1
|
Guo C, Xu C, Feng Q, Xie X, Li Y, Zhao X, Hu J, Fang S, Shang L. A study on loading multiple epitopes with a single peptide. J Med Virol 2024; 96:e70004. [PMID: 39400886 DOI: 10.1002/jmv.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/08/2024] [Accepted: 09/30/2024] [Indexed: 10/15/2024]
Abstract
Epitopes, the basic functional units of antigens, hold great significance in the field of immunology. However, the structure and composition of epitopes and their interactions with antibodies remain unclear, which limits in-depth studies on epitopes and the development of subunit vaccines. In a previous study on the localization of anti-influenza HA monoclonal antibodies (mAbs), three strains with different characteristics reacted with the same peptide. In this study, by conventional immunological assays, computer homology modeling, and molecular docking simulations, we found that (1) the peptide could bind to three strains of mAbs with different reaction characteristics utilizing different combinations of immunodominant groups. (2) By computer molecular docking and simulation methods, the immunodominant groups on the two peptides could be combined into a multi-epitope peptide bound to six strains of mAbs. We established a method for multi-epitope peptide recombination from these immunodominant groups. (3) The immune effect of the recombinant multi-epitope peptide was better than that of a single peptide. Our findings facilitate the understanding of the composition of antigen epitopes and provide a theoretical and experimental basis for developing polyvalent vaccines and understanding immune responses at the molecular level.
Collapse
Affiliation(s)
- Chunyan Guo
- Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
- Shaanxi Engineering Research Center of Cell Immunology, Xi'an, Shaanxi, China
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Xi'an, Shaanxi, China
| | - Cuixiang Xu
- Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
- Shaanxi Engineering Research Center of Cell Immunology, Xi'an, Shaanxi, China
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Xi'an, Shaanxi, China
| | - Qing Feng
- Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
- Shaanxi Engineering Research Center of Cell Immunology, Xi'an, Shaanxi, China
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Xi'an, Shaanxi, China
| | - Xin Xie
- Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Yan Li
- Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
- Shaanxi Engineering Research Center of Cell Immunology, Xi'an, Shaanxi, China
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Xi'an, Shaanxi, China
| | - Xiangrong Zhao
- Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
- Shaanxi Engineering Research Center of Cell Immunology, Xi'an, Shaanxi, China
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Xi'an, Shaanxi, China
| | - Jun Hu
- Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
- Shaanxi Engineering Research Center of Cell Immunology, Xi'an, Shaanxi, China
| | - Senbiao Fang
- Department of Molecular Pharmacology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Lijun Shang
- School of Human Sciences, London Metropolitan University, London, UK
| |
Collapse
|
2
|
Islam MS, Fan J, Pan F. The power of phages: revolutionizing cancer treatment. Front Oncol 2023; 13:1290296. [PMID: 38033486 PMCID: PMC10684691 DOI: 10.3389/fonc.2023.1290296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023] Open
Abstract
Cancer is a devastating disease with a high global mortality rate and is projected to increase further in the coming years. Current treatment options, such as chemotherapy and radiation therapy, have limitations including side effects, variable effectiveness, high costs, and limited availability. There is a growing need for alternative treatments that can target cancer cells specifically with fewer side effects. Phages, that infect bacteria but not eukaryotic cells, have emerged as promising cancer therapeutics due to their unique properties, including specificity and ease of genetic modification. Engineered phages can transform cancer treatment by targeting cancer cells while sparing healthy ones. Phages exhibit versatility as nanocarriers, capable of delivering therapeutic agents like gene therapy, immunotherapy, and vaccines. Phages are extensively used in vaccine development, with filamentous, tailed, and icosahedral phages explored for different antigen expression possibilities. Engineered filamentous phages bring benefits such as built in adjuvant properties, cost-effectiveness, versatility in multivalent formulations, feasibility of oral administration, and stability. Phage-based vaccines stimulate the innate immune system by engaging pattern recognition receptors on antigen-presenting cells, enhancing phage peptide antigen presentation to B-cells and T-cells. This review presents recent phage therapy advances and challenges in cancer therapy, exploring its versatile tools and vaccine potential.
