PMCID: PMC10706388 DOI: 10.3390/ijms242316691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Radiotherapy for cancer has been known to affect the responses of immune cells, especially those of CD8+ T cells that play a pivotal role in anti-tumor immunity. Clinical success of immune checkpoint inhibitors led to an increasing interest in the ability of radiation to modulate CD8+ T cell responses. Recent studies that carefully analyzed CD8+ T cell responses following radiotherapy suggest the beneficial roles of radiotherapy on anti-tumor immunity. In addition, numerous clinical trials to evaluate the efficacy of combining radiotherapy with immune checkpoint inhibitors are currently undergoing. In this review, we summarize the current status of knowledge regarding the changes in CD8+ T cells following radiotherapy from various preclinical and clinical studies. Furthermore, key biological mechanisms that underlie such modulation, including both direct and indirect effects, are described. Lastly, we discuss the current evidence and essential considerations for harnessing radiotherapy as a combination partner for immune checkpoint inhibitors.
Collapse
Affiliation(s)
| | | | | | | | - Jae-Sung Kim
- Department of Radiation Oncology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 13620, Republic of Korea; (S.H.J.); (C.S.); (K.-Y.E.); (I.A.K.)
| |
Collapse
|
12
|
Zhang M, Xiao J, Liu J, Bai X, Zeng X, Zhang Z, Liu F. Calreticulin as a marker and therapeutic target for cancer. Clin Exp Med 2023; 23:1393-1404. [PMID: 36335525 DOI: 10.1007/s10238-022-00937-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 10/27/2022] [Indexed: 11/07/2022]
Abstract
Calreticulin (CRT) is a multifunctional protein found within the endoplasmic reticulum (ER). In addition, CRT participates in the formation and development of tumors and promotes the proliferation and migration of tumor cells. When a malignant tumor occurs in the human body, cancer cells that die from immunogenic cell death (ICD) expose CRT on their surface, and CRT that is transferred to the cell surface represents an "eat me" signal, which promotes dendritic cells to phagocytose the tumor cells, thereby increasing the sensitivity of tumors to anticancer immunotherapy. Expression of CRT in tumor tissues is higher than in normal tissues and is associated with disease progression in many malignant tumors. Thus, the dysfunctional production of CRT can promote tumorigenesis because it disturbs not only the balance of healthy cells but also the body's immune surveillance. CRT may be a diagnostic marker and a therapeutic target for cancer, which is discussed extensively in this review.
Collapse
Affiliation(s)
- Meilan Zhang
- Department of Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Juan Xiao
- Department of Otolaryngology, Hengyang Medical School, The Second Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China
| | - Jiangrong Liu
- Department of Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Xue Bai
- Department of Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Xuemei Zeng
- Department of Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Zhiwei Zhang
- Department of Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Feng Liu
- Department of Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
13
|
Zhou Z, Guan B, Xia H, Zheng R, Xu B. Particle radiotherapy in the era of radioimmunotherapy. Cancer Lett 2023:216268. [PMID: 37331583 DOI: 10.1016/j.canlet.2023.216268] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/24/2023] [Accepted: 06/11/2023] [Indexed: 06/20/2023]
Abstract
Radiotherapy (RT) is one of the key modalities for cancer treatment, and more than 70% of tumor patients will receive RT during the course of their disease. Particle radiotherapy, such as proton radiotherapy, carbon-ion radiotherapy (CIRT) and boron neutron capture therapy (BNCT), is currently available for the treatment of patients Immunotherapy combined with photon RT has been successfully used in the clinic. The effect of immunotherapy combined with particle RT is an area of interest. However, the molecular mechanisms underlying the effects of combined immunotherapy and particle RT remain largely unknown. In this review, we summarize the properties of different types of particle RT and the mechanisms underlying their radiobiological effects. Additionally, we compared the main molecular players in photon RT and particle RT and the mechanisms involved the RT-mediated immune response.
Collapse
Affiliation(s)
- Zihan Zhou
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Xinquan Road 29, Fuzhou, 350000, Fuzhou, China.
| | - Bingjie Guan
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Xinquan Road 29, Fuzhou, 350000, Fuzhou, China.
| | - Huang Xia
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Xinquan Road 29, Fuzhou, 350000, Fuzhou, China.
| | - Rong Zheng
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Xinquan Road 29, Fuzhou, 350000, Fuzhou, China; Fujian Key Laboratory of Intelligent Imaging and Precision Radiotherapy for Tumors (Fujian Medical University), Fuzhou, Xinquan Road 29, Fuzhou, 350000, Fujian, China; Clinical Research Center for Radiology and Radiotherapy of Fujian Province (Digestive, Hematological and Breast Malignancies), Fuzhou, Xinquan Road 29, Fuzhou, 350000, Fujian, China.
| | - Benhua Xu
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Xinquan Road 29, Fuzhou, 350000, Fuzhou, China; Fujian Key Laboratory of Intelligent Imaging and Precision Radiotherapy for Tumors (Fujian Medical University), Fuzhou, Xinquan Road 29, Fuzhou, 350000, Fujian, China; Clinical Research Center for Radiology and Radiotherapy of Fujian Province (Digestive, Hematological and Breast Malignancies), Fuzhou, Xinquan Road 29, Fuzhou, 350000, Fujian, China.
| |
Collapse
|
14
|
Tian W, Chu X, Tanzhu G, Zhou R. Optimal timing and sequence of combining stereotactic radiosurgery with immune checkpoint inhibitors in treating brain metastases: clinical evidence and mechanistic basis. J Transl Med 2023; 21:244. [PMID: 37020242 PMCID: PMC10077682 DOI: 10.1186/s12967-023-04089-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/25/2023] [Indexed: 04/07/2023] Open
Abstract
Recent evidence has shown that immune checkpoint inhibitors (ICIs) are efficacious for treating brain metastases of various primary tumors. However, the immunosuppressive tumor microenvironment and the blood-brain barrier (BBB) or blood-tumor barrier (BTB) essentially restrict the efficacy of ICIs. Stereotactic radiosurgery (SRS) can be a powerful ally to ICIs due to its trait of disrupting the BBB/BTB and increasing the immunogenicity of brain metastases. The combination of SRS + ICI has shown synergy in brain metastases in several retrospective studies. Nevertheless, the optimal schedule for the combination of SRS and ICI in brain metastases is yet to be determined. In this review, we summarized the current clinical and preclinical evidence on the timing and sequence of SRS + ICI to provide insight into the current state of knowledge about this important area in patient care.
Collapse
Affiliation(s)
- Wentao Tian
- Department of Oncology, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Kaifu District, Changsha, 410008, China
| | - Xianjing Chu
- Department of Oncology, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Kaifu District, Changsha, 410008, China
| | - Guilong Tanzhu
- Department of Oncology, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Kaifu District, Changsha, 410008, China
| | - Rongrong Zhou
- Department of Oncology, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Kaifu District, Changsha, 410008, China.
- Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
15
|
Helm A, Totis C, Durante M, Fournier C. Are charged particles a good match for combination with immunotherapy? Current knowledge and perspectives. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 376:1-36. [PMID: 36997266 DOI: 10.1016/bs.ircmb.2023.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Charged particle radiotherapy, mainly using protons and carbon ions, provides physical characteristics allowing for a volume conformal irradiation and a reduction of the integral dose to normal tissue. Carbon ion therapy additionally features an increased biological effectiveness resulting in peculiar molecular effects. Immunotherapy, mostly performed with immune checkpoint inhibitors, is nowadays considered a pillar in cancer therapy. Based on the advantageous features of charged particle radiotherapy, we review pre-clinical evidence revealing a strong potential of its combination with immunotherapy. We argue that the combination therapy deserves further investigation with the aim of translation in clinics, where a few studies have been set up already.
