1
|
Liu S, Zhao H, Jiang T, Wan G, Yan C, Zhang C, Yang X, Chen Z. The Angiogenic Repertoire of Stem Cell Extracellular Vesicles: Demystifying the Molecular Underpinnings for Wound Healing Applications. Stem Cell Rev Rep 2024; 20:1795-1812. [PMID: 39001965 DOI: 10.1007/s12015-024-10762-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2024] [Indexed: 07/15/2024]
Abstract
Stem cells-derived extracellular vesicles (SC-EVs) have emerged as promising therapeutic agents for wound repair, recapitulating the biological effects of parent cells while mitigating immunogenic and tumorigenic risks. These EVs orchestrate wound healing processes, notably through modulating angiogenesis-a critical event in tissue revascularization and regeneration. This study provides a comprehensive overview of the multifaceted mechanisms underpinning the pro-angiogenic capacity of EVs from various stem cell sources within the wound microenvironment. By elucidating the molecular intricacies governing their angiogenic prowess, we aim to unravel the mechanistic repertoire underlying their remarkable potential to accelerate wound healing. Additionally, methods to enhance the angiogenic effects of SC-EVs, current limitations, and future perspectives are highlighted, emphasizing the significant potential of this rapidly advancing field in revolutionizing wound healing strategies.
Collapse
Affiliation(s)
- Shuoyuan Liu
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Huayuan Zhao
- Department of Urology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Tao Jiang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Gui Wan
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Chengqi Yan
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chi Zhang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaofan Yang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Zhenbing Chen
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
2
|
Yuce K. The Application of Mesenchymal Stem Cells in Different Cardiovascular Disorders: Ways of Administration, and the Effectors. Stem Cell Rev Rep 2024; 20:1671-1691. [PMID: 39023739 DOI: 10.1007/s12015-024-10765-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2024] [Indexed: 07/20/2024]
Abstract
The heart is an organ with a low ability to renew and repair itself. MSCs have cell surface markers such as CD45-, CD34-, CD31-, CD4+, CD11a+, CD11b+, CD15+, CD18+, CD25+, CD49d+, CD50+, CD105+, CD73+, CD90+, CD9+, CD10+, CD106+, CD109+, CD127+, CD120a+, CD120b+, CD124+, CD126+, CD140a+, CD140b+, adherent properties and the ability to differentiate into cells such as adipocytes, osteoblasts and chondrocytes. Autogenic, allogeneic, normal, pretreated and genetically modified MSCs and secretomes are used in preclinical and clinical studies. MSCs and their secretomes (the total released molecules) generally have cardioprotective effects. Studies on cardiovascular diseases using MSCs and their secretomes include myocardial infraction/ischemia, fibrosis, hypertrophy, dilated cardiomyopathy and atherosclerosis. Stem cells or their secretomes used for this purpose are administered to the heart via intracoronary (Antegrade intracoronary and retrograde coronary venous injection), intramyocardial (Transendocardial and epicardial injection) and intravenous routes. The protective effects of MSCs and their secretomes on the heart are generally attributed to their differentiation into cardiomyocytes and endothelial cells, their immunomodulatory properties, paracrine effects, increasing blood vessel density, cardiac remodeling, and ejection fraction and decreasing apoptosis, the size of the wound, end-diastolic volume, end-systolic volume, ventricular myo-mass, fibrosis, matrix metalloproteins, and oxidative stress. The present review aims to assist researchers and physicians in selecting the appropriate cell type, secretomes, and technique to increase the chance of success in designing therapeutic strategies against cardiovascular diseases.
Collapse
Affiliation(s)
- Kemal Yuce
- Physiology, Department of Basic Medical Sciences, Medicine Faculty, Selcuk University, Konya, Türkiye.
| |
Collapse
|
3
|
Armand AA, Ale-Ebrahim M, Barikrow N, Bahrami N, Rouhollah F. Investigating the indirect therapeutic effect of hAMSCs utilizing a novel scaffold (PGS-co-PCL/PGC/PPy/Gelatin) in myocardial ischemia-reperfusion-induced renal failure in male Wistar rats. Tissue Cell 2024; 89:102428. [PMID: 38878657 DOI: 10.1016/j.tice.2024.102428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/26/2024] [Accepted: 05/28/2024] [Indexed: 07/28/2024]
Abstract
BACKGROUND Myocardial ischemia-reperfusion (MI/R) occurs due to temporary or permanent interruptions in the coronary and circulatory system, indirectly affecting kidney function through reduced cardiac output for metabolic needs. In this study, the aim was to explore the indirect effects of using human amniotic membrane mesenchymal stem cells (hAMSCs) with the PGS-co-PCL/PGC/PPy/Gelatin scaffold in male rats with renal failure induced by miocardial ischemia-reperfusion. METHODS MI/R injury was induced in 48 male Wistar rats through left anterior descending artery ligation, divided into four groups (n=12); control group, cell group, scaffold group, and celss+scaffold group. Evaluations were conducted at two and thirty days post MI/R injury, encompassing echocardiography, biochemical, inflammatory markers analysis, and histological assessment. RESULTS Echocardiographic findings exhibited notable enhancement in ejection fraction, fractional shortening, and stroke volume of treated groups compared to controls after 30 days (P< 0.05). Serum creatinine (P< 0.001) and urea (P< 0.05) levels significantly decreased in the scaffold+cells group) compared to the control group. The treated cells+ scaffold group displayed improved kidney structure, evidenced by larger glomeruli and reduced Bowman's space compared to the control group (P< 0.01). Immunohistochemical analysis indicated reduced TNF-α protein in the scaffold+ cells group (P< 0.05) in contrast to the control group (P< 0.05). Inflammatory factors IL-6, TNF-α, and AKT gene expression in renal tissues were improved in scaffold+ cells-treated animals. CONCLUSION Our research proposes the combination of hAMSCs and the PGS-co-PCL/PGC/PPy/Gelatin scaffold in MI/R injured rats appears to enhance renal function and reduce kidney inflammation by improving cardiac output.