Collapse
Affiliation(s)
- Md. Sharifull Islam
- Center for Cancer Immunology, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jie Fan
- Department of Cardiology, Handan Central Hospital, Handan, Hebei, China
| | - Fan Pan
- Center for Cancer Immunology, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
3
|
Miles S, Dematteis S, Mourglia-Ettlin G. Experimental cystic echinococcosis as a proof of concept for the development of peptide-based vaccines following a novel rational workflow. Biologicals 2023; 82:101684. [PMID: 37201271 DOI: 10.1016/j.biologicals.2023.101684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 03/14/2023] [Accepted: 04/24/2023] [Indexed: 05/20/2023] Open
Abstract
Vaccines are among the most important advances in medicine throughout the human history. However, conventional vaccines exhibit several drawbacks in terms of design and production costs. Peptide-based vaccines are attractive alternatives, since they can be designed mainly in silico, can be produced cheaply and safely, and are able to induce immune responses exclusively towards protective epitopes. Yet, a proper peptide design is needed, not only to generate peptide-specific immune responses, but also for them to recognize the native protein in the occurrence of a natural infection. Herein, we propose a rational workflow for developing peptide-based vaccines including novel steps that assure the cross-recognition of native proteins. In this regard, we increased the probability of generating efficient antibodies through the selection of linear B-cell epitopes free of post-translational modifications followed by analyzing the 3D-structure similarity between the peptide in-solution vs. within its parental native protein. As a proof of concept, this workflow was applied to a set of seven previously suggested potential protective antigens against the infection by Echinococcus granulosus sensu lato. Finally, two peptides were obtained showing the capacity to induce specific antibodies able to exert anti-parasite activities in different in vitro settings, as well as to provide significant protection in the murine model of secondary echinococcosis.
Collapse
Affiliation(s)
- Sebastian Miles
- Area Inmunología, DEPBIO/IQB, Facultad de Química/Facultad de Ciencias, Universidad de la Republica, Montevideo, Uruguay; Graduate Program in Chemistry, Facultad de Química, Universidad de la Republica, Uruguay
| | - Sylvia Dematteis
- Area Inmunología, DEPBIO/IQB, Facultad de Química/Facultad de Ciencias, Universidad de la Republica, Montevideo, Uruguay
| | - Gustavo Mourglia-Ettlin
- Area Inmunología, DEPBIO/IQB, Facultad de Química/Facultad de Ciencias, Universidad de la Republica, Montevideo, Uruguay.
| |
Collapse
|
4
|
Lv Y, Li S, Zhang T, Zhu Y, Tao J, Yang J, Chang L, Wu C, Zhao W. Identification of B‐cell dominant epitopes in the recombinant protein P29 from
Echinococcus granulosus. Immun Inflamm Dis 2022; 10:e611. [PMID: 35478448 PMCID: PMC9017632 DOI: 10.1002/iid3.611] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/22/2022] [Accepted: 03/08/2022] [Indexed: 11/19/2022] Open
Abstract
Introduction Echinococcus granulosus (E. granulosus) causes a hazardous zoonotic parasitic disease. This parasite can occupy the liver and several areas of the body, causing incurable damage. Our previous studies have provided evidence that the recombinant protein P29 (rEg.P29) exhibit immune protection in sheep and mice against pathological damage induced by E. granulosus, showing its potential as candidate for vaccine development. However, information on the B‐cell epitopes of rEg.P29 has not yet been reported. Methods Immunological model was established in mice with rEg.P29. SDS‐PAGE and Western blot were used to identify protein. Screening for B‐cell dominant epitope peptides of rEg.P29 by enzyme‐linked immunosorbent assay (ELISA) and immune serum. Dominant epitopes were validated using ELISA and flow cytometry. Multiple sequence alignment analysis was performed using BLAST and UniProt. Results Immunization with rEg.P29 induced intense and persistent antibody responses, and the epitope of the dominant antigen of B cells are identified as rEg.P29166–185 (LKNAKTAEQKAKWEAEVRKD). Anti‐rEg.P29166–185‐specific antibodies lack epitopes against IgA, IgE, and IgG3, compared to anti‐rEg.P29‐specific antibodies. However, anti‐rEg.P29166–185 IgG showed comparatively higher titers, as determined among those peptides by endpoint titration. In addition, rEg.P29 and rEg.P29166–185 promote B‐cell activation and proliferation in vitro. The dominant epitopes are relatively conserved in different subtypes of the rEg.P29 sequence. Conclusion rEg.P29166–185 can act as a dominant B‐cell epitope for rEg.P29 and promote cell activation and proliferation in the same way as rEg.P29.