Collapse
Affiliation(s)
- A Helm
- Biophysics Department, GSI, Darmstadt, Germany
| | - C Totis
- Biophysics Department, GSI, Darmstadt, Germany
| | - M Durante
- Biophysics Department, GSI, Darmstadt, Germany.
| | - C Fournier
- Biophysics Department, GSI, Darmstadt, Germany
| |
Collapse
|
16
|
Okada K, Sato H, Kumazawa T, Mori Y, Permata TBM, Uchihara Y, Noda SE, Suzuki K, Ikota H, Yokoo H, Gondhowiardjo S, Nakano T, Ohno T, Shibata A. Calreticulin Upregulation in Cervical Cancer Tissues From Patients After 10 Gy Radiation Therapy. Adv Radiat Oncol 2022; 8:101159. [PMID: 36793509 PMCID: PMC9922916 DOI: 10.1016/j.adro.2022.101159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 12/18/2022] [Indexed: 12/28/2022] Open
Abstract
Purpose Understanding the immune response during radiation therapy (RT) in a clinical setting is imperative for maximizing the efficacy of combined RT and immunotherapy. Calreticulin, a major damage-associated molecular pattern that is exposed on the cell surface after RT, is presumed to be associated with the tumor-specific immune response. Here, we examined changes in calreticulin expression in clinical specimens obtained before and during RT and analyzed its relationship with the density of CD8+ T cells in the same patient set. Methods and Materials This retrospective analysis evaluated 67 patients with cervical squamous cell carcinoma who were treated with definitive RT. Tumor biopsy specimens were collected before RT and after 10 Gy irradiation. Calreticulin expression in tumor cells was evaluated via immunohistochemical staining. Subsequently, the patients were divided into 2 groups according to the level of calreticulin expression, and the clinical outcomes were compared. Finally, the correlation between calreticulin levels and density of stromal CD8+ T cells was evaluated. Results The calreticulin expression significantly increased after 10 Gy (82% of patients showed an increase; P < .01). Patients with increased calreticulin levels tended to show better progression-free survival, but this was not statistically significant (P = .09). In patients with high expression of calreticulin, a positive trend was observed between calreticulin and CD8+ T cell density, but the association was not statistically significant (P = .06). Conclusions Calreticulin expression increased after 10 Gy irradiation in tissue biopsies of patients with cervical cancer. Higher calreticulin expression levels are potentially associated with better progression-free survival and greater T cell positivity, but there was no statistically significant relationship between calreticulin upregulation and clinical outcomes or CD8+ T cell density. Further analysis will be required to clarify mechanisms underlying the immune response to RT and to optimize the RT and immunotherapy combination approach.
Collapse
Affiliation(s)
- Kohei Okada
- Department of Radiation Oncology, Graduate School of Medicine, Gunma University, Maebashi, Gunma, Japan
| | - Hiro Sato
- Department of Radiation Oncology, Graduate School of Medicine, Gunma University, Maebashi, Gunma, Japan,Corresponding authors: Hiro Sato, MD, PhD and Tatsuya Ohno, MD, PhD
| | - Takuya Kumazawa
- Department of Radiation Oncology, Graduate School of Medicine, Gunma University, Maebashi, Gunma, Japan,Department of Radiation Oncology, Saku Central Hospital Advanced Care Center, Nakagomi, Saku, Nagano, Japan
| | - Yasumasa Mori
- National Institute of Radiological Sciences, National Institute for Quantum and Radiological Science and Technology, Anagawa, Inage, Chiba, Japan
| | - Tiara Bunga Mayang Permata
- Department of Radiation Oncology, Faculty of Medicine Universitas Indonesia - Dr. Cipto Mangunkusumo National General Hospital, Jakarta, Indonesia
| | - Yuki Uchihara
- Signal Transduction Program, Gunma University Initiative for Advanced Research (GIAR), Gunma University, Maebashi, Gunma, Japan
| | - Shin-ei Noda
- Department of Radiation Oncology, Comprehensive Cancer Center, International Medical Center, Saitama Medical University, Saitama, Japan
| | - Keiji Suzuki
- Department of Radiation Medical Sciences, Atomic Bomb Disease Institute, Nagasaki University, Sakamoto, Nagasaki, Japan
| | - Hayato Ikota
- Clinical Department of Pathology, Gunma University Hospital, Maebashi, Gunma, Japan
| | - Hideaki Yokoo
- Department of Human Pathology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Soehartati Gondhowiardjo
- Department of Radiation Oncology, Faculty of Medicine Universitas Indonesia - Dr. Cipto Mangunkusumo National General Hospital, Jakarta, Indonesia
| | - Takashi Nakano
- National Institute of Radiological Sciences, National Institute for Quantum and Radiological Science and Technology, Anagawa, Inage, Chiba, Japan
| | - Tatsuya Ohno
- Department of Radiation Oncology, Graduate School of Medicine, Gunma University, Maebashi, Gunma, Japan,Corresponding authors: Hiro Sato, MD, PhD and Tatsuya Ohno, MD, PhD
| | - Atsushi Shibata
- Signal Transduction Program, Gunma University Initiative for Advanced Research (GIAR), Gunma University, Maebashi, Gunma, Japan
| |
Collapse
|
17
|
Ng WT, But B, Wong CH, Choi CW, Chua ML, Blanchard P, Lee AW. Particle beam therapy for nasopharyngeal cancer: A systematic review and meta-analysis. Clin Transl Radiat Oncol 2022; 37:41-56. [PMID: 36065359 PMCID: PMC9440257 DOI: 10.1016/j.ctro.2022.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/10/2022] [Accepted: 08/19/2022] [Indexed: 11/21/2022] Open
Abstract
Particle beam therapy yields excellent short-term treatment outcomes among NPC patients. Particle beam therapy is generally safe in primary and recurrent NPC patients, with ≥G3 late toxicity rates of 20 % or less. An approximately 5% mortality rate was reported among recurrent NPC patients.
Background/purpose A systematic review and meta-analysis were performed to better understand the benefits of particle beam therapy for nasopharyngeal cancer (NPC) treatment. The survival outcomes and toxicity of primary and recurrent NPC patients treated with proton or carbon ion beam therapy were investigated. Method PubMed, Scopus, and Embase were searched between 1 January 2007 to 3 November 2021. The inclusion and exclusion criteria included studies with either primary or recurrent NPC patients, sample size of ≥10 patients, and proton or carbon ion beam therapy as interventions. Twenty-six eligible studies with a total of 1502 patients were included. We used a random-effect meta-analysis to examine the impact of particle beam therapy on primary NPC patients and qualitatively described the results among recurrent patients. The primary outcome was overall survival (OS), while secondary outcomes included progression-free survival (PFS), local control (LC) and toxicity. Results The pooled OS at 1-year, 2-year and 3-year and 5-year for primary NPC patients who received particle beam therapy were 96 % (95 % confidence interval (CI) = 92 %-98 %), 93 % (95 % CI = 83 %-97 %), 90 % (95 % CI = 73 %-97 %) and 73 % (95 % CI = 52 %-87 %) respectively. The pooled 1-year and 2-year PFS, and LC for these patients were above 90 %. For locally recurrent NPC patients, the 1-year OS rate ranged from 65 % to 92 %, while the 1-year LC rate ranged from 80 % to 88 %. Both proton and carbon ion beam therapy were generally safe among primary and recurrent patients, with ≥G3 late toxicity rates of 20 % or less. Approximately a 5 % mortality rate was reported among recurrent patients. Conclusions This systematic review and meta-analysis demonstrated particle beam therapy has great potential in treating NPC, yielding excellent survival outcomes with low toxicity. However, further investigations are needed to assess the long-term outcomes and cost-effectiveness of this newer form of radiotherapy.
