1
|
Kowara M, Kopka M, Kopka K, Głowczyńska R, Mitrzak K, Kim DA, Sadowski KA, Cudnoch-Jędrzejewska A. MicroRNA Inhibiting Atheroprotective Proteins in Patients with Unstable Angina Comparing to Chronic Coronary Syndrome. Int J Mol Sci 2024; 25:10621. [PMID: 39408950 PMCID: PMC11476700 DOI: 10.3390/ijms251910621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/22/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
Patients with unstable angina present clinical characteristics of atherosclerotic plaque vulnerability, contrary to chronic coronary syndrome patients. The process of athersclerotic plaque destabilization is also regulated by microRNA particles. In this study, the investigation on expression levels of microRNAs inhibiting the expression of proteins that protect from atherosclerotic plaque progression (miR-92a inhibiting KLF2, miR-10b inhibiting KLF4, miR-126 inhibiting MerTK, miR-98 inhibiting IL-10, miR-29b inhibiting TGFβ1) was undertaken. A number of 62 individuals were enrolled-unstable angina (UA, n = 14), chronic coronary syndrome (CCS, n = 38), and healthy volunteers (HV, n = 10). Plasma samples were taken, and microRNAs expression levels were assessed by qRT-PCR. As a result, the UA patients presented significantly increased miR-10b levels compared to CCS patients (0.097 vs. 0.058, p = 0.033). Moreover, in additional analysis when UA patients were grouped together with stable patients with significant plaque in left main or proximal left anterior descending ("UA and LM/proxLAD" group, n = 29 patients) and compared to CCS patients with atherosclerotic lesions in other regions of coronary circulation ("CCS other" group, n = 25 patients) the expression levels of both miR-10b (0.104 vs. 0.046; p = 0.0032) and miR-92a (92.64 vs. 54.74; p = 0.0129) were significantly elevated. In conclusion, the study revealed significantly increased expression levels of miR-10b and miR-92a, a regulator of endothelial protective KLF factors (KLF4 and KLF2, respectively) in patients with more vulnerable plaque phenotypes.
Collapse
Affiliation(s)
- Michał Kowara
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 1b Banacha Street, 02-097 Warsaw, Poland (A.C.-J.)
| | - Michał Kopka
- Department of Methodology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 1b Banacha Street, 02-097 Warsaw, Poland
| | - Karolina Kopka
- Department of Methodology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 1b Banacha Street, 02-097 Warsaw, Poland
| | - Renata Głowczyńska
- 1st Department of Cardiology, Medical University of Warsaw, 1a Banacha Street, 02-097 Warsaw, Poland
| | - Karolina Mitrzak
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 1b Banacha Street, 02-097 Warsaw, Poland (A.C.-J.)
- 1st Department of Cardiology, Medical University of Warsaw, 1a Banacha Street, 02-097 Warsaw, Poland
| | - Dan-ae Kim
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 1b Banacha Street, 02-097 Warsaw, Poland (A.C.-J.)
| | - Karol Artur Sadowski
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 1b Banacha Street, 02-097 Warsaw, Poland (A.C.-J.)
| | - Agnieszka Cudnoch-Jędrzejewska
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 1b Banacha Street, 02-097 Warsaw, Poland (A.C.-J.)