Collapse
Affiliation(s)
- Yongxue Lv
- School of Basic Medicine Ningxia Medical University Yinchuan China
- Ningxia Key Laboratory of Prevention and Control of Common Infectious Diseases Ningxia Hui Autonomous Region Yinchuan China
| | - Shasha Li
- School of Basic Medicine Ningxia Medical University Yinchuan China
- Ningxia Key Laboratory of Prevention and Control of Common Infectious Diseases Ningxia Hui Autonomous Region Yinchuan China
| | - Tingrui Zhang
- School of Basic Medicine Ningxia Medical University Yinchuan China
- Ningxia Key Laboratory of Prevention and Control of Common Infectious Diseases Ningxia Hui Autonomous Region Yinchuan China
| | - Yazhou Zhu
- School of Basic Medicine Ningxia Medical University Yinchuan China
- Ningxia Key Laboratory of Prevention and Control of Common Infectious Diseases Ningxia Hui Autonomous Region Yinchuan China
| | - Jia Tao
- School of Basic Medicine Ningxia Medical University Yinchuan China
- Ningxia Key Laboratory of Prevention and Control of Common Infectious Diseases Ningxia Hui Autonomous Region Yinchuan China
| | - Jihui Yang
- School of Basic Medicine Ningxia Medical University Yinchuan China
- Ningxia Key Laboratory of Prevention and Control of Common Infectious Diseases Ningxia Hui Autonomous Region Yinchuan China
| | - Liangliang Chang
- School of Basic Medicine Ningxia Medical University Yinchuan China
- Ningxia Key Laboratory of Prevention and Control of Common Infectious Diseases Ningxia Hui Autonomous Region Yinchuan China
| | - Changyou Wu
- Institute of Immunology, Zhongshan School of Medicine Sun Yat‐sen University Guangzhou China
| | - Wei Zhao
- School of Basic Medicine Ningxia Medical University Yinchuan China
- Ningxia Key Laboratory of Prevention and Control of Common Infectious Diseases Ningxia Hui Autonomous Region Yinchuan China
| |
Collapse
|
5
|
Du X, Zhu M, Zhang T, Wang C, Tao J, Yang S, Zhu Y, Zhao W. The Recombinant Eg.P29-Mediated miR-126a-5p Promotes the Differentiation of Mouse Naive CD4 + T Cells via DLK1-Mediated Notch1 Signal Pathway. Front Immunol 2022; 13:773276. [PMID: 35211114 PMCID: PMC8861942 DOI: 10.3389/fimmu.2022.773276] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 01/18/2022] [Indexed: 12/12/2022] Open
Abstract
Cystic echinococcosis (CE) is a zoonotic parasitic disease spread worldwide caused by Echinococcus granulosus (Eg), which sometimes causes serious damage; however, in many cases, people are not aware that they are infected. A number of recombinant vaccines based on Eg are used to evaluate their effectiveness against the infection. Our previous report showed that recombinant Eg.P29 (rEg.P29) has a marvelous immunoprotection and can induce Th1 immune response. Furthermore, data of miRNA microarray in mice spleen CD4+ T cells showed that miR-126a-5p was significantly elevated 1 week after immunization by using rEg.P29. Therefore, in this perspective, we discussed the role of miR-126a-5p in the differentiation of naive CD4+ T cells into Th1/Th2 under rEg.P29 immunization and determined the mechanisms associated with delta-like 1 homolog (DLK1) and Notch1 signaling pathway. One week after P29 immunization of mice, we found that miR-126a-5p was significantly increased and DLK1 expression was decreased, while Notch1 pathway activation was enhanced and Th1 response was significantly stronger. The identical conclusion was obtained by overexpression of mmu-miR-126a-5p in primary naive CD4+ T cells in mice. Intriguingly, mmu-miR-126a-5p was significantly raised in serum from mice infected with protoscolex in the early stages of infection and markedly declined in the late stages of infection, while has-miR-126-5p expression was dramatically reduced in serum from CE patients. Taken together, we show that miR-126a-5p functions as a positive regulator of Notch1-mediated differentiation of CD4+ T cells into Th1 through downregulating DLK1 in vivo and in vitro. Hsa-miR-126-5p is potentially a very promising diagnostic biomarker for CE.