Collapse
Affiliation(s)
- Amir Akbari Armand
- Department of Molecular and Cellular Sciences, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahsa Ale-Ebrahim
- Department of Physiology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Nooshin Barikrow
- Department of Molecular and Cellular Sciences, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Nastaran Bahrami
- Department of Molecular and Cellular Sciences, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Fatemeh Rouhollah
- Department of Molecular and Cellular Sciences, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
4
|
Guerricchio L, Barile L, Bollini S. Evolving Strategies for Extracellular Vesicles as Future Cardiac Therapeutics: From Macro- to Nano-Applications. Int J Mol Sci 2024; 25:6187. [PMID: 38892376 PMCID: PMC11173118 DOI: 10.3390/ijms25116187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/28/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
Cardiovascular disease represents the foremost cause of mortality and morbidity worldwide, with a steadily increasing incidence due to the growth of the ageing population. Cardiac dysfunction leading to heart failure may arise from acute myocardial infarction (MI) as well as inflammatory- and cancer-related chronic cardiomyopathy. Despite pharmacological progress, effective cardiac repair represents an unmet clinical need, with heart transplantation being the only option for end-stage heart failure. The functional profiling of the biological activity of extracellular vesicles (EVs) has recently attracted increasing interest in the field of translational research for cardiac regenerative medicine. The cardioprotective and cardioactive potential of human progenitor stem/cell-derived EVs has been reported in several preclinical studies, and EVs have been suggested as promising paracrine therapy candidates for future clinical translation. Nevertheless, some compelling aspects must be properly addressed, including optimizing delivery strategies to meet patient needs and enhancing targeting specificity to the cardiac tissue. Therefore, in this review, we will discuss the most relevant aspects of the therapeutic potential of EVs released by human progenitors for cardiovascular disease, with a specific focus on the strategies that have been recently implemented to improve myocardial targeting and administration routes.
Collapse
Affiliation(s)
- Laura Guerricchio
- Biology Unit, Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy;
| | - Lucio Barile
- Cardiovascular Theranostics, Istituto Cardiocentro Ticino, Laboratories for Translational Research, Ente Ospedaliero Cantonale, CH-6500 Bellinzona, Switzerland;
- Euler Institute, Faculty of Biomedical Sciences, Università della Svizzera Italiana, CH-6900 Lugano, Switzerland
| | - Sveva Bollini
- Biology Unit, Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy;
- Cellular Oncology Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| |
Collapse
|
5
|
Atukorala I, Hannan N, Hui L. Immersed in a reservoir of potential: amniotic fluid-derived extracellular vesicles. J Transl Med 2024; 22:348. [PMID: 38609955 PMCID: PMC11010396 DOI: 10.1186/s12967-024-05154-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
This review aims to encapsulate the current knowledge in extracellular vesicles extracted from amniotic fluid and amniotic fluid derived stem/stromal cells. Amniotic fluid (AF) bathes the developing fetus, providing nutrients and protection from biological and mechanical dangers. In addition to containing a myriad of proteins, immunoglobulins and growth factors, AF is a rich source of extracellular vesicles (EVs). These vesicles originate from cells in the fetoplacental unit. They are biological messengers carrying an active cargo enveloped within the lipid bilayer. EVs in reproduction are known to play key roles in all stages of pregnancy, starting from fertilisation through to parturition. The intriguing biology of AF-derived EVs (AF-EVs) in pregnancy and their untapped potential as biomarkers is currently gaining attention. EV studies in numerous animal and human disease models have raised expectations of their utility as therapeutics. Amniotic fluid stem cell and mesenchymal stromal cell-derived EVs (AFSC-EVs) provide an established supply of laboratory-made EVs. This cell-free mode of therapy is popular as an alternative to stem cell therapy, revealing similar, if not better therapeutic outcomes. Research has demonstrated the successful application of AF-EVs and AFSC-EVs in therapy, harnessing their anti-inflammatory, angiogenic and regenerative properties. This review provides an overview of such studies and discusses concerns in this emerging field of research.
Collapse
Affiliation(s)
- Ishara Atukorala
- Department of Obstetrics, Gynaecology & Newborn Health, Melbourne Medical School, The University of Melbourne, Mercy Hospital for Women, 163 Studley Road, Heidelberg, VIC, 3084, Australia.
- Department of Obstetrics, Gynaecology & Newborn Health, The Northern Centre for Health Education and Research, Northern Health, Epping, VIC, Australia.