Collapse
|
18
|
Xu X, Zhang P, Huang Y, Shi W, Mao J, Ma N, Kong L, Guo L, Liu J, Chen J, Lu R. METTL3-mediated m6A mRNA contributes to the resistance of carbon-ion radiotherapy in non-small-cell lung cancer. Cancer Sci 2022; 114:105-114. [PMID: 36114749 PMCID: PMC9807515 DOI: 10.1111/cas.15590] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 08/27/2022] [Accepted: 09/06/2022] [Indexed: 01/07/2023] Open
Abstract
Lung cancer is one of the leading causes of death among cancer patients worldwide. Carbon-ion radiotherapy is a radical nonsurgical treatment with high local control rates and no serious adverse events. N6-methyladenosine (m6A) modification is one of the most common chemical modifications in eukaryotic messenger RNA (mRNA) and has important effects on the stability, splicing, and translation of mRNAs. Recently, the regulatory role of m6A in tumorigenesis has been recognized more and more. However, the dysregulation of m6A and its role in carbon-ion radiotherapy of non-small-cell lung cancer (NSCLC) remains unclear. In this study, we found that the level of methyltransferase-like 3 (METTL3) and its mediated m6A modification were elevated in NSCLC cells with carbon-ion radiotherapy. Knockdown of METTL3 in NSCLC cells impaired proliferation, migration, and invasion in vitro and in vivo. Moreover, we found that METTL3-mediated m6A modification of mRNA inhibited the decay of H2A histone family member X (H2AX) mRNA and enhanced its expression, which led to enhanced DNA damage repair and cell survival.
Collapse
Affiliation(s)
- Xiaofeng Xu
- Department of Clinical LaboratoryFudan University Shanghai Cancer CenterShanghaiChina,Department of Clinical LaboratoryShanghai Proton and Heavy Ion CenterShanghaiChina
| | - Peiru Zhang
- Department of Clinical LaboratoryFudan University Shanghai Cancer CenterShanghaiChina
| | - Yangle Huang
- Department of Radiation OncologyShanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai Proton and Heavy Ion CenterShanghaiChina
| | - Weizhong Shi
- Department of Clinical LaboratoryFudan University Shanghai Cancer CenterShanghaiChina
| | - Jingfang Mao
- Department of Radiation OncologyShanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai Proton and Heavy Ion CenterShanghaiChina,Department of Radiation OncologyFudan University Shanghai Cancer CenterShanghaiChina
| | - Ningyi Ma
- Department of Radiation OncologyShanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai Proton and Heavy Ion CenterShanghaiChina
| | - Lin Kong
- Department of Radiation OncologyShanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai Proton and Heavy Ion CenterShanghaiChina,Department of Radiation OncologyFudan University Shanghai Cancer CenterShanghaiChina
| | - Lin Guo
- Department of Clinical LaboratoryFudan University Shanghai Cancer CenterShanghaiChina,Department of Clinical LaboratoryShanghai Proton and Heavy Ion CenterShanghaiChina
| | - Jinlong Liu
- Zhangjiang InstituteFudan UniversityShanghaiChina
| | - Jian Chen
- Department of Radiation OncologyShanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai Proton and Heavy Ion CenterShanghaiChina
| | - Renquan Lu
- Department of Clinical LaboratoryFudan University Shanghai Cancer CenterShanghaiChina,Department of Clinical LaboratoryShanghai Proton and Heavy Ion CenterShanghaiChina
| |
Collapse
|
19
|
Zhang Z, Liu X, Chen D, Yu J. Radiotherapy combined with immunotherapy: the dawn of cancer treatment. Signal Transduct Target Ther 2022; 7:258. [PMID: 35906199 PMCID: PMC9338328 DOI: 10.1038/s41392-022-01102-y] [Citation(s) in RCA: 196] [Impact Index Per Article: 98.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/19/2022] [Accepted: 06/30/2022] [Indexed: 11/09/2022] Open
Abstract
Radiotherapy (RT) is delivered for purposes of local control, but can also exert systemic effect on remote and non-irradiated tumor deposits, which is called abscopal effect. The view of RT as a simple local treatment has dramatically changed in recent years, and it is now widely accepted that RT can provoke a systemic immune response which gives a strong rationale for the combination of RT and immunotherapy (iRT). Nevertheless, several points remain to be addressed such as the interaction of RT and immune system, the identification of the best schedules for combination with immunotherapy (IO), the expansion of abscopal effect and the mechanism to amplify iRT. To answer these crucial questions, we roundly summarize underlying rationale showing the whole immune landscape in RT and clinical trials to attempt to identify the best schedules of iRT. In consideration of the rarity of abscopal effect, we propose that the occurrence of abscopal effect induced by radiation can be promoted to 100% in view of molecular and genetic level. Furthermore, the “radscopal effect” which refers to using low-dose radiation to reprogram the tumor microenvironment may amplify the occurrence of abscopal effect and overcome the resistance of iRT. Taken together, RT could be regarded as a trigger of systemic antitumor immune response, and with the help of IO can be used as a radical and systemic treatment and be added into current standard regimen of patients with metastatic cancer.
Collapse
Affiliation(s)
- Zengfu Zhang
- Department of Radiation Oncology, Shandong University Cancer Center, Yantai Road, No. 2999, Jinan, Shandong, China
| | - Xu Liu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jiyan Road, No. 440, Jinan, Shandong, China
| | - Dawei Chen
- Department of Radiation Oncology, Shandong University Cancer Center, Yantai Road, No. 2999, Jinan, Shandong, China.
| | - Jinming Yu
- Department of Radiation Oncology, Shandong University Cancer Center, Yantai Road, No. 2999, Jinan, Shandong, China.
| |
Collapse
|
20
|
Novel Carbon Ion and Proton Partial Irradiation of Recurrent Unresectable Bulky Tumors (Particle-PATHY): Early Indication of Effectiveness and Safety. Cancers (Basel) 2022; 14:cancers14092232. [PMID: 35565361 PMCID: PMC9101845 DOI: 10.3390/cancers14092232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 02/04/2023] Open
Abstract
Background: We present the early results of a novel partial bulky-tumor irradiation using particles for patients with recurrent unresectable bulky tumors who failed previous state-of-the-art treatments. Methods: First, eleven consecutive patients were treated from March 2020 until December 2021. The targeted Bystander Tumor Volume (BTV) was created by subtracting 1 cm from Gross Tumor Volume (GTV) surface. It reflected approximately 30% of the central GTV volume and was irradiated with 30–45 Gy RBE (Relative Biological Effectiveness) in three consecutive fractions. The Peritumoral Immune Microenvironment (PIM) surrounding the GTV, containing nearby tissues, blood-lymphatic vessels and lymph nodes, was considered an organ at risk (OAR) and protected by highly conservative constraints. Results: With the median follow up of 6.3 months, overall survival was 64% with a median survival of 6.7 months; 46% of patients were progression-free. The average tumor volume regression was 61% from the initial size. The symptom control rate was 91%, with an average increase of the Karnofsky Index of 20%. The abscopal effect has been observed in 60% of patients. Conclusions: Partial bulky-tumor irradiation is an effective, safe and well tolerated treatment for patients with unresectable recurrent bulky disease. Abscopal effects elucidate an immunogenic pathway contribution. Extensive tumor shrinkage in some patients might permit definitive treatment—otherwise previously impossible.
Collapse
|
21
|
Ma L. From Photon Beam to Accelerated Particle Beam: Antimetastasis Effect of Combining Radiotherapy With Immunotherapy. Front Public Health 2022; 10:847119. [PMID: 35425754 PMCID: PMC9002008 DOI: 10.3389/fpubh.2022.847119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 02/25/2022] [Indexed: 12/18/2022] Open
Abstract
Cancer is one of the major diseases that seriously threaten the human health. Radiotherapy is a common treatment for cancer. It is noninvasive and retains the functions of the organ where the tumor is located. Radiotherapy includes photon beam radiotherapy, which uses X-rays or gamma rays, and particle beam radiotherapy, using beams of protons and heavy ions. Compared with photon beam radiotherapy, particle beam radiotherapy has excellent dose distribution, which enables it to kill the primary tumor cells more effectively and simultaneously minimize the radiation-induced damage to normal tissues and organs surrounding the tumor. Despite the excellent therapeutic effect of particle beam radiotherapy on the irradiated tumors, it is not an effective treatment for metastatic cancers. Therefore, developing novel and effective treatment strategies for cancer is urgently needed to save patients with distant cancer metastasis. Immunotherapy enhances the body's own immune system to fight cancer by activating the immune cells, and consequently, to achieve the systemic anticancer effects, and it is considered to be an adjuvant therapy that can enhance the efficacy of particle beam radiotherapy. This review highlights the research progress of the antimetastasis effect and the mechanism of the photon beam or particle beam radiotherapy combined with immunotherapy and predicts the development prospects of this research area.