Collapse
Affiliation(s)
- Xiancai Du
- School of Basic Medical Science of Ningxia Medical University, Yinchuan, China.,Ningxia Key Laboratory of Prevention and Control of Common Infectious Diseases, Yinchuan, China
| | - Mingxing Zhu
- Ningxia Key Laboratory of Prevention and Control of Common Infectious Diseases, Yinchuan, China.,Center of Scientific Technology of Ningxia Medical University, Yinchuan, China
| | - Tingrui Zhang
- School of Basic Medical Science of Ningxia Medical University, Yinchuan, China.,Ningxia Key Laboratory of Prevention and Control of Common Infectious Diseases, Yinchuan, China
| | - Chan Wang
- School of Basic Medical Science of Ningxia Medical University, Yinchuan, China.,Ningxia Key Laboratory of Prevention and Control of Common Infectious Diseases, Yinchuan, China
| | - Jia Tao
- School of Basic Medical Science of Ningxia Medical University, Yinchuan, China.,Ningxia Key Laboratory of Prevention and Control of Common Infectious Diseases, Yinchuan, China
| | - Songhao Yang
- School of Basic Medical Science of Ningxia Medical University, Yinchuan, China.,Ningxia Key Laboratory of Prevention and Control of Common Infectious Diseases, Yinchuan, China
| | - Yazhou Zhu
- School of Basic Medical Science of Ningxia Medical University, Yinchuan, China.,Ningxia Key Laboratory of Prevention and Control of Common Infectious Diseases, Yinchuan, China
| | - Wei Zhao
- Ningxia Key Laboratory of Prevention and Control of Common Infectious Diseases, Yinchuan, China.,Center of Scientific Technology of Ningxia Medical University, Yinchuan, China
| |
Collapse
|
6
|
Wang C, Yang SH, Niu N, Tao J, Du XC, Yang JH, Zhu MX, Wang YN, Zhao W. lncRNA028466 regulates Th1/Th2 cytokine expression and associates with Echinococcus granulosus antigen P29 immunity. Parasit Vectors 2021; 14:295. [PMID: 34082780 PMCID: PMC8173744 DOI: 10.1186/s13071-021-04795-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/20/2021] [Indexed: 02/07/2023] Open
Abstract
Background Cystic echinococcosis (CE) is a parasitic disease that is caused by Echinococcus granulosus (Eg). The recombinant Echinococcus granulosus antigen P29 (rEg.P29) was shown to confer effective immunity to sheep and mice during E. granulosus secondary infection in our previous study. In this study, we sought to investigate the ability of long noncoding RNA 028466 (lncRNA028466) as a regulator for the protective immunity mediated by rEg.P29 vaccination and to study the effects of lncRNA028466 on CD4+T cell differentiation in mice spleen. Methods Female BALB/c mice were divided into two groups and were vaccinated subcutaneously with rEg.P29 antigen and PBS as a control (12 mice each group). Following prime-boost vaccination, CD4+T, CD8+T, and B cells from the spleen were isolated by flow cytometry. Quantitative real-time PCR (qRT-PCR) was performed to measure the expression of lncRNA028466 in these three kinds of cells. Then, lncRNA028466 was overexpressed and knocked down in naive CD4+T cells, and Th1 and Th2 cytokine expression was detected. qRT-PCR, western blot, and ELISA were performed to evaluate the production of IFN-γ, IL-2, IL-4, and IL-10, and flow cytometry was performed to detect the differentiation of Th1 and Th2 subgroups. Results lncRNA028466 was significantly decreased after the second week of immunization with rEg.P29 antigen. The proportion of CD4+ T cells was increased after rEg.P29 immunization. Overexpression of lncRNA028466 facilitated the production of IL-4, IL-10 and suppressed the production of IFN-γ, IL-2. Furthermore, after transfection with siRNA028466, IL-2 production was facilitated and IL-10 production was suppressed in naive CD4+ T cells. Conclusions Immunization with rEg.P29 downregulated the expression of lncRNA028466, which was related to a higher Th1 immune response and a lower Th2 immune response. Our results suggest that lncRNA028466 may be involved in rEg.P29-mediated immune response by regulating cytokine expression of Th1 and Th2. Supplementary Information The online version contains supplementary material available at 10.1186/s13071-021-04795-2.