| | - Natalie Hannan
- Department of Obstetrics, Gynaecology & Newborn Health, Melbourne Medical School, The University of Melbourne, Mercy Hospital for Women, 163 Studley Road, Heidelberg, VIC, 3084, Australia
- Department of Obstetrics, Gynaecology & Newborn Health, The Northern Centre for Health Education and Research, Northern Health, Epping, VIC, Australia
| | - Lisa Hui
- Department of Obstetrics, Gynaecology & Newborn Health, Melbourne Medical School, The University of Melbourne, Mercy Hospital for Women, 163 Studley Road, Heidelberg, VIC, 3084, Australia
- Department of Obstetrics, Gynaecology & Newborn Health, The Northern Centre for Health Education and Research, Northern Health, Epping, VIC, Australia
- Department of Perinatal Medicine, Mercy Hospital for Women, Mercy Health, Heidelberg, VIC, Australia
- Reproductive Epidemiology Group, Murdoch Children's Research Institute, Parkville, VIC, Australia
| |
Collapse
|
6
|
Pang JL, Shao H, Xu XG, Lin ZW, Chen XY, Chen JY, Mou XZ, Hu PY. Targeted drug delivery of engineered mesenchymal stem/stromal-cell-derived exosomes in cardiovascular disease: recent trends and future perspectives. Front Bioeng Biotechnol 2024; 12:1363742. [PMID: 38558788 PMCID: PMC10978787 DOI: 10.3389/fbioe.2024.1363742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 02/20/2024] [Indexed: 04/04/2024] Open
Abstract
In recent years, stem cells and their secretomes, notably exosomes, have received considerable attention in biomedical applications. Exosomes are cellular secretomes used for intercellular communication. They perform the function of intercellular messengers by facilitating the transport of proteins, lipids, nucleic acids, and therapeutic substances. Their biocompatibility, minimal immunogenicity, targetability, stability, and engineerable characteristics have additionally led to their application as drug delivery vehicles. The therapeutic efficacy of exosomes can be improved through surface modification employing functional molecules, including aptamers, antibodies, and peptides. Given their potential as targeted delivery vehicles to enhance the efficiency of treatment while minimizing adverse effects, exosomes exhibit considerable promise. Stem cells are considered advantageous sources of exosomes due to their distinctive characteristics, including regenerative and self-renewal capabilities, which make them well-suited for transplantation into injured tissues, hence promoting tissue regeneration. However, there are notable obstacles that need to be addressed, including immune rejection and ethical problems. Exosomes produced from stem cells have been thoroughly studied as a cell-free strategy that avoids many of the difficulties involved with cell-based therapy for tissue regeneration and cancer treatment. This review provides an in-depth summary and analysis of the existing knowledge regarding exosomes, including their engineering and cardiovascular disease (CVD) treatment applications.
Collapse
Affiliation(s)
- Jian-Liang Pang
- Department of Vascular Surgery, Tiantai People’s Hospital of Zhejiang Province (Tiantai Branch of Zhejiang People’s Hospital), Taizhou, Zhejiang, China
| | - Hong Shao
- Department of Vascular Surgery, Tiantai People’s Hospital of Zhejiang Province (Tiantai Branch of Zhejiang People’s Hospital), Taizhou, Zhejiang, China
- Department of Cardiovascular Medicine, Heart Center, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, China
| | - Xiao-Gang Xu
- Clinical Research Institute, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, China
| | - Zhi-Wei Lin
- Zhejiang Healthfuture Biomedicine Co., Ltd., Hangzhou, China
| | - Xiao-Yi Chen
- Clinical Research Institute, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, China
| | - Jin-Yang Chen
- Zhejiang Healthfuture Biomedicine Co., Ltd., Hangzhou, China
| | - Xiao-Zhou Mou
- Clinical Research Institute, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, China
| | - Pei-Yang Hu
- Department of Traumatology, Tiantai People’s Hospital of Zhejiang Province (Tiantai Branch of Zhejiang People’s Hospital), Taizhou, China
| |
Collapse
|
7
|
Li N, Zhang T, Zhu L, Sun L, Shao G, Gao J. Recent Advances of Using Exosomes as Diagnostic Markers and Targeting Carriers for Cardiovascular Disease. Mol Pharm 2023; 20:4354-4372. [PMID: 37566627 DOI: 10.1021/acs.molpharmaceut.3c00268] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2023]
Abstract
Cardiovascular diseases (CVDs) are the leading cause of human death worldwide. Exosomes act as endogenous biological vectors; they possess advantages of low immunogenicity and low safety risks, also providing tissue selectivity, including the inherent targeting the to heart. Therefore, exosomes not only have been applied as biomarkers for diagnosis and therapeutic outcome confirmation but also showed potential as drug carriers for cardiovascular targeting delivery. This review aims to summarize the progress and challenges of exosomes as novel biomarkers, especially many novel exosomal noncoding RNAs (ncRNAs), and also provides an overview of the improved targeting functions of exosomes by unique engineered approaches, the latest developed administration methods, and the therapeutic effects of exosomes used as the biocarriers of medications for cardiovascular disease treatment. Also, the possible therapeutic mechanisms and the potentials for transferring exosomes to the clinic for CVD treatment are discussed. The advances, in vivo and in vitro applications, modifications, mechanisms, and challenges summarized in this review will provide a general understanding of this promising strategy for CVD treatment.
Collapse
Affiliation(s)
- Ni Li
- Department of Cardiothoracic Surgery, Ningbo Medical Centre Lihuili Hospital, Ningbo University, Ningbo, Zhejiang 315041, China
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Tianyuan Zhang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Linwen Zhu
- Department of Cardiothoracic Surgery, Ningbo Medical Centre Lihuili Hospital, Ningbo University, Ningbo, Zhejiang 315041, China
| | - Lebo Sun
- Department of Cardiothoracic Surgery, Ningbo Medical Centre Lihuili Hospital, Ningbo University, Ningbo, Zhejiang 315041, China
| | - Guofeng Shao
- Department of Cardiothoracic Surgery, Ningbo Medical Centre Lihuili Hospital, Ningbo University, Ningbo, Zhejiang 315041, China
| | - Jianqing Gao
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
8
|
Ala M. The beneficial effects of mesenchymal stem cells and their exosomes on myocardial infarction and critical considerations for enhancing their efficacy. Ageing Res Rev 2023; 89:101980. [PMID: 37302757 DOI: 10.1016/j.arr.2023.101980] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/17/2023] [Accepted: 06/08/2023] [Indexed: 06/13/2023]
Abstract
Mesenchymal stem cells (MSCs) are multipotent stromal cells with regenerative, anti-inflammatory, and immunomodulatory properties. MSCs and their exosomes significantly improved structural and functional alterations after myocardial infarction (MI) in preclinical studies and clinical trials. By reprograming intracellular signaling pathways, MSCs attenuate inflammatory response, oxidative stress, apoptosis, pyroptosis, and endoplasmic reticulum (ER) stress and improve angiogenesis, mitochondrial biogenesis, and myocardial remodeling after MI. MSC-derived exosomes contain a mixture of non-coding RNAs, growth factors, anti-inflammatory mediators, and anti-fibrotic factors. Although primary results from clinical trials were promising, greater efficacies can be achieved by controlling several modifiable factors. The optimum timing of transplantation, route of administration, origin of MSCs, number of doses, and number of cells per dose need to be further investigated by future studies. Newly, highly effective MSC delivery systems have been developed to improve the efficacy of MSCs and their exosomes. Moreover, MSCs can be more efficacious after being pretreated with non-coding RNAs, growth factors, anti-inflammatory or inflammatory mediators, and hypoxia. Similarly, viral vector-mediated overexpression of particular genes can augment the protective effects of MSCs on MI. Therefore, future clinical trials must consider these advances in preclinical studies to properly reflect the efficacy of MSCs or their exosomes for MI.