Collapse
Affiliation(s)
- Liqiu Ma
- Department of Nuclear Physics, China Institute of Atomic Energy, Beijing, China.,National Innovation Center of Radiation Application, Beijing, China
| |
Collapse
|
22
|
Jiménez-Cortegana C, Galassi C, Klapp V, Gabrilovich DI, Galluzzi L. Myeloid-Derived Suppressor Cells and Radiotherapy. Cancer Immunol Res 2022; 10:545-557. [DOI: 10.1158/2326-6066.cir-21-1105] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/21/2022] [Accepted: 02/22/2022] [Indexed: 11/16/2022]
Abstract
Abstract
Myeloid-derived suppressor cells (MDSC) are a heterogeneous population of pathologically activated, mostly immature, myeloid cells that exert robust immunosuppressive functions. MDSCs expand during oncogenesis and have been linked to accelerated disease progression and resistance to treatment in both preclinical tumor models and patients with cancer. Thus, MDSCs stand out as promising targets for the development of novel immunotherapeutic regimens with superior efficacy. Here, we summarize accumulating preclinical and clinical evidence indicating that MDSCs also hamper the efficacy of radiotherapy (RT), as we critically discuss the potential of MDSC-targeting strategies as tools to achieve superior immunotherapeutic tumor control by RT in the clinic.
Collapse
Affiliation(s)
- Carlos Jiménez-Cortegana
- Department of Radiation Oncology, Weill Cornell Medical College, New York, New York
- Department of Medical Biochemistry, Molecular Biology and Immunology, Faculty of Medicine, University of Seville, Seville, Spain
| | - Claudia Galassi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, New York
| | - Vanessa Klapp
- Department of Radiation Oncology, Weill Cornell Medical College, New York, New York
| | | | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, New York
- Sandra and Edward Meyer Cancer Center, New York, New York
- Caryl and Israel Englander Institute for Precision Medicine, New York, New York
| |
Collapse
|
23
|
Zhang M, Fang Z, Cui M, Liu K. Multifunctional Metal Complex-based Gene Delivery for tumor immune checkpoint blockade combination therapy. J Drug Target 2022; 30:753-766. [PMID: 35311603 DOI: 10.1080/1061186x.2022.2056186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Immune checkpoint blocking based on the PD-1/PD-L1 pathway has shown exciting results in various types of cancer. However, due to the off-target effect of PD-1/PD-L1 blocker, low tumor immunogenicity and tumor immunosuppressive microenvironment, a significant proportion of patients do not benefit from this treatment. Here, we constructed a novel multifunctional metal complex Fe/PEI-Tn by the coordination of polyethyleneimine (PEI) with Fe3+ and the modification of bifunctional peptides Tn containing the cell penetrating peptide (TAT) and nuclear localization signal peptide (NLS), which was coated with hyaluronic acid (HA) to prolong the circulation time in vivo. Fe/PEI-Tn can condensate PD-L1 trap plasmid (pPD-L1 trap) and mediate PD-L1 trap protein expression in tumor tissues in situ, thus blocking the PD-1/PD-L1 pathway. Besides, Fe/PEI-Tn metal complex itself can act as an immune adjuvant to activate macrophages, reverse the phenotype of pro-tumor M2-type macrophages, and promote anti-tumor immunity. Meanwhile, Fe/PEI-Tn treatment can induce damage in tumor cells and release tumor-specific antigens into tumor microenvironment, thus stimulating anti-tumor immune response. Studies showed that HA/Fe/PEI-Tn/pPD-L1 trap complexes could promote the immune activation of tumor tissues and effectively delay tumor growth. This strategy provides a new direction for tumor combination therapy based on PD-1/PD-L1 blockade.
Collapse
Affiliation(s)
- Min Zhang
- Department of Biopharmacy, Shanghai Ocean University, Hucheng Ring Road, Shanghai 201306, China
| | - Zhou Fang
- Department of Biopharmacy, Shanghai Ocean University, Hucheng Ring Road, Shanghai 201306, China
| | - Mingxiao Cui
- Department of Biopharmacy, Shanghai Ocean University, Hucheng Ring Road, Shanghai 201306, China
| | - Kehai Liu
- Department of Biopharmacy, Shanghai Ocean University, Hucheng Ring Road, Shanghai 201306, China
| |
Collapse
|
24
|
Liang S, Zhou G, Hu W. Research Progress of Heavy Ion Radiotherapy for Non-Small-Cell Lung Cancer. Int J Mol Sci 2022; 23:2316. [PMID: 35216430 PMCID: PMC8876478 DOI: 10.3390/ijms23042316] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/10/2022] [Accepted: 02/18/2022] [Indexed: 02/05/2023] Open
Abstract
Non-small-cell lung cancer (NSCLC) has a high incidence and poses a serious threat to human health. However, the treatment outcomes of concurrent chemoradiotherapy for non-small-cell lung cancer are still unsatisfactory, especially for high grade lesions. As a new cancer treatment, heavy ion radiotherapy has shown promising efficacy and safety in the treatment of non-small-cell lung cancer. This article discusses the clinical progress of heavy ion radiotherapy in the treatment of non-small-cell lung cancer mainly from the different cancer stages, the different doses of heavy ion beams, and the patient's individual factors, and explores the deficiency of heavy ion radiotherapy in the treatment of non-small-cell lung cancer and the directions of future research, in order to provide reference for the wider and better application of heavy ion radiotherapy in the future.
Collapse
Affiliation(s)
| | - Guangming Zhou
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China;
| | - Wentao Hu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China;
| |
Collapse
|
25
|
Li Y, Li X, Yang J, Wang S, Tang M, Xia J, Gao Y. Flourish of Proton and Carbon Ion Radiotherapy in China. Front Oncol 2022; 12:819905. [PMID: 35237518 PMCID: PMC8882681 DOI: 10.3389/fonc.2022.819905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
Proton and heavy ion therapy offer superior relative biological effectiveness (RBE) in the treatment of deep-seated tumors compared with conventional photon radiotherapy due to its Bragg-peak feature of energy deposition in organs. Many proton and carbon ion therapy centers are active all over the world. At present, five particle radiotherapy institutes have been built and are receiving patient in China, mainly including Wanjie Proton Therapy Center (WPTC), Shanghai Proton Heavy Ion Center (SPHIC), Heavy Ion Cancer Treatment Center (HIMM), Chang Gung Memorial Hospital (CGMH), and Ruijin Hospital affiliated with Jiao Tong University. Many cancer patients have benefited from ion therapy, showing unique advantages over surgery and chemotherapy. By the end of 2020, nearly 8,000 patients had been treated with proton, carbon ion or carbon ion combined with proton therapy. So far, there is no systemic review for proton and carbon ion therapy facility and clinical outcome in China. We reviewed the development of proton and heavy ion therapy, as well as providing the representative clinical data and future directions for particle therapy in China. It has important guiding significance for the design and construction of new particle therapy center and patients’ choice of treatment equipment.