Collapse
Affiliation(s)
- Chan Wang
- Department of Medical genetics and Cell biology, School of Basic Medical Science of Ningxia Medical University, Yinchuan, 750004, Ningxia Hui Autonomous Region, People's Republic of China.,Ningxia Key Laboratory of Prevention and Control of Common Infectious Diseases of Ningxia Medical University, Yinchuan, 750004, Ningxia Hui Autonomous Region, People's Republic of China
| | - Song-Hao Yang
- Department of Medical genetics and Cell biology, School of Basic Medical Science of Ningxia Medical University, Yinchuan, 750004, Ningxia Hui Autonomous Region, People's Republic of China.,Ningxia Key Laboratory of Prevention and Control of Common Infectious Diseases of Ningxia Medical University, Yinchuan, 750004, Ningxia Hui Autonomous Region, People's Republic of China
| | - Nan Niu
- Department of Medical genetics and Cell biology, School of Basic Medical Science of Ningxia Medical University, Yinchuan, 750004, Ningxia Hui Autonomous Region, People's Republic of China.,Ningxia Key Laboratory of Prevention and Control of Common Infectious Diseases of Ningxia Medical University, Yinchuan, 750004, Ningxia Hui Autonomous Region, People's Republic of China
| | - Jia Tao
- Department of Medical genetics and Cell biology, School of Basic Medical Science of Ningxia Medical University, Yinchuan, 750004, Ningxia Hui Autonomous Region, People's Republic of China.,Ningxia Key Laboratory of Prevention and Control of Common Infectious Diseases of Ningxia Medical University, Yinchuan, 750004, Ningxia Hui Autonomous Region, People's Republic of China
| | - Xian-Cai Du
- Department of Medical genetics and Cell biology, School of Basic Medical Science of Ningxia Medical University, Yinchuan, 750004, Ningxia Hui Autonomous Region, People's Republic of China.,Ningxia Key Laboratory of Prevention and Control of Common Infectious Diseases of Ningxia Medical University, Yinchuan, 750004, Ningxia Hui Autonomous Region, People's Republic of China
| | - Ji-Hui Yang
- Center of Scientific Technology of Ningxia Medical University, Yinchuan, 750004, Ningxia Hui Autonomous Region, People's Republic of China.,Ningxia Key Laboratory of Prevention and Control of Common Infectious Diseases of Ningxia Medical University, Yinchuan, 750004, Ningxia Hui Autonomous Region, People's Republic of China
| | - Ming-Xing Zhu
- Department of Medical genetics and Cell biology, School of Basic Medical Science of Ningxia Medical University, Yinchuan, 750004, Ningxia Hui Autonomous Region, People's Republic of China.,Center of Scientific Technology of Ningxia Medical University, Yinchuan, 750004, Ningxia Hui Autonomous Region, People's Republic of China.,Ningxia Key Laboratory of Prevention and Control of Common Infectious Diseases of Ningxia Medical University, Yinchuan, 750004, Ningxia Hui Autonomous Region, People's Republic of China
| | - Ya-Na Wang
- Department of Medical genetics and Cell biology, School of Basic Medical Science of Ningxia Medical University, Yinchuan, 750004, Ningxia Hui Autonomous Region, People's Republic of China.,Ningxia Key Laboratory of Prevention and Control of Common Infectious Diseases of Ningxia Medical University, Yinchuan, 750004, Ningxia Hui Autonomous Region, People's Republic of China
| | - Wei Zhao