Collapse
Affiliation(s)
- Moein Ala
- Experimental Medicine Research Center, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Rosner M, Horer S, Feichtinger M, Hengstschläger M. Multipotent fetal stem cells in reproductive biology research. Stem Cell Res Ther 2023; 14:157. [PMID: 37287077 DOI: 10.1186/s13287-023-03379-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 05/16/2023] [Indexed: 06/09/2023] Open
Abstract
Due to the limited accessibility of the in vivo situation, the scarcity of the human tissue, legal constraints, and ethical considerations, the underlying molecular mechanisms of disorders, such as preeclampsia, the pathological consequences of fetomaternal microchimerism, or infertility, are still not fully understood. And although substantial progress has already been made, the therapeutic strategies for reproductive system diseases are still facing limitations. In the recent years, it became more and more evident that stem cells are powerful tools for basic research in human reproduction and stem cell-based approaches moved into the center of endeavors to establish new clinical concepts. Multipotent fetal stem cells derived from the amniotic fluid, amniotic membrane, chorion leave, Wharton´s jelly, or placenta came to the fore because they are easy to acquire, are not associated with ethical concerns or covered by strict legal restrictions, and can be banked for autologous utilization later in life. Compared to adult stem cells, they exhibit a significantly higher differentiation potential and are much easier to propagate in vitro. Compared to pluripotent stem cells, they harbor less mutations, are not tumorigenic, and exhibit low immunogenicity. Studies on multipotent fetal stem cells can be invaluable to gain knowledge on the development of dysfunctional fetal cell types, to characterize the fetal stem cells migrating into the body of a pregnant woman in the context of fetomaternal microchimerism, and to obtain a more comprehensive picture of germ cell development in the course of in vitro differentiation experiments. The in vivo transplantation of fetal stem cells or their paracrine factors can mediate therapeutic effects in preeclampsia and can restore reproductive organ functions. Together with the use of fetal stem cell-derived gametes, such strategies could once help individuals, who do not develop functional gametes, to conceive genetically related children. Although there is still a long way to go, these developments regarding the usage of multipotent fetal stem cells in the clinic should continuously be accompanied by a wide and detailed ethical discussion.
Collapse
Affiliation(s)
- Margit Rosner
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Währinger Strasse 10, 1090, Vienna, Austria
| | - Stefanie Horer
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Währinger Strasse 10, 1090, Vienna, Austria
| | | | - Markus Hengstschläger
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Währinger Strasse 10, 1090, Vienna, Austria.
| |
Collapse
|
10
|
Wu H, Qian X, Liang G. The Role of Small Extracellular Vesicles Derived from Mesenchymal Stromal Cells on Myocardial Protection: a Review of Current Advances and Future Perspectives. Cardiovasc Drugs Ther 2023:10.1007/s10557-023-07472-x. [PMID: 37227567 DOI: 10.1007/s10557-023-07472-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/18/2023] [Indexed: 05/26/2023]
Abstract
Small extracellular vesicles (SEVs) secreted by mesenchymal stromal cells (MSCs) are considered one of the most promising biological therapies in recent years. The protective effect of MSCs-derived SEVs on myocardium is mainly related to their ability to deliver cargo, anti-inflammatory properties, promotion of angiogenesis, immunoregulation, and other factors. Herein, this review focuses on the biological properties, isolation methods, and functions of SEVs. Then, the roles and potential mechanisms of SEVs and engineered SEVs in myocardial protection are summarized. Finally, the current situation of clinical research on SEVs, the difficulties encountered, and the future fore-ground of SEVs are discussed. In conclusion, although there are some technical difficulties and conceptual contradictions in the research of SEVs, the unique biological functions of SEVs provide a new direction for the development of regenerative medicine. Further exploration is warranted to establish a solid experimental and theoretical basis for future clinical application of SEVs.
Collapse
Affiliation(s)
- Hongkun Wu
- School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, China
- Center for Translational Medicine, Guizhou Medical University, Guiyang, Guizhou, China
- Department of Cardiac Surgery, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| | - Xingkai Qian
- Center for Translational Medicine, Guizhou Medical University, Guiyang, Guizhou, China
- Department of Cardiac Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Guiyou Liang
- Department of Cardiac Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China.
| |
Collapse
|
11
|
Wang T, Yu T, Tsai CY, Hong ZY, Chao WH, Su YS, Subbiah SK, Renuka RR, Hsu ST, Wu GJ, Higuchi A. Xeno-free culture and proliferation of hPSCs on 2D biomaterials. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 199:63-107. [PMID: 37678982 DOI: 10.1016/bs.pmbts.2023.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Human pluripotent stem cells (human embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs)) have unlimited proliferative potential, whereas adult stem cells such as bone marrow-derived stem cells and adipose-derived stem cells have problems with aging. When hPSCs are intended to be cultured on feeder-free or xeno-free conditions without utilizing mouse embryonic fibroblasts or human fibroblasts, they cannot be cultured on conventional tissue culture polystyrene dishes, as adult stem cells can be cultured but should be cultivated on material surfaces grafted or coated with (a) natural or recombinant extracellular matrix (ECM) proteins, (b) ECM protein-derived peptides and specific synthetic polymer surfaces in xeno-free and/or chemically defined conditions. This review describes current developing cell culture biomaterials for the proliferation of hPSCs while maintaining the pluripotency and differentiation potential of the cells into 3 germ layers. Biomaterials for the cultivation of hPSCs without utilizing a feeder layer are essential to decrease the risk of xenogenic molecules, which contributes to the potential clinical usage of hPSCs. ECM proteins such as human recombinant vitronectin, laminin-511 and laminin-521 have been utilized instead of Matrigel for the feeder-free cultivation of hPSCs. The following biomaterials are also discussed for hPSC cultivation: (a) decellularized ECM, (b) peptide-grafted biomaterials derived from ECM proteins, (c) recombinant E-cadherin-coated surface, (d) polysaccharide-immobilized surface, (e) synthetic polymer surfaces with and without bioactive sites, (f) thermoresponsive polymer surfaces with and without bioactive sites, and (g) synthetic microfibrous scaffolds.