| |
Collapse
|
2
|
Stefanati M, Corti A, Corino VDA, Bennett MR, Teng Z, Dubini G, Rodriguez Matas JF. Effect of variability of mechanical properties on the predictive capabilities of vulnerable coronary plaques. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 254:108271. [PMID: 38878362 DOI: 10.1016/j.cmpb.2024.108271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/13/2024] [Accepted: 06/03/2024] [Indexed: 07/28/2024]
Abstract
BACKGROUND AND OBJECTIVE Coronary plaque rupture is a precipitating event responsible for two thirds of myocardial infarctions. Currently, the risk of plaque rupture is computed based on demographic, clinical, and image-based adverse features. However, using these features the absolute event rate per single higher-risk lesion remains low. This work studies the power of a novel framework based on biomechanical markers accounting for material uncertainty to stratify vulnerable and non-vulnerable coronary plaques. METHODS Virtual histology intravascular ultrasounds from 55 patients, 29 affected by acute coronary syndrome and 26 affected by stable angina pectoris, were included in this study. Two-dimensional vessel cross-sections for finite element modeling (10 sections per plaque) incorporating plaque structure (medial tissue, loose matrix, lipid core and calcification) were reconstructed. A Montecarlo finite element analysis was performed on each section to account for material variability on three biomechanical markers: peak plaque structural stress at diastolic and systolic pressure, and peak plaque stress difference between systolic and diastolic pressures, together with the luminal pressure. Machine learning decision tree classifiers were trained on 75% of the dataset and tested on the remaining 25% with a combination of feature selection techniques. Performance against classification trees based on geometric markers (i.e., luminal, external elastic membrane and plaque areas) was also performed. RESULTS Our results indicate that the plaque structural stress outperforms the classification capacity of the combined geometric markers only (0.82 vs 0.51 area under curve) when accounting for uncertainty in material parameters. Furthermore, the results suggest that the combination of the peak plaque structural stress at diastolic and systolic pressures with the maximum plaque structural stress difference between systolic and diastolic pressures together with the systolic pressure and the diastolic to systolic pressure gradient is a robust classifier for coronary plaques when the intrinsic variability in material parameters is considered (area under curve equal to [0.91-0.93]). CONCLUSION In summary, our results emphasize that peak plaque structural stress in combination with the patient's luminal pressure is a potential classifier of plaque vulnerability as it independently considers stress in all directions and incorporates total geometric and compositional features of atherosclerotic plaques.
Collapse
Affiliation(s)
- Marco Stefanati
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, Milan, 20133, Italy.
| | - Anna Corti
- Department of Electronics, Informatics and Bioengineering, Politecnico di Milano, Via Ponzio 34/5, Milan, 20133, Italy
| | - Valentina D A Corino
- Department of Electronics, Informatics and Bioengineering, Politecnico di Milano, Via Ponzio 34/5, Milan, 20133, Italy; CardioTech Lab, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Martin R Bennett
- Division of Cardiovascular Medicine, University of Cambridge, Addenbrookes Hospital, Hills Road, Cambridge, CB2 0QQ, United Kingdom
| | - Zhongzhao Teng
- Division of Cardiovascular Medicine, University of Cambridge, Addenbrookes Hospital, Hills Road, Cambridge, CB2 0QQ, United Kingdom; Department of Radiology, University of Cambridge, School of Clinical Medicine, Box 218, Level 5, Hills Road, Cambridge, CB2 0QQ, United Kingdom; Nanjing Jingsan Medical Science and Technology, Ltd., 6# Shuiyougang Rd., Gulou, Nanjing, Jiangsu, China
| | - Gabriele Dubini
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, Milan, 20133, Italy
| | - José Félix Rodriguez Matas
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, Milan, 20133, Italy
| |
Collapse
|
3
|
Lee S, Jue M, Cho M, Lee K, Paulson B, Jo H, Song JS, Kang S, Kim JK. Label-free atherosclerosis diagnosis through a blood drop of apolipoprotein E knockout mouse model using surface-enhanced Raman spectroscopy validated by machine learning algorithm. Bioeng Transl Med 2023; 8:e10529. [PMID: 37476064 PMCID: PMC10354754 DOI: 10.1002/btm2.10529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/28/2023] [Accepted: 04/12/2023] [Indexed: 07/22/2023] Open
Abstract
The direct preventative detection of flow-induced atherosclerosis remains a significant challenge, impeding the development of early treatments and prevention measures. This study proposes a method for diagnosing atherosclerosis in the carotid artery using nanometer biomarker measurements through surface-enhanced Raman spectroscopy (SERS) from single-drop blood samples. Atherosclerotic acceleration is induced in apolipoprotein E knockout mice which underwent a partial carotid ligation and were fed a high-fat diet to rapidly induce disturbed flow-induced atherosclerosis in the left common carotid artery while using the unligated, contralateral right carotid artery as control. The progressive atherosclerosis development of the left carotid artery was verified by micro-magnetic resonance imaging (micro-MRI) and histology in comparison to the right carotid artery. Single-drop blood samples are deposited on chips of gold-coated ZnO nanorods grown on silicon wafers that filter the nanometer markers and provide strong SERS signals. A diagnostic classifier was established based on principal component analysis (PCA), which separates the resultant spectra into the atherosclerotic and control groups. Scoring based on the principal components enabled the classification of samples into control, mild, and severe atherosclerotic disease. The PCA-based analysis was validated against an independent test sample and compared against the PCA-PLS-DA machine learning algorithm which is known for applicability to Raman diagnosis. The accuracy of the PCA modification-based diagnostic criteria was 94.5%, and that of the machine learning algorithm 97.5%. Using a mouse model, this study demonstrates that diagnosing and classifying the severity of atherosclerosis is possible using a single blood drop, SERS technology, and machine learning algorithm, indicating the detectability of biomarkers and vascular factors in the blood which correlate with the early stages of atherosclerosis development.