- Center of Scientific Technology of Ningxia Medical University, Yinchuan, 750004, Ningxia Hui Autonomous Region, People's Republic of China. .,Ningxia Key Laboratory of Prevention and Control of Common Infectious Diseases of Ningxia Medical University, Yinchuan, 750004, Ningxia Hui Autonomous Region, People's Republic of China.
| |
Collapse
|
7
|
Abstract
Bacteriophages-viruses that infect bacteria-are abundant within our bodies, but their significance to human health is only beginning to be explored. Here, we synthesize what is currently known about our phageome and its interactions with the immune system. We first review how phages indirectly affect immunity via bacterial expression of phage-encoded proteins. We next review how phages directly influence innate immunity and bacterial clearance. Finally, we discuss adaptive immunity against phages and its implications for phage/bacterial interactions. In light of these data, we propose that our microbiome can be understood as an interconnected network of bacteria, bacteriophages, and human cells and that the stability of these tri-kingdom interactions may be important for maintaining our immunologic and metabolic health. Conversely, the disruption of this balance, through exposure to exogenous phages, microbial dysbiosis, or immune dysregulation, may contribute to disease. Expected final online publication date for the Annual Review of Virology, Volume 8 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Medeea Popescu
- Division of Infectious Diseases, School of Medicine, Stanford University, Stanford, California 94305, USA; .,Immunology Program, School of Medicine, Stanford University, Stanford, California 94305, USA.,These authors contributed equally to this article
| | - Jonas D Van Belleghem
- Division of Infectious Diseases, School of Medicine, Stanford University, Stanford, California 94305, USA; .,These authors contributed equally to this article
| | - Arya Khosravi
- Division of Infectious Diseases, School of Medicine, Stanford University, Stanford, California 94305, USA;
| | - Paul L Bollyky
- Division of Infectious Diseases, School of Medicine, Stanford University, Stanford, California 94305, USA;
| |
Collapse
|
8
|
Robleda-Castillo R, Ros-Lucas A, Martinez-Peinado N, Alonso-Padilla J. An Overview of Current Uses and Future Opportunities for Computer-Assisted Design of Vaccines for Neglected Tropical Diseases. Adv Appl Bioinform Chem 2021; 14:25-47. [PMID: 33623396 PMCID: PMC7894434 DOI: 10.2147/aabc.s258759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/03/2021] [Indexed: 11/26/2022] Open
Abstract
Neglected tropical diseases are infectious diseases that impose high morbidity and mortality rates over 1.5 billion people worldwide. Originally restricted to tropical and subtropical regions, changing climate conditions have increased their potential to emerge elsewhere. Control of their impact suffers from shortages like poor epidemiological surveillance or irregular drug distribution, and some NTDs still lack of appropriate diagnostics and/or efficient therapeutics. For these, availability of vaccines to prevent new infections, or the worsening of those already established, would mean a major breakthrough. However, only dengue and rabies count with approved vaccines at present. Herein, we review the state-of-the-art of vaccination strategies for NTDs, setting the focus on third generation vaccines and the concept of reverse vaccinology. Its capability to address pathogens´ biological complexity, likely contributing to save developmental costs is discussed. The use of computational tools is a fundamental aid to analyze increasingly large datasets aimed at designing vaccine candidates with the highest, possibly, opportunities to succeed. Ultimately, we identify and analyze those studies that took an in silico approach to find vaccine candidates, and experimentally assessed their immunogenicity and/or protection capabilities.