Collapse
Affiliation(s)
- Ting Wang
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Tao Yu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Chang-Yen Tsai
- Department of Chemical and Materials Engineering, National Central University, Jhongli, Taoyuan, Taiwan
| | - Zhao-Yu Hong
- Department of Chemical and Materials Engineering, National Central University, Jhongli, Taoyuan, Taiwan
| | - Wen-Hui Chao
- Department of Chemical and Materials Engineering, National Central University, Jhongli, Taoyuan, Taiwan
| | - Yi-Shuo Su
- Department of Chemical and Materials Engineering, National Central University, Jhongli, Taoyuan, Taiwan
| | - Suresh Kumar Subbiah
- Centre for Materials Engineering and Regenerative Medicine, Bharath Institute of Higher Education and Research, Chennai, India
| | - Remya Rajan Renuka
- Centre for Materials Engineering and Regenerative Medicine, Bharath Institute of Higher Education and Research, Chennai, India
| | - Shih-Tien Hsu
- Department of Internal Medicine, Landseed International Hospital, Pingjen City, Taoyuan, Taiwan
| | - Gwo-Jang Wu
- Graduate Institute of Medical Sciences and Department of Obstetrics & Gynecology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.
| | - Akon Higuchi
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China; Graduate Institute of Medical Sciences and Department of Obstetrics & Gynecology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
12
|
Moeinabadi-Bidgoli K, Rezaee M, Hossein-Khannazer N, Babajani A, Aghdaei HA, Arki MK, Afaghi S, Niknejad H, Vosough M. Exosomes for angiogenesis induction in ischemic disorders. J Cell Mol Med 2023; 27:763-787. [PMID: 36786037 PMCID: PMC10003030 DOI: 10.1111/jcmm.17689] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/19/2023] [Accepted: 01/26/2023] [Indexed: 02/15/2023] Open
Abstract
Ischaemic disorders are leading causes of morbidity and mortality worldwide. While the current therapeutic approaches have improved life expectancy and quality of life, they are unable to "cure" ischemic diseases and instate regeneration of damaged tissues. Exosomes are a class of extracellular vesicles with an average size of 100-150 nm, secreted by many cell types and considered a potent factor of cells for paracrine effects. Since exosomes contain multiple bioactive components such as growth factors, molecular intermediates of different intracellular pathways, microRNAs and nucleic acids, they are considered as cell-free therapeutics. Besides, exosomes do not rise cell therapy concerns such as teratoma formation, alloreactivity and thrombotic events. In addition, exosomes are stored and utilized more convenient. Interestingly, exosomes could be an ideal complementary therapeutic tool for ischemic disorders. In this review, we discussed therapeutic functions of exosomes in ischemic disorders including angiogenesis induction through various mechanisms with specific attention to vascular endothelial growth factor pathway. Furthermore, different delivery routes of exosomes and different modification strategies including cell preconditioning, gene modification and bioconjugation, were highlighted. Finally, pre-clinical and clinical investigations in which exosomes were used were discussed.
Collapse
Affiliation(s)
- Kasra Moeinabadi-Bidgoli
- Basic and Molecular Epidemiology of Gastroenterology Disorders Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Malihe Rezaee
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nikoo Hossein-Khannazer
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amirhesam Babajani
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastroenterology Disorders Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mandana Kazem Arki
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Siamak Afaghi
- Prevention of Metabolic Disorders Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hassan Niknejad
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
13
|
Li H, Gu J, Sun X, Zuo Q, Li B, Gu X. Isolation of Swine Bone Marrow Lin-/CD45-/CD133 + Cells and Cardio-protective Effects of its Exosomes. Stem Cell Rev Rep 2023; 19:213-229. [PMID: 35925437 PMCID: PMC9822881 DOI: 10.1007/s12015-022-10432-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2022] [Indexed: 01/29/2023]
Abstract
BACKGROUND The identification in murine bone marrow (BM) of CD133 + /Lin-/CD45- cells, possessing several features of pluripotent stem cells, encouraged us to investigate if similar population of cells could be also isolated from the swine BM. Heart failure is the terminal stage of many cardiovascular diseases, and its key pathological basis is cardiac fibrosis (CF). Research showed that stem cell derived exosomes may play a critical role in cardiac fibrosis. The effect of exosomes (Exos) on CF has remained unclear. OBJECTIVE To establish an isolation and amplification method of CD133 + /Lin-/CD45- cells from newbron swine BM in vitro, explore an highly efficient method to enrich swine bone marrow derived CD133 + /Lin-/CD45- cells and probe into their biological characteristics further. Furher more, to extract exosomes from it and explore its effect on CF. METHODS The mononuclear cells isolated from swine bone marrow by red blood cell (RBC) lysing buffer were coated by adding FcR blocking solution and coupled with CD133 antibody immunomagnetic beads, obtaining CD133 + cell group via Magnetic Activated Cell Sorting (MACS). In steps, the CD133 + /Lin-/CD45- cells were collected by fluorescence-activated cell sorting (FACS) labeled with CD133, Lin and CD45 antibodies, which were cultured and amplified in vitro. The biological features of CD133 + /Lin-/CD45- cells were studied in different aspects, including morphological trait observed with inverted microscope, ultrastructural