Collapse
Affiliation(s)
- Yue Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- *Correspondence: Yue Li,
| | - Xiaoman Li
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Jiancheng Yang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Sicheng Wang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Meitang Tang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Jiawen Xia
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Huizhou Research Center of Ion Science, Chinese Academy of Sciences, Huizhou, China
| | - Yunzhe Gao
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
26
|
Particle radiotherapy and molecular therapies: mechanisms and strategies towards clinical applications. Expert Rev Mol Med 2022; 24:e8. [PMID: 35101155 DOI: 10.1017/erm.2022.2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Immunotherapy and targeted therapy are now commonly used in clinical trials in combination with radiotherapy for several cancers. While results are promising and encouraging, the molecular mechanisms of the interaction between the drugs and radiation remain largely unknown. This is especially important when switching from conventional photon therapy to particle therapy using protons or heavier ions. Different dose deposition patterns and molecular radiobiology can in fact modify the interaction with drugs and their effectiveness. We will show here that whilst the main molecular players are the same after low and high linear energy transfer radiation exposure, significant differences are observed in post-exposure signalling pathways that may lead to different effects of the drugs. We will also emphasise that the problem of the timing between drug administration and radiation and the fractionation regime are critical issues that need to be addressed urgently to achieve optimal results in combined treatments with particle therapy.
Collapse
|
27
|
Identification of Potential Prognostic and Predictive Immunological Biomarkers in Patients with Stage I and Stage III Non-Small Cell Lung Cancer (NSCLC): A Prospective Exploratory Study. Cancers (Basel) 2021; 13:cancers13246259. [PMID: 34944879 PMCID: PMC8699057 DOI: 10.3390/cancers13246259] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/02/2021] [Accepted: 12/09/2021] [Indexed: 12/23/2022] Open
Abstract
Radiotherapy (RT) and chemotherapy can induce immune responses, but not much is known regarding treatment-induced immune changes in patients. This exploratory study aimed to identify potential prognostic and predictive immune-related proteins associated with progression-free survival (PFS) in patients with non-small cell lung cancer (NSCLC). In this prospective study, patients with stage I NSCLC treated with stereotactic body radiation therapy (n = 26) and patients with stage III NSCLC treated with concurrent chemoradiotherapy (n = 18) were included. Blood samples were collected before (v1), during (v2), and after RT (v3). In patients with stage I NSCLC, CD244 (HR: 10.2, 95% CI: 1.8-57.4) was identified as a negative prognostic biomarker. In patients with stage III NSCLC, CR2 and IFNGR2 were identified as positive prognostic biomarkers (CR2, HR: 0.00, 95% CI: 0.00-0.12; IFNGR2, HR: 0.04, 95% CI: 0.00-0.46). In addition, analysis of the treatment-induced changes of circulating protein levels over time (Δv2/v3-v1) also identified CXCL10 and IL-10 as negative predictive biomarkers (CXCL10, HR: 3.86, 95% CI: 1.0-14.7; IL-10, HR: 16.92 (2.74-104.36)), although serum-induced interferon (IFN) response was a positive prognostic. In conclusion, we identified several circulating immunogenic proteins that are correlated with PFS in patients with stage I and stage III NSCLC before and during treatment.
Collapse
|
28
|
Zhu M, Yang M, Zhang J, Yin Y, Fan X, Zhang Y, Qin S, Zhang H, Yu F. Immunogenic Cell Death Induction by Ionizing Radiation. Front Immunol 2021; 12:705361. [PMID: 34489957 PMCID: PMC8417736 DOI: 10.3389/fimmu.2021.705361] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/02/2021] [Indexed: 12/12/2022] Open
Abstract
Immunogenic cell death (ICD) is a form of regulated cell death (RCD) induced by various stresses and produces antitumor immunity via damage-associated molecular patterns (DAMPs) release or exposure, mainly including high mobility group box 1 (HMGB1), calreticulin (CRT), adenosine triphosphate (ATP), and heat shock proteins (HSPs). Emerging evidence has suggested that ionizing radiation (IR) can induce ICD, and the dose, type, and fractionation of irradiation influence the induction of ICD. At present, IR-induced ICD is mainly verified in vitro in mice and there is few clinical evidence about it. To boost the induction of ICD by IR, some strategies have shown synergy with IR to enhance antitumor immune response, such as hyperthermia, nanoparticles, and chemotherapy. In this review, we focus on the molecular mechanisms of ICD, ICD-promoting factors associated with irradiation, the clinical evidence of ICD, and immunogenic forms of cell death. Finally, we summarize various methods of improving ICD induced by IR.
Collapse
Affiliation(s)
- Mengqin Zhu
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, China
| | - Mengdie Yang
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, China
| | - Jiajia Zhang
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, China
| | - Yuzhen Yin
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, China
| | - Xin Fan
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, China
| | - Yu Zhang
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, China
| | - Shanshan Qin
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, China
| | - Han Zhang
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, China
| | - Fei Yu
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
29
|
Wang J, Dai Z, Miao Y, Zhao T, Gan J, Zhao C, Ran J, Guan Q. Carbon ion ( 12C 6+) irradiation induces the expression of Klrk1 in lung cancer and optimizes the tumor microenvironment based on the NKG2D/NKG2D-Ls pathway. Cancer Lett 2021; 521:178-195. [PMID: 34492331 DOI: 10.1016/j.canlet.2021.09.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 12/12/2022]
Abstract
With the identification of "negative immune regulation" defects in the immune system and the continuous improvement of immunotherapy, natural killer cells (NK) have received more attention, especially as tools in combined immunotherapy. Carbon ions (12C6+) have become the ideal radiation for combined immunotherapy due to their significant radiobiological advantages and synergistic effects. The purpose of this study was to explore the NK cell-mediated cytotoxicity pathway and related mechanisms in lung cancer induced by carbon ion irradiation. KLRK1, which specifically encodes the NKG2D receptor, was significantly correlated with the prognosis, clinical stage, functional status of NK cells, and the immune microenvironment of lung cancer, as shown by bioinformatics analysis. Based on RNA-seq data of Lewis lung cancer in C57BL/6 mice, carbon ion irradiation was found to significantly induce Klrk1 gene expression and activate the NKG2D/NKG2D-Ls pathway. The Treg inhibition pathway combined with carbon ion radiotherapy could significantly increase the infiltration and function of NK cells in the tumor microenvironment of lung cancer and prolong the survival time of C57BL/6 mice. In conclusion, carbon ions have significant radiobiological advantages, especially under conditions of combined immunotherapy. Carbon ions combined with Treg inhibitors can significantly improve the infiltration and functional status of NK cells.
Collapse
Affiliation(s)
- Jiangtao Wang
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, PR China
| | - Ziying Dai
- Department of Radiation Oncology, The First Hospital of Lanzhou University, Lanzhou, Gansu, PR China
| | - Yandong Miao
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, PR China
| | - Ting Zhao
- Medical Physics Room, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu, PR China
| | - Jian Gan
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, PR China
| | - Chengpeng Zhao
- Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, Gansu, PR China
| | - Juntao Ran
- Department of Radiation Oncology, The First Hospital of Lanzhou University, Lanzhou, Gansu, PR China.
| | - Quanlin Guan
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, PR China; Department of Oncology Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, PR China.
| |
Collapse
|
30
|
Abstract
Radiotherapy delivered using photons induces an immune response that leads to modulation of the tumor microenvironment. Clinical studies are ongoing to evaluate immune checkpoint inhibitors in association with photon radiotherapy. At present, there is no publication on the radio-induced immune response after proton therapy. Balb/c mice bearing subcutaneous CT26 colon tumors were irradiated by a single fraction of 16.4 Gy using a proton beam extracted from a TR24 cyclotron. RNA sequencing analysis was assessed at 3 days post-treatment. Proton therapy immune response was monitored by flow cytometry using several panels (lymphoid, myeloid cells, lymphoid cytokines) at 7 and 14 days post-irradiation. RNA-Seq functional profiling identified a large number of GO categories linked to “immune response” and “interferon signaling”. Immunomonitoring evaluation showed induced tumor infiltration by immune cells. This is the first study showing the effect of proton therapy on immune response. These interesting results provide a sound basis to assess the efficacy of a combination of proton therapy and immune checkpoint inhibitors.