Collapse
Affiliation(s)
- Raquel Robleda-Castillo
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic - University of Barcelona, Barcelona, 08036, Spain
| | - Albert Ros-Lucas
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic - University of Barcelona, Barcelona, 08036, Spain
| | - Nieves Martinez-Peinado
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic - University of Barcelona, Barcelona, 08036, Spain
| | - Julio Alonso-Padilla
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic - University of Barcelona, Barcelona, 08036, Spain
| |
Collapse
|
9
|
de Vries CR, Chen Q, Demirdjian S, Kaber G, Khosravi A, Liu D, Van Belleghem JD, Bollyky PL. Phages in vaccine design and immunity; mechanisms and mysteries. Curr Opin Biotechnol 2020; 68:160-165. [PMID: 33316575 DOI: 10.1016/j.copbio.2020.11.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/24/2020] [Accepted: 11/09/2020] [Indexed: 02/01/2023]
Abstract
Bacteriophages have attracted extensive interest in vaccine design. This includes the use of phage display technology to select antigens, the use of engineered phages displaying target antigens in vaccine formulations, and phage DNA vaccines. However, the development of these approaches is limited in part by uncertainty regarding the underlying mechanisms by which phages elicit immunity. This has stymied the clinical development of this technology. Here we review the immunology of phage vaccines and highlight the gaps in our knowledge regarding the underlying mechanisms. First, we review the basic biology of phages and their use in vaccines. Next we discuss what is known about the mechanisms of immunity against engineered phages and phage DNA. Finally, we highlight the gaps in our understanding regarding the immunogenicity of these preparations. We argue that mechanistic insight into the immunology of phage vaccines is essential for the further development and clinical utility of these technologies.
Collapse
Affiliation(s)
- Christiaan R de Vries
- Division of Infectious Diseases, School of Medicine, Stanford University, Stanford, CA, United States
| | - Qingquan Chen
- Division of Infectious Diseases, School of Medicine, Stanford University, Stanford, CA, United States
| | - Sally Demirdjian
- Division of Infectious Diseases, School of Medicine, Stanford University, Stanford, CA, United States
| | - Gernot Kaber
- Division of Infectious Diseases, School of Medicine, Stanford University, Stanford, CA, United States
| | - Arya Khosravi
- Division of Infectious Diseases, School of Medicine, Stanford University, Stanford, CA, United States
| | - Dan Liu
- Division of Infectious Diseases, School of Medicine, Stanford University, Stanford, CA, United States
| | - Jonas D Van Belleghem
- Division of Infectious Diseases, School of Medicine, Stanford University, Stanford, CA, United States
| | - Paul L Bollyky
- Division of Infectious Diseases, School of Medicine, Stanford University, Stanford, CA, United States.