characteristics observed under transmission electron microscope, expression of pluripotent markersidentified by immunofluorescent staining and Alkaline phosphatase staining. The Exos were extracted using a sequential centrifugation approach and its effects on CF were analyzed in Angiotensin II (Ang-II) induced-cardiac fibrosis in vivo. Rats in each group were treated for 4 weeks, and 2D echocardiography was adopted to evaluate the heart function. The degree of cardiac fibrosis was assessed by Hematoxylin-Eosin (HE) and Masson's trichrome staining. RESULTS The CD133 + /Lin-/CD45- cells accounted for about 0.2%-0.5% of the total mononuclear cells isolated from swine bone marrow. The combination of MACS and FACS to extract CD133 + /Lin-/CD45- cells could improved efficiency and reduced cell apoptosis. The CD133 + /Lin-/CD45- cells featured typical traits of pluripotent stem cells, the nucleus is large, mainly composed of euchromatin, with less cytoplasm and larger nucleoplasmic ratio, which expressed pluripotent markers (SSEA-1, Oct-4, Nanog and Sox-2) and alkaline phosphatase staining was positive.Animal experiment indicated that the cardiac injury related indexes (BNP、cTnI、CK-MB and TNF-α), the expression of key gene Smad3 and the degree of cardiac fibrosis in Exo treatment group were significantly reduced compared with the control group. 4 weeks after the treatment, cardiac ejection fraction (EF) value in the model group showed a remarkable decrease, indicating the induction of HF model. While Exo elevated the EF values, demonstrating cardio-protective effects. CONCLUSION The CD133 + /Lin-/CD45- cells derived from swine bone marrow were successfully isolated and amplified, laying a good foundation for further research on this promising therapeutic cell. The Exos may be a promising potential treatment strategy for CF.
Collapse
Affiliation(s)
- Hongxiao Li
- Medical College of Yangzhou University, Yangzhou, 225001, Jiangsu, China
- Department of Cardiology, Northern Jiangsu People's Hospital, Yangzhou, 225001, Jiangsu, China
| | - Jianjun Gu
- Medical College of Yangzhou University, Yangzhou, 225001, Jiangsu, China
- Department of Cardiology, Northern Jiangsu People's Hospital, Yangzhou, 225001, Jiangsu, China
| | - Xiaolin Sun
- Medical College of Yangzhou University, Yangzhou, 225001, Jiangsu, China
- Department of Cardiology, Northern Jiangsu People's Hospital, Yangzhou, 225001, Jiangsu, China
| | - Qisheng Zuo
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225001, Jiangsu, China
| | - Bichun Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225001, Jiangsu, China
| | - Xiang Gu
- Medical College of Yangzhou University, Yangzhou, 225001, Jiangsu, China.
- Department of Cardiology, Northern Jiangsu People's Hospital, Yangzhou, 225001, Jiangsu, China.
| |
Collapse
|
14
|
Liu P, Mao Y, Xie Y, Wei J, Yao J. Stem cells for treatment of liver fibrosis/cirrhosis: clinical progress and therapeutic potential. Stem Cell Res Ther 2022; 13:356. [PMID: 35883127 PMCID: PMC9327386 DOI: 10.1186/s13287-022-03041-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/06/2022] [Indexed: 02/06/2023] Open
Abstract
Cost-effective treatment strategies for liver fibrosis or cirrhosis are limited. Many clinical trials of stem cells for liver disease shown that stem cells might be a potential therapeutic approach. This review will summarize the published clinical trials of stem cells for the treatment of liver fibrosis/cirrhosis and provide the latest overview of various cell sources, cell doses, and delivery methods. We also describe the limitations and strengths of various stem cells in clinical applications. Furthermore, to clarify how stem cells play a therapeutic role in liver fibrosis, we discuss the molecular mechanisms of stem cells for treatment of liver fibrosis, including liver regeneration, immunoregulation, resistance to injury, myofibroblast repression, and extracellular matrix degradation. We provide a perspective for the prospects of future clinical implementation of stem cells.
Collapse
Affiliation(s)
- Pinyan Liu
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Yongcui Mao
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Ye Xie
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Jiayun Wei
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Jia Yao
- The First Clinical Medical College of Lanzhou University, Lanzhou, China. .,Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, China.
| |
Collapse
|
15
|
Joladarashi D, Kishore R. Mesenchymal Stromal Cell Exosomes in Cardiac Repair. Curr Cardiol Rep 2022; 24:405-417. [PMID: 35092595 PMCID: PMC9885380 DOI: 10.1007/s11886-022-01660-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/14/2021] [Indexed: 02/01/2023]
Abstract
PURPOSE OF THE REVIEW Mesenchymal stromal cells (MSCs) are considered an attractive option for cell-based therapy because of their immune-privileged phenotype and paracrine activity. Substantial preclinical evidence indicates that MSC exosomes recapitulate MSC cellular function in cardiac regeneration and repair. Therefore, in this review, we briefly discuss the latest research progress of MSC exosomes in cardiac repair and regeneration. RECENT FINDINGS The recent revolutionary advance in controlling the contents of the exosomes by manipulating parental cells through bioengineering methods to alter specific signaling pathways in ischemic myocardium has proven to be beneficial in the treatment of heart failure. MSC Exosomes appear to be leading candidates to treat myocardial infarction and subsequent heart failure by carrying rich cargo from their parental cells. However, more clinical and pre-clinical studies on MSC exosomes will be required to confirm the beneficial effect to treat cardiovascular diseases.