Collapse
|
31
|
Zhou H, Sun F, Ou M, Zhang Y, Lin M, Song L, Yu Y, Liao H, Fan W, Xing H, Li M, Zhao K, Wu X, Sun Y, Liang C, Cai Y, Cui L. Prior nasal delivery of antagomiR-122 prevents radiation-induced brain injury. Mol Ther 2021; 29:3465-3483. [PMID: 34174438 DOI: 10.1016/j.ymthe.2021.06.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 04/24/2021] [Accepted: 06/07/2021] [Indexed: 02/07/2023] Open
Abstract
Radiation-induced brain injury is a major adverse event in head and neck tumor treatment, influencing the quality of life for the more than 50% of patients who undergo radiation therapy and experience long-term survival. However, no effective treatments are available for these patients, and preventative drugs and effective drug-delivery methods must be developed. Based on our results, miR-122-5p was upregulated in the mouse radiation-induced brain injury (RBI) model and patients with nasopharyngeal carcinoma (NPC) who received radiation therapy. Intranasal administration of a single antagomiR-122-5p dose before irradiation effectively alleviated radiation-induced cognitive impairment, neuronal injury, and neuroinflammation in the mouse RBI model. Results further indicated that miR-122-5p inhibition in microglia reduced the levels of proinflammatory cytokines and enhanced the phagocytic function to protect against radiation-induced neuronal injury in cell models. Further, we profiled transcriptome data and verified that Tensin 1 (TNS1) may be the target of miR-122-5p in RBI. In summary, our results reveal a distinct role for miR-122-5p in regulating neuroinflammation in RBI, indicating that a non-invasive strategy for intranasal miR-122-5p administration may be an attractive therapeutic target in RBI, providing new insights for clinical trials. Further systematic safety assessment, optimization of drug administration, and clarity of mechanism will accelerate the process into clinical practice.
Collapse
Affiliation(s)
- Haihong Zhou
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China; Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China
| | - Furong Sun
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China
| | - Mingqian Ou
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China; Department of Neurology, Guangdong Medical University Affiliated Luoding People's Hospital, Luoding 527200, China
| | - Yu Zhang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China; Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China
| | - Meijun Lin
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China; Department of Neurology, Guangdong Medical University Affiliated Zhanjiang Central People's Hospital, Zhanjiang 524037, China
| | - Liqin Song
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China
| | - Yangsheng Yu
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China; Department of Neurology, Southern Medical University Affiliated Puning People's Hospital, Jieyang 522000, China
| | - Haojie Liao
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China; Department of Neurology, Southern Medical University Affiliated Shenzhen Baoan Hospital, Shenzhen 518000, China
| | - Weihao Fan
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China; Department of Neurology, Shantou University Affiliated Yuebei People's Hospital, Shaoguan 512000, China
| | - Huaijie Xing
- Department of Neurology, The Second Affiliated Hospital of Hainan Medical College, Haikou 571000, China
| | - Minhua Li
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China
| | - Kui Zhao
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China
| | - Xiaolian Wu
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China
| | - Yuanhong Sun
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Chunmei Liang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China
| | - Yujie Cai
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China.
| | - Lili Cui
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China; Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China.
| |
Collapse
|
32
|
Hernández ÁP, Juanes-Velasco P, Landeira-Viñuela A, Bareke H, Montalvillo E, Góngora R, Fuentes M. Restoring the Immunity in the Tumor Microenvironment: Insights into Immunogenic Cell Death in Onco-Therapies. Cancers (Basel) 2021; 13:2821. [PMID: 34198850 PMCID: PMC8201010 DOI: 10.3390/cancers13112821] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/31/2021] [Accepted: 06/04/2021] [Indexed: 02/06/2023] Open
Abstract
Immunogenic cell death (ICD) elicited by cancer therapy reshapes the tumor immune microenvironment. A long-term adaptative immune response can be initiated by modulating cell death by therapeutic approaches. Here, the major hallmarks of ICD, endoplasmic reticulum (ER) stress, and damage-associated molecular patterns (DAMPs) are correlated with ICD inducers used in clinical practice to enhance antitumoral activity by suppressing tumor immune evasion. Approaches to monitoring the ICD triggered by antitumoral therapeutics in the tumor microenvironment (TME) and novel perspective in this immune system strategy are also reviewed to give an overview of the relevance of ICD in cancer treatment.
Collapse
Affiliation(s)
- Ángela-Patricia Hernández
- Department of Medicine and General Cytometry Service-Nucleus, CIBERONC CB16/12/00400, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain; (Á.-P.H.); (P.J.-V.); (A.L.-V.); (H.B.); (E.M.); (R.G.)
| | - Pablo Juanes-Velasco
- Department of Medicine and General Cytometry Service-Nucleus, CIBERONC CB16/12/00400, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain; (Á.-P.H.); (P.J.-V.); (A.L.-V.); (H.B.); (E.M.); (R.G.)
| | - Alicia Landeira-Viñuela
- Department of Medicine and General Cytometry Service-Nucleus, CIBERONC CB16/12/00400, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain; (Á.-P.H.); (P.J.-V.); (A.L.-V.); (H.B.); (E.M.); (R.G.)
| | - Halin Bareke
- Department of Medicine and General Cytometry Service-Nucleus, CIBERONC CB16/12/00400, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain; (Á.-P.H.); (P.J.-V.); (A.L.-V.); (H.B.); (E.M.); (R.G.)
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Institute of Health Sciences, Marmara University, 34722 Istanbul, Turkey
| | - Enrique Montalvillo
- Department of Medicine and General Cytometry Service-Nucleus, CIBERONC CB16/12/00400, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain; (Á.-P.H.); (P.J.-V.); (A.L.-V.); (H.B.); (E.M.); (R.G.)
| | - Rafael Góngora
- Department of Medicine and General Cytometry Service-Nucleus, CIBERONC CB16/12/00400, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain; (Á.-P.H.); (P.J.-V.); (A.L.-V.); (H.B.); (E.M.); (R.G.)
| | - Manuel Fuentes
- Department of Medicine and General Cytometry Service-Nucleus, CIBERONC CB16/12/00400, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain; (Á.-P.H.); (P.J.-V.); (A.L.-V.); (H.B.); (E.M.); (R.G.)
- Proteomics Unit, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain
| |
Collapse
|
33
|
Ran J, Wang J, Dai Z, Miao Y, Gan J, Zhao C, Guan Q. Irradiation-Induced Changes in the Immunogenicity of Lung Cancer Cell Lines: Based on Comparison of X-rays and Carbon Ions. Front Public Health 2021; 9:666282. [PMID: 33968889 PMCID: PMC8101633 DOI: 10.3389/fpubh.2021.666282] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/29/2021] [Indexed: 12/14/2022] Open
Abstract
Increasing the immunogenicity of tumors is considered to be an effective means to improve the synergistic immune effect of radiotherapy. Carbon ions have become ideal radiation for combined immunotherapy due to their particular radiobiological advantages. However, the difference in time and dose of immunogenic changes induced by Carbon ions and X-rays has not yet been fully clarified. To further explore the immunogenicity differences between carbon ions and X-rays induced by radiation in different "time windows" and "dose windows." In this study, we used principal component analysis (PCA) to screen out the marker genes from the single-cell RNA-sequencing (scRNA-seq) of CD8+ T cells and constructed a protein-protein interaction (PPI) network. Also, ELISA was used to test the exposure levels of HMGB1, IL-10, and TGF-β under different "time windows" and "dose windows" of irradiation with X-rays and carbon ions for A549, H520, and Lewis Lung Carcinoma (LLC) cell lines. The results demonstrated that different marker genes were involved in different processes of immune effect. HMGB1 was significantly enriched in the activated state, while the immunosuppressive factors TGF-β and IL-10 were mainly enriched in the non-functional state. Both X-rays and Carbon ions promoted the exposure of HMGB1, IL-10, and TGF-β in a time-dependent manner. X-rays but not Carbon ions increased the HMGB1 exposure level in a dose-dependent manner. Besides, compared with X-rays, carbon ions increased the exposure of HMGB1 while relatively reduced the exposure levels of immunosuppressive factors IL-10 and TGF-β. Therefore, we speculate that Carbon ions may be more advantageous than conventional X-rays in inducing immune effects.