Collapse
Affiliation(s)
- Sanghwa Lee
- Biomedical Engineering Research CenterAsan Medical CenterSeoulRepublic of Korea
| | - Miyeon Jue
- Biomedical Engineering Research CenterAsan Medical CenterSeoulRepublic of Korea
| | - Minju Cho
- Biomedical Engineering Research CenterAsan Medical CenterSeoulRepublic of Korea
| | - Kwanhee Lee
- Biomedical Engineering Research CenterAsan Medical CenterSeoulRepublic of Korea
| | - Bjorn Paulson
- Biomedical Engineering Research CenterAsan Medical CenterSeoulRepublic of Korea
| | - Hanjoong Jo
- Wallace H. Coulter Department of Biomedical EngineeringEmory University and Georgia Institute of TechnologyAtlantaGeorgiaUSA
| | - Joon Seon Song
- Department of PathologyUniversity of Ulsan College of Medicine, Asan Medical CenterSeoulRepublic of Korea
| | - Soo‐Jin Kang
- Department of CardiologyUniversity of Ulsan College of Medicine, Asan Medical CenterSeoulRepublic of Korea
| | - Jun Ki Kim
- Biomedical Engineering Research CenterAsan Medical CenterSeoulRepublic of Korea
- Department of Biomedical EngineeringUniversity of Ulsan, College of MedicineSeoulRepublic of Korea
| |
Collapse
|
4
|
Yao Y, Zhang P. Novel ultrasound techniques in the identification of vulnerable plaques-an updated review of the literature. Front Cardiovasc Med 2023; 10:1069745. [PMID: 37293284 PMCID: PMC10244552 DOI: 10.3389/fcvm.2023.1069745] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 05/08/2023] [Indexed: 06/10/2023] Open
Abstract
Atherosclerosis is an inflammatory disease partly mediated by lipoproteins. The rupture of vulnerable atherosclerotic plaques and thrombosis are major contributors to the development of acute cardiovascular events. Despite various advances in the treatment of atherosclerosis, there has been no satisfaction in the prevention and assessment of atherosclerotic vascular disease. The identification and classification of vulnerable plaques at an early stage as well as research of new treatments remain a challenge and the ultimate goal in the management of atherosclerosis and cardiovascular disease. The specific morphological features of vulnerable plaques, including intraplaque hemorrhage, large lipid necrotic cores, thin fibrous caps, inflammation, and neovascularisation, make it possible to identify and characterize plaques with a variety of invasive and non-invasive imaging techniques. Notably, the development of novel ultrasound techniques has introduced the traditional assessment of plaque echogenicity and luminal stenosis to a deeper assessment of plaque composition and the molecular field. This review will discuss the advantages and limitations of five currently available ultrasound imaging modalities for assessing plaque vulnerability, based on the biological characteristics of the vulnerable plaque, and their value in terms of clinical diagnosis, prognosis, and treatment efficacy assessment.
Collapse
|
5
|
Kobayashi T, Kitahara H, Kato K, Saito Y, Kobayashi Y. Impact of Parathyroid Hormone Level on Intracoronary Calcification and Short- and Long-Term Outcomes in Dialysis Patients Undergoing Percutaneous Coronary Intervention. Circ J 2023; 87:247-255. [PMID: 36031382 DOI: 10.1253/circj.cj-22-0202] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND Dialysis patients have strong intracoronary calcification, accelerated by secondary hyperparathyroidism as well as atherosclerosis. We evaluated the association of intact parathyroid hormone (iPTH) level with intracoronary calcification evaluated by intravascular ultrasound (IVUS), and its impact on both stent expansion after percutaneous coronary intervention (PCI) and long-term clinical outcomes, in dialysis patients with coronary artery disease (CAD). METHODS AND RESULTS A total of 116 patients on dialysis, who underwent PCI with IVUS guidance between March 2012 and December 2020, were enrolled. Patients were divided into 2 groups based on their median iPTH level. The degree of intracoronary calcification was evaluated by calcification score using grayscale IVUS in the target lesions. Preprocedural calcification scores were significantly higher in the high iPTH group compared with the low iPTH group (2.9±1.1 vs. 2.1±0.7, P<0.001). After PCI, the high iPTH group had a significantly lower stent expansion index (0.6±0.2 vs. 0.7±0.1, P<0.001) and stent symmetry index (0.5±0.1 vs. 0.7±0.1, P<0.001) compared with the low iPTH group. The incidence of major adverse cardiac or cerebrovascular events within 3 years was significantly higher in the high iPTH group (log-rank P<0.05). CONCLUSIONS High iPTH level is likely to increase intracoronary calcification, and cause inadequate stent expansion, which may be associated with increased risk of future adverse events in dialysis patients with CAD requiring PCI.