Collapse
Affiliation(s)
- Darukeshwara Joladarashi
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, MERB-953, 3500 N Broad Street, Philadelphia, PA 19140, USA
| | - Raj Kishore
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, MERB-953, 3500 N Broad Street, Philadelphia, PA 19140, USA,Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| |
Collapse
|
16
|
Li P, Lu X, Hu J, Dai M, Yan J, Tan H, Yu P, Chen X, Zhang C. Human amniotic fluid derived-exosomes alleviate hypoxic encephalopathy by enhancing angiogenesis in neonatal mice after hypoxia. Neurosci Lett 2022; 768:136361. [PMID: 34826550 DOI: 10.1016/j.neulet.2021.136361] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/11/2021] [Accepted: 11/19/2021] [Indexed: 12/17/2022]
Abstract
Neonatal hypoxic encephalopathy is a type of central nervous system dysfunction manifested by high mortality and morbidity. Exosomes play a crucial role in neuroprotection by enhancing angiogenesis. The objective of this study was to investigate the effect of human amniotic fluid-derived exosomes (hAFEXOs) on functional recovery in neonatal hypoxic encephalopathy. The transwell assay, scratch wound healing assay, and tube formation assay were used to evaluate the effect of hAFEXOs on the angiogenesis of human umbilical vein endothelial cells (HUVECs) after oxygen and glucose deprivation (OGD). The angiogenesis of microvascular endothelial cells (MECs) in the cortex was tested in neonatal mice treated with hAFEXOs or phosphate-buffered saline (PBS) after hypoxia. Expressions of hypoxia-inducible factor 1 α (HIF-1α) and vascular endothelial growth factor (VEGF) in the cerebral cortex were also tested by western blot. The Morris Water Maze Test (MWM) was carried out to detect the performance of spatial memory after processing with hAFEXOs or PBS. The results indicated that hAFEXOs favored tubing formation and migration of HUVECs after in vitro OGD. The hAFEXOs also favored the expression of CD31 in neonatal mice following hypoxia. The expressions of both HIF-1α and VEGF were significantly augmented in the cerebral cortex of neonatal mice which were treated with hAFEXOs. Moreover, the MWM test results showed that the performance of the spatial memory was better in the hAFEXO-treated group than in the PBS-treated group. Our study indicates that hAFEXOs alleviated hypoxic encephalopathy and enhanced angiogenesis in neonatal mice after hypoxia. In addition, hAFEXOs promoted migration and tube formation of HUVECs after OGD in vitro. These findings confirm that hAFEXOs show great potential for further studies aimed at developing therapeutic agents for hypoxic encephalopathy.
Collapse
Affiliation(s)
- Ping Li
- Department of Obstetrics, Xiangya Hospital, Central South University, Changsha 410008, China; Hunan Engineering Research Center of Early Life Development and Disease Prevention, Changsha 410008, China
| | - Xiaoxu Lu
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Jiajia Hu
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Minhui Dai
- Department of Clinical Dietitian, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Jianqin Yan
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Huiling Tan
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha 410008, China; Department of Anesthesiology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410005, China
| | - Peilin Yu
- School of Basic Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Xuliang Chen
- Department of Cardiovascular Surgery, Xiangya Hospital, Central South University, Changsha 410008, China.
| | - Chengliang Zhang
- Department of Cardiovascular Surgery, Xiangya Hospital, Central South University, Changsha 410008, China.
| |
Collapse
|
17
|
Costa A, Quarto R, Bollini S. Small Extracellular Vesicles from Human Amniotic Fluid Samples as Promising Theranostics. Int J Mol Sci 2022; 23:ijms23020590. [PMID: 35054775 PMCID: PMC8775841 DOI: 10.3390/ijms23020590] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/02/2022] [Accepted: 01/04/2022] [Indexed: 02/05/2023] Open
Abstract
Since the first evidence that stem cells can provide pro-resolving effects via paracrine secretion of soluble factors, growing interest has been addressed to define the most ideal cell source for clinical translation. Leftover or clinical waste samples of human amniotic fluid obtained following prenatal screening, clinical intervention, or during scheduled caesarean section (C-section) delivery at term have been recently considered an appealing source of mesenchymal progenitors with peculiar regenerative capacity. Human amniotic fluid stem cells (hAFSC) have been demonstrated to support tissue recovery in several preclinical models of disease by exerting paracrine proliferative, anti-inflammatory and regenerative influence. Small extracellular vesicles (EVs) concentrated from the hAFSC secretome (the total soluble trophic factors secreted in the cell-conditioned medium, hAFSC-CM) recapitulate most of the beneficial cell effects. Independent studies in preclinical models of either adult disorders or severe diseases in newborns have suggested a regenerative role of hAFSC-EVs. EVs can be eventually concentrated from amniotic fluid (hAF) to offer useful prenatal information, as recently suggested. In this review, we focus on the most significant aspects of EVs obtained from either hAFSC and hAF and consider the current challenges for their clinical translation, including isolation, characterization and quantification methods.
Collapse
Affiliation(s)
- Ambra Costa
- Experimental Biology Unit, Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy; (A.C.); (R.Q.)
| | - Rodolfo Quarto
- Experimental Biology Unit, Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy; (A.C.); (R.Q.)
- Cellular Oncology Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Sveva Bollini
- Experimental Biology Unit, Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy; (A.C.); (R.Q.)
- Correspondence: ; Tel.: +39-010-555-8394
| |
Collapse
|
18
|
Rosner M, Hengstschläger M. OUP accepted manuscript. Stem Cells Transl Med 2022; 11:26-34. [PMID: 35641164 PMCID: PMC8895487 DOI: 10.1093/stcltm/szab003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 09/12/2021] [Indexed: 12/03/2022] Open
Abstract
It is the hope of clinicians and patients alike that stem cell-based therapeutic products will increasingly become applicable remedies for many diseases and injuries. Whereas some multipotent stem cells are already routinely used in regenerative medicine, the efficacious and safe clinical translation of pluripotent stem cells is still hampered by their inherent immunogenicity and tumorigenicity. In addition, stem cells harbor the paracrine potential to affect the behavior of cells in their microenvironment. On the one hand, this property can mediate advantageous supportive effects on the overall therapeutic concept. However, in the last years, it became evident that both, multipotent and pluripotent stem cells, are capable of inducing adjacent cells to become motile. Not only in the context of tumor development but generally, deregulated mobilization and uncontrolled navigation of patient’s cells can have deleterious consequences for the therapeutic outcome. A more comprehensive understanding of this ubiquitous stem cell feature could allow its proper clinical handling and could thereby constitute an important building block for the further development of safe therapies.