Collapse
Affiliation(s)
- Juntao Ran
- Department of Radiation Oncology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Jiangtao Wang
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Ziying Dai
- Department of Radiation Oncology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Yandong Miao
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Jian Gan
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Chengpeng Zhao
- Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Quanlin Guan
- The First Clinical Medical College of Lanzhou University, Lanzhou, China.,Department of Oncology Surgery, The First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
34
|
Vaes RDW, Hendriks LEL, Vooijs M, De Ruysscher D. Biomarkers of Radiotherapy-Induced Immunogenic Cell Death. Cells 2021; 10:cells10040930. [PMID: 33920544 PMCID: PMC8073519 DOI: 10.3390/cells10040930] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/08/2021] [Accepted: 04/14/2021] [Indexed: 12/20/2022] Open
Abstract
Radiation therapy (RT) can induce an immunogenic variant of regulated cell death that can initiate clinically relevant tumor-targeting immune responses. Immunogenic cell death (ICD) is accompanied by the exposure and release of damage-associated molecular patterns (DAMPs), chemokine release, and stimulation of type I interferon (IFN-I) responses. In recent years, intensive research has unraveled major mechanistic aspects of RT-induced ICD and has resulted in the identification of immunogenic factors that are released by irradiated tumor cells. However, so far, only a limited number of studies have searched for potential biomarkers that can be used to predict if irradiated tumor cells undergo ICD that can elicit an effective immunogenic anti-tumor response. In this article, we summarize the available literature on potential biomarkers of RT-induced ICD that have been evaluated in cancer patients. Additionally, we discuss the clinical relevance of these findings and important aspects that should be considered in future studies.
Collapse
Affiliation(s)
- Rianne D. W. Vaes
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, P.O. 616, 6200 MD Maastricht, The Netherlands; (M.V.); (D.D.R.)
- Correspondence: ; Tel.: +31-(0)43-388-1585
| | - Lizza E. L. Hendriks
- Department of Pulmonary Diseases, GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, P.O. 616, 6200 MD Maastricht, The Netherlands;
| | - Marc Vooijs
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, P.O. 616, 6200 MD Maastricht, The Netherlands; (M.V.); (D.D.R.)
| | - Dirk De Ruysscher
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, P.O. 616, 6200 MD Maastricht, The Netherlands; (M.V.); (D.D.R.)
| |
Collapse
|
35
|
Oxygen and oxaliplatin-loaded nanoparticles combined with photo-sonodynamic inducing enhanced immunogenic cell death in syngeneic mouse models of ovarian cancer. J Control Release 2021; 332:448-459. [DOI: 10.1016/j.jconrel.2021.02.032] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 01/19/2021] [Accepted: 02/25/2021] [Indexed: 01/10/2023]
|
36
|
Marcus D, Lieverse RIY, Klein C, Abdollahi A, Lambin P, Dubois LJ, Yaromina A. Charged Particle and Conventional Radiotherapy: Current Implications as Partner for Immunotherapy. Cancers (Basel) 2021; 13:1468. [PMID: 33806808 PMCID: PMC8005048 DOI: 10.3390/cancers13061468] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 02/07/2023] Open
Abstract
Radiotherapy (RT) has been shown to interfere with inflammatory signals and to enhance tumor immunogenicity via, e.g., immunogenic cell death, thereby potentially augmenting the therapeutic efficacy of immunotherapy. Conventional RT consists predominantly of high energy photon beams. Hypofractionated RT regimens administered, e.g., by stereotactic body radiation therapy (SBRT), are increasingly investigated in combination with cancer immunotherapy within clinical trials. Despite intensive preclinical studies, the optimal dose per fraction and dose schemes for elaboration of RT induced immunogenic potential remain inconclusive. Compared to the scenario of combined immune checkpoint inhibition (ICI) and RT, multimodal therapies utilizing other immunotherapy principles such as adoptive transfer of immune cells, vaccination strategies, targeted immune-cytokines and agonists are underrepresented in both preclinical and clinical settings. Despite the clinical success of ICI and RT combination, e.g., prolonging overall survival in locally advanced lung cancer, curative outcomes are still not achieved for most cancer entities studied. Charged particle RT (PRT) has gained interest as it may enhance tumor immunogenicity compared to conventional RT due to its unique biological and physical properties. However, whether PRT in combination with immune therapy will elicit superior antitumor effects both locally and systemically needs to be further investigated. In this review, the immunological effects of RT in the tumor microenvironment are summarized to understand their implications for immunotherapy combinations. Attention will be given to the various immunotherapeutic interventions that have been co-administered with RT so far. Furthermore, the theoretical basis and first evidences supporting a favorable immunogenicity profile of PRT will be examined.
Collapse
Affiliation(s)
- Damiënne Marcus
- The M-Lab, Department of Precision Medicine, GROW–School for Oncology and Developmental Biology, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands; (D.M.); (R.I.Y.L.); (P.L.); (L.J.D.)
| | - Relinde I. Y. Lieverse
- The M-Lab, Department of Precision Medicine, GROW–School for Oncology and Developmental Biology, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands; (D.M.); (R.I.Y.L.); (P.L.); (L.J.D.)
| | - Carmen Klein
- German Cancer Consortium (DKTK) Core-Center Heidelberg, National Center for Tumor Diseases (NCT), Clinical Cooperation Unit Translational Radiation Oncology, Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 460, 69120 Heidelberg, Germany; (C.K.); (A.A.)
- Heidelberg Ion-Beam Therapy Center (HIT), Division of Molecular and Translational Radiation Oncology, Heidelberg Faculty of Medicine (MFHD) and Heidelberg University Hospital (UKHD), Im Neuenheimer Feld 450, 69120 Heidelberg, Germany
- National Center for Radiation Oncology (NCRO), Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg University and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 222, 69120 Heidelberg, Germany
| | - Amir Abdollahi
- German Cancer Consortium (DKTK) Core-Center Heidelberg, National Center for Tumor Diseases (NCT), Clinical Cooperation Unit Translational Radiation Oncology, Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 460, 69120 Heidelberg, Germany; (C.K.); (A.A.)
- Heidelberg Ion-Beam Therapy Center (HIT), Division of Molecular and Translational Radiation Oncology, Heidelberg Faculty of Medicine (MFHD) and Heidelberg University Hospital (UKHD), Im Neuenheimer Feld 450, 69120 Heidelberg, Germany
- National Center for Radiation Oncology (NCRO), Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg University and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 222, 69120 Heidelberg, Germany
| | - Philippe Lambin
- The M-Lab, Department of Precision Medicine, GROW–School for Oncology and Developmental Biology, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands; (D.M.); (R.I.Y.L.); (P.L.); (L.J.D.)
| | - Ludwig J. Dubois
- The M-Lab, Department of Precision Medicine, GROW–School for Oncology and Developmental Biology, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands; (D.M.); (R.I.Y.L.); (P.L.); (L.J.D.)
| | - Ala Yaromina
- The M-Lab, Department of Precision Medicine, GROW–School for Oncology and Developmental Biology, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands; (D.M.); (R.I.Y.L.); (P.L.); (L.J.D.)