Collapse
Affiliation(s)
- Takahiro Kobayashi
- Department of Cardiovascular Medicine, Chiba University Graduate School of Medicine
| | - Hideki Kitahara
- Department of Cardiovascular Medicine, Chiba University Graduate School of Medicine
| | - Ken Kato
- Department of Cardiovascular Medicine, Chiba University Graduate School of Medicine
| | - Yuichi Saito
- Department of Cardiovascular Medicine, Chiba University Graduate School of Medicine
| | - Yoshio Kobayashi
- Department of Cardiovascular Medicine, Chiba University Graduate School of Medicine
| |
Collapse
|
6
|
Legutko J, Bryniarski KL, Kaluza GL, Roleder T, Pociask E, Kedhi E, Wojakowski W, Jang IK, Kleczynski P. Intracoronary Imaging of Vulnerable Plaque-From Clinical Research to Everyday Practice. J Clin Med 2022; 11:jcm11226639. [PMID: 36431116 PMCID: PMC9699515 DOI: 10.3390/jcm11226639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 10/30/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022] Open
Abstract
The introduction into clinical practice of intravascular imaging, including intravascular ultrasound (IVUS), optical coherence tomography (OCT) and their derivatives, allowed for the in vivo assessment of coronary atherosclerosis in humans, including insights into plaque evolution and progression process. Intravascular ultrasound, the most commonly used intravascular modality in many countries, due to its low resolution cannot assess many features of vulnerable plaque such as lipid plaque or thin-cap fibroatheroma. Thus, novel methods were introduced to facilitate this problem including virtual histology intravascular ultrasound and later on near-infrared spectroscopy and OCT. Howbeit, none of the currently used modalities can assess all known characteristics of plaque vulnerability; hence, the idea of combining different intravascular imaging methods has emerged including NIRS-IVUS or OCT-IVUS imaging. All of those described methods may allow us to identify the most vulnerable plaques, which are prone to cause acute coronary syndrome, and thus they may allow us to introduce proper treatment before plaque destabilization.
Collapse
Affiliation(s)
- Jacek Legutko
- Department of Interventional Cardiology, Faculty of Medicine, Institute of Cardiology, Jagiellonian University Medical College, 31-202 Kraków, Poland
- Clinical Department of Interventional Cardiology, John Paul II Hospital, 31-202 Kraków, Poland
| | - Krzysztof L. Bryniarski
- Department of Interventional Cardiology, Faculty of Medicine, Institute of Cardiology, Jagiellonian University Medical College, 31-202 Kraków, Poland
- Clinical Department of Interventional Cardiology, John Paul II Hospital, 31-202 Kraków, Poland
| | - Grzegorz L. Kaluza
- Skirball Center for Innovation, Cardiovascular Research Foundation, Orangeburg, NY 10019, USA
| | - Tomasz Roleder
- Department of Cardiology, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Elzbieta Pociask
- Department of Biocybernetics and Biomedical Engineering, AGH University of Science and Technology, 30-059 Kraków, Poland
| | - Elvin Kedhi
- Clinique Hopitaliere Erasme, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Wojciech Wojakowski
- Division of Cardiology and Structural Heart Diseases, Medical University of Silesia, 40-635 Katowice, Poland
| | - Ik-Kyung Jang
- Cardiology Division, Massachusetts General Hospital, Harvard Medical School, GRB 800, Boston, MA 02115, USA
- Division of Cardiology, Kyung Hee University Hospital, Seoul 02447, Korea
| | - Pawel Kleczynski
- Department of Interventional Cardiology, Faculty of Medicine, Institute of Cardiology, Jagiellonian University Medical College, 31-202 Kraków, Poland
- Clinical Department of Interventional Cardiology, John Paul II Hospital, 31-202 Kraków, Poland
- Correspondence: ; Tel.: +48-12-614-35-01
| |
Collapse
|
7
|
Singh D, Rai V, Agrawal DK. Non-Coding RNAs in Regulating Plaque Progression and Remodeling of Extracellular Matrix in Atherosclerosis. Int J Mol Sci 2022; 23:13731. [PMID: 36430208 PMCID: PMC9692922 DOI: 10.3390/ijms232213731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/31/2022] [Accepted: 11/05/2022] [Indexed: 11/09/2022] Open
Abstract