Collapse
Affiliation(s)
- Margit Rosner
- Institute of Medical Genetics, Center of Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | - Markus Hengstschläger
- Institute of Medical Genetics, Center of Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
- Corresponding author: Markus Hengstschläger, PhD, Professor, Institute of Medical Genetics, Medical University of Vienna, Währinger Strasse 10, 1090 Vienna, Austria. Tel: +43 1 40160 56500; Fax: +43 1 40160 956501;
| |
Collapse
|
19
|
Bovine Milk Exosomes Alleviate Cardiac Fibrosis via Enhancing Angiogenesis In Vivo and In Vitro. J Cardiovasc Transl Res 2021; 15:560-570. [PMID: 34599486 DOI: 10.1007/s12265-021-10174-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/13/2021] [Indexed: 12/20/2022]
Abstract
Cardiac fibrosis is a difficult clinical puzzle without effective therapy. Exosomes play an important role in alleviating cardiac fibrosis via angiogenesis. This research aimed to assess the effect of bovine milk on cardiac fibrosis. The proangiogenic effect of bovine milk exosomes was analyzed both in isoproterenol (ISO)-induced cardiac fibrosis rats in vivo and in human umbilical vein endothelial cells (HUVECs) after oxygen and glucose deprivation (OGD) in vitro. Results indicated that bovine milk exosomes alleviated the extracellular matrix (ECM) deposition and enhanced the cardiac function in cardiac fibrosis rat. The proangiogenic growth factors were significantly enhanced in rats accepted bovine milk exosomes. Meanwhile, bovine milk exosomes ameliorated the motility, migration, and tube-forming ability of HUVECs after OGD in vitro. Bovine milk exosomes alleviate cardiac fibrosis and enhance cardiac function in cardiac fibrosis rats via enhancing angiogenesis. Bovine milk exosomes may represent a potential strategy for the treatment of cardiac fibrosis.
Collapse
|
20
|
Claridge B, Lozano J, Poh QH, Greening DW. Development of Extracellular Vesicle Therapeutics: Challenges, Considerations, and Opportunities. Front Cell Dev Biol 2021; 9:734720. [PMID: 34616741 PMCID: PMC8488228 DOI: 10.3389/fcell.2021.734720] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 07/30/2021] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) hold great promise as therapeutic modalities due to their endogenous characteristics, however, further bioengineering refinement is required to address clinical and commercial limitations. Clinical applications of EV-based therapeutics are being trialed in immunomodulation, tissue regeneration and recovery, and as delivery vectors for combination therapies. Native/biological EVs possess diverse endogenous properties that offer stability and facilitate crossing of biological barriers for delivery of molecular cargo to cells, acting as a form of intercellular communication to regulate function and phenotype. Moreover, EVs are important components of paracrine signaling in stem/progenitor cell-based therapies, are employed as standalone therapies, and can be used as a drug delivery system. Despite remarkable utility of native/biological EVs, they can be improved using bio/engineering approaches to further therapeutic potential. EVs can be engineered to harbor specific pharmaceutical content, enhance their stability, and modify surface epitopes for improved tropism and targeting to cells and tissues in vivo. Limitations currently challenging the full realization of their therapeutic utility include scalability and standardization of generation, molecular characterization for design and regulation, therapeutic potency assessment, and targeted delivery. The fields' utilization of advanced technologies (imaging, quantitative analyses, multi-omics, labeling/live-cell reporters), and utility of biocompatible natural sources for producing EVs (plants, bacteria, milk) will play an important role in overcoming these limitations. Advancements in EV engineering methodologies and design will facilitate the development of EV-based therapeutics, revolutionizing the current pharmaceutical landscape.
Collapse
Affiliation(s)
- Bethany Claridge
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Melbourne, VIC, Australia
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Jonathan Lozano
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC, Australia
| | - Qi Hui Poh
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Melbourne, VIC, Australia
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - David W. Greening
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Melbourne, VIC, Australia
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Central Clinical School, Monash University, Melbourne, VIC, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
21
|
The Role of MSC in Wound Healing, Scarring and Regeneration. Cells 2021; 10:cells10071729. [PMID: 34359898 PMCID: PMC8305394 DOI: 10.3390/cells10071729] [Citation(s) in RCA: 161] [Impact Index Per Article: 53.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/02/2021] [Accepted: 07/03/2021] [Indexed: 02/06/2023] Open
Abstract
Tissue repair and regeneration after damage is not completely understood, and current therapies to support this process are limited. The wound healing process is associated with cell migration and proliferation, extracellular matrix remodeling, angiogenesis and re-epithelialization. In normal conditions, a wound will lead to healing, resulting in reparation of the tissue. Several risk factors, chronic inflammation, and some diseases lead to a deficient wound closure, producing a scar that can finish with a pathological fibrosis. Mesenchymal stem/stromal cells (MSCs) are widely used for their regenerative capacity and their possible therapeutically potential. Derived products of MSCs, such as exosomes or extravesicles, have shown a therapeutic potential similar to MSCs, and these cell-free products may be interesting in clinics. MSCs or their derivative products have shown paracrine beneficial effects, regulating inflammation, modifying the fibroblast activation and production of collagen and promoting neovascularization and re-epithelialization. This review describes the effects of MSCs and their derived products in each step of the wound repair process. As well, it reviews the pre-clinical and clinical use of MSCs to benefit in skin wound healing in diabetic associated wounds and in pathophysiological fibrosis.
Collapse
|