| |
Collapse
|
37
|
The Potentiation of Anti-Tumor Immunity by Tumor Abolition with Alpha Particles, Protons, or Carbon Ion Radiation and Its Enforcement by Combination with Immunoadjuvants or Inhibitors of Immune Suppressor Cells and Checkpoint Molecules. Cells 2021; 10:cells10020228. [PMID: 33503958 PMCID: PMC7912488 DOI: 10.3390/cells10020228] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 12/24/2022] Open
Abstract
The delivery of radiation therapy (RT) for cancer with intent to cure has been optimized and standardized over the last 80 years. Both preclinical and clinical work emphasized the observation that radiation destroys the tumor and exposes its components to the immune response in a mode that facilitates the induction of anti-tumor immunity or reinforces such a response. External beam photon radiation is the most prevalent in situ abolition treatment, and its use exposed the “abscopal effect”. Particle radiotherapy (PRT), which has been in various stages of research and development for 70 years, is today available for the treatment of patients in the form of alpha particles, proton, or carbon ion radiotherapy. Charged particle radiotherapy is based on the acceleration of charged species, such as protons or carbon-12, which deposit their energy in the treated tumor and have a higher relative biological effectiveness compared with photon radiation. In this review, we will bring evidence that alpha particles, proton, or carbon ion radiation can destroy tumors and activate specific anti-tumor immune responses. Radiation may also directly affect the distribution and function of immune cells such as T cells, regulatory T cells, and mononuclear phagocytes. Tumor abolition by radiation can trigger an immune response against the tumor. However, abolition alone rarely induces effective anti-tumor immunity resulting in systemic tumor rejection. Immunotherapy can complement abolition to reinforce the anti-tumor immunity to better eradicate residual local and metastatic tumor cells. Various methods and agents such as immunoadjuvants, suppressor cell inhibitors, or checkpoint inhibitors were used to manipulate the immune response in combination with radiation. This review deals with the manifestations of particle-mediated radiotherapy and its correlation with immunotherapy of cancer.
Collapse
|
38
|
Immunostimulatory Effects of Radiotherapy for Local and Systemic Control of Melanoma: A Review. Int J Mol Sci 2020; 21:ijms21239324. [PMID: 33297519 PMCID: PMC7730562 DOI: 10.3390/ijms21239324] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/04/2020] [Accepted: 12/05/2020] [Indexed: 12/12/2022] Open
Abstract
Recently, modern therapies involving immune checkpoint inhibitors, cytokines, and oncolytic virus have been developed. Because of the limited treatment effect of modern therapy alone, the immunostimulatory effect of radiotherapy attracted increasing attention. The combined use of radiotherapy and modern therapy has been examined clinically and non-clinically, and its effectiveness has been confirmed recently. Because melanomas have high immunogenicity, better therapeutic outcomes are desired when using immunotherapy. However, sufficient therapeutic effects have not yet been achieved. Thus far, radiotherapy has been used only for local control of tumors. Although extremely rare, radiotherapy has also been reported for systemic control, i.e., abscopal effect. This is thought to be due to an antitumor immune response. Therefore, we herein summarize past information on not only the mechanism of immune effects on radiotherapy but also biomarkers reported in case reports on abscopal effects. We also reviewed the animal model suitable for evaluating abscopal effects. These results pave the way for further basic research or clinical studies on new treatment methods for melanoma. Currently, palliative radiation is administered to patients with metastatic melanoma for local control. If it is feasible to provide both systemic and local control, the treatment benefit for the patients is very large.
Collapse
|
39
|
Huang Y, Huang Q, Zhao J, Dong Y, Zhang L, Fang X, Sun P, Kong L, Lu JJ. The Impacts of Different Types of Radiation on the CRT and PDL1 Expression in Tumor Cells Under Normoxia and Hypoxia. Front Oncol 2020; 10:1610. [PMID: 32974200 PMCID: PMC7466457 DOI: 10.3389/fonc.2020.01610] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/24/2020] [Indexed: 01/19/2023] Open
Abstract
Introduction Hypoxia is a hallmark of cancer that may contribute to an immunosuppressive microenvironment and promote radioresistance. High linear energy transfer (LET) radiation is considered to be able to overcome the negative effects of hypoxia. However, the anti-tumorigenic effects induced by low or high LET radiation have not been fully elucidated. This study aimed to compare the effects of different types of radiation on the immune response, particularly the impact on calreticulin (CRT), and programmed cell death ligand 1 (PDL1) expression. Methods Four human tumor cell lines were investigated in this study. Cells in normoxic and hypoxic groups were irradiated with 4Gy (physical dose) photon, proton, and carbon-ion radiation, respectively. The expression of CRT and PDL1 was detected 48 h after irradiation, and the median fluorescence intensities (MFIs) were compared by flow cytometry. Meanwhile, the radiosensitivity of tumor cells in each group was also compared by colony formation assays and flow cytometry. Results All types of radiation could significantly inhibit the colony formation of tumor cells under normoxia. However, the efficacy of photon and proton radiation was impaired under hypoxia. Carbon-ion radiation could still inhibit colony formation. The percentage of viable cells after irradiation was higher under hypoxia compared with those under normoxia. The CRT expression under normoxia was significantly increased after radiation. Carbon-ion radiation enhanced CRT expression compared to photon and proton radiation. Conversely, under hypoxia, the CRT expression level was significantly upregulated at baseline (0Gy). Radiation could not increase the expression further. PDL1 expression was also significantly increased by radiation under normoxia in all cell lines except the Ln18 cell line. Carbon-ion radiation induced the most significant increase. Under hypoxia, the PDL1 expression level was also upregulated at baseline and radiation could not increase expression further. Conclusion Tumor cells were resistant to photon and proton but sensitive to carbon-ion radiation under hypoxia. Carbon-ion radiation could induce the highest CRT and PDL1 expression under normoxia. However, under hypoxia, radiation could not further enhance the high baseline expression of CRT and PDL1.
Collapse
Affiliation(s)
- Yangle Huang
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Qingting Huang
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Jingfang Zhao
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China.,Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China
| | - Yuanli Dong
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Lijia Zhang
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China.,Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China
| | - Xumeng Fang
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Pian Sun
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Lin Kong
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Jiade Jay Lu
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| |
Collapse
|
40
|
Sato H, Okonogi N, Nakano T. Rationale of combination of anti-PD-1/PD-L1 antibody therapy and radiotherapy for cancer treatment. Int J Clin Oncol 2020; 25:801-809. [PMID: 32246277 PMCID: PMC7192886 DOI: 10.1007/s10147-020-01666-1] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 03/18/2020] [Indexed: 12/20/2022]
Abstract
Significant technological advances in radiotherapy have been made in the past few decades. High-precision radiotherapy has recently become popular and is contributing to improvements in the local control of the irradiated target lesions and the reduction of adverse effects. Accordingly, for long-term survival, the importance of systemic cancer control, including at non-irradiated sites, is growing. Toward this challenge, the treatment methods in which anti-PD-1/PD-L1 antibodies that exert systemic effects by restoring anti-tumour immunity are combined with radiotherapy has attracted attention in recent years. Previous studies have reported the activation of anti-tumour immunity by radiotherapy, which simultaneously elevates PD-L1 expression, suggesting a potential for combination therapy. Radiotherapy induces so-called ‘immunogenic cell death’, which involves cell surface translocation of calreticulin and extracellular release of high-mobility group protein box 1 (HMGB-1) and adenosine-5′-triphosphate (ATP). Furthermore, radiotherapy causes immune activation via MHC class I upregulation and cGAS–STING pathway. In contrast, induction of immunosuppressive lymphocytes and the release of immunosuppressive cytokines and chemokines by radiotherapy contribute to immunosuppressive reactions. In this article, we review immune responses induced by radiotherapy as well as previous reports to support the rationale of combination of radiotherapy and anti-PD-1/PD-L1 antibodies. A number of preclinical and clinical studies have shown the efficacy of radiotherapy combined with immune checkpoint inhibition, hence combination therapy is considered to be an important future strategy for cancer treatment.
Collapse
Affiliation(s)
- Hiro Sato
- Department of Radiation Oncology, Graduate School of Medicine, Gunma University, Maebashi, Gunma, 371-8511, Japan.
| | - Noriyuki Okonogi
- National Institute of Radiological Sciences, National Institute for Quantum and Radiological Science and Technology, Inage, Chiba, 263-8555, Japan
| | - Takashi Nakano
- National Institute of Radiological Sciences, National Institute for Quantum and Radiological Science and Technology, Inage, Chiba, 263-8555, Japan
| |
Collapse
|