Non-coding RNAs (ncRNAs) regulate cell proliferation, migration, differentiation, inflammation, metabolism of clinically important biomolecules, and other cellular processes. They do not encode proteins but are involved in the regulatory network of various proteins that are directly related to the pathogenesis of diseases. Little is known about the ncRNA-associated mechanisms of atherosclerosis and related cardiovascular disorders. Remodeling of the extracellular matrix (ECM) is critical in the pathogenesis of atherosclerosis and related disorders; however, its regulatory proteins are the potential subjects to explore with special emphasis on epigenetic regulatory components. The activity of regulatory proteins involved in ECM remodeling is regulated by various ncRNA molecules, as evident from recent research. Thus, it is important to critically evaluate the existing literature to enhance the understanding of nc-RNAs-regulated molecular mechanisms regulating ECM components, remodeling, and progression of atherosclerosis. This is crucial since deregulated ECM remodeling contributes to atherosclerosis. Thus, an in-depth understanding of ncRNA-associated ECM remodeling may identify novel targets for the treatment of atherosclerosis and other cardiovascular diseases.
Collapse
Affiliation(s)
| | | | - Devendra K. Agrawal
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| |
Collapse
|
8
|
Sun H, Zhao C, Qin Y, Li C, Jia H, Yu B, Wang Z. In vivo detection of plaque erosion by intravascular optical coherence tomography using artificial intelligence. BIOMEDICAL OPTICS EXPRESS 2022; 13:3922-3938. [PMID: 35991920 PMCID: PMC9352282 DOI: 10.1364/boe.459623] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/14/2022] [Accepted: 05/27/2022] [Indexed: 05/11/2023]
Abstract
Plaque erosion is one of the most common underlying mechanisms for acute coronary syndrome (ACS). Optical coherence tomography (OCT) allows in vivo diagnosis of plaque erosion. However, challenge remains due to high inter- and intra-observer variability. We developed an artificial intelligence method based on deep learning for fully automated detection of plaque erosion in vivo, which achieved a recall of 0.800 ± 0.175, a precision of 0.734 ± 0.254, and an area under the precision-recall curve (AUC) of 0.707. Our proposed method is in good agreement with physicians, and can help improve the clinical diagnosis of plaque erosion and develop individualized treatment strategies for optimal management of ACS patients.
Collapse
Affiliation(s)
- Haoyue Sun
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
- Contributed equally
| | - Chen Zhao
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
- The Key Laboratory of Medical Ischemia, Chinese Ministry of Education, Harbin, China
- Contributed equally
| | - Yuhan Qin
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
- The Key Laboratory of Medical Ischemia, Chinese Ministry of Education, Harbin, China
| | - Chao Li
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Haibo Jia
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
- The Key Laboratory of Medical Ischemia, Chinese Ministry of Education, Harbin, China
| | - Bo Yu
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
- The Key Laboratory of Medical Ischemia, Chinese Ministry of Education, Harbin, China
| | - Zhao Wang
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
9
|
Sun T, Wang Y, Wang X, Hu W, Li A, Li S, Xu X, Cao R, Fan L, Cao F. Effect of long-term intensive cholesterol control on the plaque progression in elderly based on CTA cohort study. Eur Radiol 2022; 32:4374-4383. [PMID: 35226154 DOI: 10.1007/s00330-022-08594-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 12/22/2021] [Accepted: 01/14/2022] [Indexed: 12/01/2022]
Abstract
OBJECTIVES To investigate the long-term effects of intensive LDL cholesterol-lowering treatments on lumen stenosis severity, plaque calcification, spotty calcifications, percent calcified plaque volume (PCPV), and Agatston coronary artery calcium score (CACS) based on coronary computed tomography angiography (CCTA) in elderly patients. METHODS A total of 240 patients over 60 years old (comprising 754 lesions) who underwent serial CCTA were retrospectively enrolled in this 5-year cohort study. Patients were divided into three groups: an intensive lipid-lowering group, a lipid-lowering group, and a control group. The stenosis severity, plaque volume (PV), plaque composition, PCPV, and high-risk plaque (HRP) presence were quantitatively analyzed. The CACS was calculated at baseline and follow-up. RESULTS All patients were male with