| |
Collapse
|
10
|
Masoudzadeh N, Mizbani A, Rafati S. Transcriptomic profiling in Cutaneous Leishmaniasis patients. Expert Rev Proteomics 2020; 17:533-541. [PMID: 32886890 DOI: 10.1080/14789450.2020.1812390] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Cutaneous leishmaniasis (CL), caused by different Leishmania parasite species, is associated with parasite-induced immune-mediated skin inflammation and ulceration. Whereas many CL studies focus on gene expression signatures in mouse models, the transcriptional response driving human patients in the field is less characterized. Human studies in CL disease provide the opportunity to directly investigate the host-pathogen interaction in the cutaneous lesion site. AREAS COVERED Advances in high-throughput sequencing technologies, particularly their application for evaluation of the global gene expression changes, have made transcriptomics as a powerful tool to understand the pathogen-host molecular interactions. EXPERT COMMENTARY In this review, we focus on the transcriptomics studies that have been performed so far on human blood or tissue-driven samples to investigate Leishmania parasites interplay with the CL patients. Further, we summarize microarray and RNA-seq studies associated with lesion biopsies of CL patients to discuss how current whole genome analysis along with systems biology approaches have developed novel CL biomarkers for further applications, not only for research, but also for accelerating vaccine development.
Collapse
Affiliation(s)
- Nasrin Masoudzadeh
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran , Tehran, Iran
| | - Amir Mizbani
- Department of Health Sciences and Technology, ETH Zurich , Switzerland
| | - Sima Rafati
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran , Tehran, Iran
| |
Collapse
|
11
|
Liu CT, Hong CQ, Huang XC, Li EM, Xu YW, Peng YH. Blood-based Markers in the Prognostic Prediction of Esophagogastric Junction Cancer. J Cancer 2020; 11:4332-4342. [PMID: 32489452 PMCID: PMC7255356 DOI: 10.7150/jca.44545] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/13/2020] [Indexed: 02/05/2023] Open
Abstract
Esophagogastric junction cancer poses a great threat to human beings both in western countries and East Asia, especially in China and Japan, and its incidence has increased during recent decades. The 5-year survival rate of esophagogastric junction cancer is quite poor compared with that of other gastric cancer sites. Until now, the traditional TNM staging system has been widely used in clinical practice for prognosis. However, the TNM system is based on pathology after surgical resection or radiology using CT and MRI, not on blood markers. Evidently, some research has been reported concentrated on the prognostic value of blood-based markers with the character of non-invasive and non-radioactive in EJA. Hematologic, biochemical and coagulation parameters could be obtained from clinical data and utilized to analyze their prognostic values. Tumor-associated antigens, microRNAs and circulating tumor cells have also been reported in EJC prognosis. In this article, we review research focused on blood-based markers to evaluate their prognostic value in esophagogastric junction cancer, especially its main subtype adenocarcinoma.
Collapse
Affiliation(s)
- Can-Tong Liu
- Department of Clinical Laboratory Medicine, the Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Precision Medicine Research Center, Shantou University Medical College, Shantou, Guangdong, China
| | - Chao-Qun Hong
- Department of Oncological Laboratory Research, the Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Xu-Chun Huang
- Department of Clinical Laboratory Medicine, the Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Precision Medicine Research Center, Shantou University Medical College, Shantou, Guangdong, China
| | - En-Min Li
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, Guangdong, China
| | - Yi-Wei Xu
- Department of Clinical Laboratory Medicine, the Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Precision Medicine Research Center, Shantou University Medical College, Shantou, Guangdong, China
- ✉ Corresponding authors: Yu-Hui Peng, Department of Clinical Laboratory Medicine, the Cancer Hospital of Shantou University Medical College, 7 Raoping Road, Shantou 515041, Guangdong, China. E-mail: ; Telephone: +86-137-1591-2739; Fax: +86-754-8856-0352. Also correspondence to Yi-Wei Xu,
| | - Yu-Hui Peng
- Department of Clinical Laboratory Medicine, the Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Precision Medicine Research Center, Shantou University Medical College, Shantou, Guangdong, China
- ✉ Corresponding authors: Yu-Hui Peng, Department of Clinical Laboratory Medicine, the Cancer Hospital of Shantou University Medical College, 7 Raoping Road, Shantou 515041, Guangdong, China. E-mail: ; Telephone: +86-137-1591-2739; Fax: +86-754-8856-0352. Also correspondence to Yi-Wei Xu,
| |
Collapse
|