an average age of 66.8 ± 5.8 years old. Over time, increases in the percentages of obstructive coronary lesions (p < 0.001) were observed. Compared with those at baseline, the percentage of obstructive lesions remained unchanged (p = 0.077), and the percentage of spotty calcifications significantly decreased (p < 0.05) at the follow-up CCTA scan in the intensive lipid-lowering group. Patients in the intensive lipid-lowering group demonstrated a higher progression in calcified PV, CACS, and PCPV (all p < 0.05), and a significantly greater attenuation in fibrous-fatty and lipid-rich PV (all p < 0.05) than patients in other groups. CONCLUSIONS The PV and contents increased gradually with time in all groups. Intensive LDL-C lowering was associated with slower progression of stenosis severity and reduction of high-risk plaque features, with increased plaque calcification and higher progression in PCPV. Comprehensive serial plaque evaluations by CCTAs may contribute to further refinement of risk stratification and reasonable lipid-lowering treatment in elderly patients. KEY POINTS • Intensive LDL-C lowering increased coronary calcification and percent calcified plaque volume progression. • Comprehensive serial plaque evaluations by serial CCTAs may help to refine risk stratification.
Collapse
Affiliation(s)
- Ting Sun
- Chinese PLA Medical College & Department of Cardiology, National Clinic Research Center Geriatric Disease, 2nd Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Yabin Wang
- Chinese PLA Medical College & Department of Cardiology, National Clinic Research Center Geriatric Disease, 2nd Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Xinjiang Wang
- Department of Radiology, 2nd Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Wenchao Hu
- Chinese PLA Medical College & Department of Cardiology, National Clinic Research Center Geriatric Disease, 2nd Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Ang Li
- Chinese PLA Medical College & Department of Cardiology, National Clinic Research Center Geriatric Disease, 2nd Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Sulei Li
- Chinese PLA Medical College & Department of Cardiology, National Clinic Research Center Geriatric Disease, 2nd Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Xian Xu
- Department of Radiology, 2nd Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Ruihua Cao
- Chinese PLA Medical College & Department of Cardiology, National Clinic Research Center Geriatric Disease, 2nd Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Li Fan
- Chinese PLA Medical College & Department of Cardiology, National Clinic Research Center Geriatric Disease, 2nd Medical Center of Chinese PLA General Hospital, Beijing, 100853, China.
| | - Feng Cao
- Chinese PLA Medical College & Department of Cardiology, National Clinic Research Center Geriatric Disease, 2nd Medical Center of Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
10
|
What Is Hidden Behind Yellow Pixels: from Pathology to Intravascular Imaging of Atherosclerotic Plaque. Curr Atheroscler Rep 2022; 24:97-108. [PMID: 35107762 DOI: 10.1007/s11883-022-00990-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2021] [Indexed: 11/03/2022]
Abstract
PURPOSE OF REVIEW Intravascular imaging systems can identify lipid-rich and vulnerable plaques and help in treatment guidance. The comparability of different intracoronary imaging methods remains unclear. In this paper, we review atherosclerotic plaque pathology, plaque-stabilising effects of different lipid-lowering therapies and usage of intravascular imaging modalities. We present the results of our study in which we evaluated the correlation of the intravascular ultrasound iMAP system (iMAP-IVUS) and near-infrared spectroscopy (NIRS) in the diagnosis of vulnerable coronary plaques. RECENT FINDINGS Lipids have an essential contribution to plaque evolution and vulnerability. Increase in plaque vulnerability alone even without increase in plaque burden defines progression of atherosclerosis. Lipidic tissue has a significant diagnostic value in patient risk stratification and can serve as a treatment target. Different vulnerable plaque parameters can be visualised with iMAP-IVUS and NIRS. Intravascular imaging systems can differ with regard to their sensitivity, specificity and limitations. Lipid-lowering therapy is crucial in plaque stabilisation.
Collapse
|
11
|
Pulipati VP, Alenghat FJ. The impact of lipid-lowering medications on coronary artery plaque characteristics. Am J Prev Cardiol 2021; 8:100294. [PMID: 34877559 PMCID: PMC8627965 DOI: 10.1016/j.ajpc.2021.100294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/29/2021] [Accepted: 11/06/2021] [Indexed: 11/28/2022] Open
Abstract
Atherosclerosis is the predominant cause of coronary artery disease. The last several decades have witnessed significant advances in lipid-lowering therapies, which comprise a central component of atherosclerotic cardiovascular disease prevention. In addition to cardiovascular risk reduction with dyslipidemia management, some lipid-based therapies show promise at the level of the atherosclerotic plaque itself through mechanisms governing lipid accumulation, plaque stability, local inflammation, endothelial dysfunction, and thrombogenicity. The capacity of lipid-lowering therapies to modify atherosclerotic plaque burden, size, composition, and vulnerability should correlate with their ability to reduce disease progression. This review discusses plaque characteristics, diagnostic modalities to evaluate these characteristics, and how they are altered by current and emerging lipid-lowering therapies, all in human coronary artery disease.
Collapse
Affiliation(s)
- Vishnu Priya Pulipati
- Section of Cardiology, University of Chicago Medicine, 5841 S. Maryland Avenue, MC 6080, Chicago, IL 60637, United States
| | - Francis J. Alenghat
- Section of Cardiology, University of Chicago Medicine, 5841 S. Maryland Avenue, MC 6080, Chicago, IL 60637, United States
- Pritzker School of Medicine, University of Chicago, Chicago, United States
| |
Collapse
|
12
|
Zuo W, Sun R, Zhang X, Qu Y, Ji Z, Su Y, Zhang R, Ma G. The Association Between Quantitative Flow Ratio and Intravascular Imaging-defined Vulnerable Plaque Characteristics in Patients With Stable Angina and Non-ST-segment Elevation Acute Coronary Syndrome. Front Cardiovasc Med 2021; 8:690262. [PMID: 34277736 PMCID: PMC8278311 DOI: 10.3389/fcvm.2021.690262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/04/2021] [Indexed: 11/13/2022] Open
Abstract
Background: This study aimed to examine whether quantitative flow ratio (QFR), an angiography-based computation of fractional flow reserve, was associated with intravascular imaging-defined vulnerable plaque features, such as thin cap fibroatheroma (TCFA) in patients with stable angina, and non-ST-segment elevation acute coronary syndrome. Methods: Patients undergoing optical coherence tomography (OCT) or intravascular ultrasound (IVUS) examinations were identified from two prospective studies and their interrogated vessels were assessed with QFR. Lesions in the OCT cohort were classified into tertiles: QFR-T1 (QFR ≤ 0.85), QFR-T2 (0.85 < QFR ≤ 0.93), and QFR-T3 (QFR > 0.93). Lesions in the IVUS cohort were classified dichotomously as low or high QFR groups. Results: This post-hoc analysis included 132 lesions (83 for OCT and 49 for IVUS) from 126 patients. The prevalence of OCT-TCFA was significantly higher in QFR-T1 (50%) than in QFR-T2 (14%) and QFR-T3 (19%) (p = 0.003 and 0.018, respectively). Overall significant differences were also observed among tertiles in maximum lipid arc, thinnest fibrous cap thickness, and minimal lumen area (p = 0.017, 0.040, and <0.001, respectively). Thrombus was more prevalent in QFR-T1 (39%) than in QFR-T2 (3%), and QFR-T3 (12%) (p = 0.001 and 0.020, respectively). In the multivariable analysis, QFR ≤ 0.80 remained as a significant determinant of OCT-TCFA regardless of the presence of NSTE-ACS and the level of low-density lipoprotein cholesterol (adjusted OR: 4.387, 95% CI 1.297-14.839, p = 0.017). The diagnostic accuracy of QFR was moderate in identifying lesions with OCT-TCFA (area under the curve: 0.72, 95% CI 0.58-0.86, p = 0.003). In the IVUS cohort, significant differences were found between two groups in minimal lumen area and plaque burden but not in the distribution of virtual histology (VH)-TCFA (p = 0.025, 0.036, and 1.000, respectively). Conclusions: Lower QFR was related to OCT-defined plaque vulnerability in angiographically mild-to-intermediate lesions. The QFR might be a useful tool for ruling out high-risk plaques without using any pressure wire or vasodilator.
Collapse
Affiliation(s)
- Wenjie Zuo
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Renhua Sun
- Department of Cardiology, The First People's Hospital of Yancheng, Yancheng, China
| | - Xiaoguo Zhang
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Yangyang Qu
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Zhenjun Ji
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Yamin Su
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Rui Zhang
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Genshan Ma
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|
13
|
Cismaru G, Serban T, Tirpe A. Ultrasound Methods in the Evaluation of Atherosclerosis: From Pathophysiology to Clinic. Biomedicines 2021; 9:418. [PMID: 33924492 PMCID: PMC8070406 DOI: 10.3390/biomedicines9040418] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/09/2021] [Accepted: 04/10/2021] [Indexed: 12/11/2022] Open
Abstract
Atherosclerosis is a key pathological process that causes a plethora of pathologies, including coronary artery disease, peripheral artery disease, and ischemic stroke. The silent progression of the atherosclerotic disease prompts for new surveillance tools that can visualize, characterize, and provide a risk evaluation of the atherosclerotic plaque. Conventional ultrasound methods-bright (B)-mode US plus Doppler mode-provide a rapid, cost-efficient way to visualize an established plaque and give a rapid risk stratification of the patient through the Gray-Weale standardization-echolucent plaques with ≥50% stenosis have a significantly greater risk of ipsilateral stroke. Although rather disputed, the measurement of carotid intima-media thickness (C-IMT) may prove useful in identifying subclinical atherosclerosis. In addition, contrast-enhanced ultrasonography (CEUS) allows for a better image resolution and the visualization and quantification of plaque neovascularization, which has been correlated with future cardiovascular events. Newly emerging elastography techniques such as strain elastography and shear-wave elastography add a new dimension to this evaluation-the biomechanics of the arterial wall, which is altered in atherosclerosis. The invasive counterpart, intravascular ultrasound (IVUS), enables an individualized assessment of the anti-atherosclerotic therapies, as well as a direct risk assessment of these lesions through virtual histology IVUS.
Collapse
Affiliation(s)
- Gabriel Cismaru
- Fifth Department of Internal Medicine, Cardiology-Rehabilitation, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Teodora Serban
- Medical Imaging Department, Iuliu Hatieganu University of Medicine and Pharmacy, 400162 Cluj-Napoca, Romania;
| | - Alexandru Tirpe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania
| |
Collapse
|
14
|
Hajjarian Z, Toussaint JD, Guerrero JL, Nadkarni SK. In-vivo mechanical characterization of coronary atherosclerotic plaques in living swine using intravascular laser speckle imaging. BIOMEDICAL OPTICS EXPRESS 2021; 12:2064-2078. [PMID: 33996217 PMCID: PMC8086462 DOI: 10.1364/boe.418939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/07/2021] [Accepted: 02/09/2021] [Indexed: 05/13/2023]
Abstract
The ability to evaluate the viscoelastic properties of coronary arteries is crucial for identifying mechanically unstable atherosclerotic plaques. Here, we demonstrate for the first time in living swine, the capability of intravascular laser speckle imaging (ILSI) to measure an index of coronary plaque viscoelasticity, τ, using a human coronary to swine xenograft model. Cardiac motion effects are evaluated by comparing the EKG-non-gated τ ¯ N G , and EKG-gated τ ¯ G among different plaque types. Results show that both τ ¯ N G and τ ¯ G are significantly lower in necrotic-core plaques compared with stable lesions. Discrete-point pullback measurements demonstrate the capability of ILSI for rapid mechanical characterization of coronary segments under physiological conditions, in-vivo.
Collapse
Affiliation(s)
- Zeinab Hajjarian
- Wellman Center for Photomedicine, Massachusetts General Hospital & Harvard Medical School, Boston, MA 02114, USA
- Authors contributed equally to the manuscript
| | - Jimmy D. Toussaint
- Wellman Center for Photomedicine, Massachusetts General Hospital & Harvard Medical School, Boston, MA 02114, USA
- Authors contributed equally to the manuscript
| | - J. Luis Guerrero
- Surgical Cardiovascular Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Seemantini K. Nadkarni
- Wellman Center for Photomedicine, Massachusetts General Hospital & Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|