1
|
Apostolos A, Karanasos A, Ktenopoulos N, Tsalamandris S, Vlachakis PK, Kachrimanidis I, Skalidis I, Sagris M, Koliastasis L, Drakopoulou M, Synetos A, Tsioufis K, Toutouzas K. Unlocking the Secrets of Acute Coronary Syndromes Using Intravascular Imaging: From Pathophysiology to Improving Outcomes. J Clin Med 2024; 13:7087. [PMID: 39685545 DOI: 10.3390/jcm13237087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
Acute coronary syndrome (ACS) represents the most severe manifestation of coronary artery disease. Intravascular imaging, both intravascular ultrasound (IVUS) and optical coherence tomography (OCT), have played crucial roles for the impressive reduction in mortality of ACS. Intravascular imaging is useful for the detection of atherosclerotic mechanism (plaque rupture, calcified nodules, or plaque erosions) and for the evaluation of nonatherosclerotic and nonobstructive types of ACS. In addition, IVUS and OCT play a crucial role in the optimization of the PCI. The aim of the current review is to present the role of intravascular imaging in identifying the mechanisms of ACS and its prognostic role in future events, to review the current guidelines suggesting intravascular imaging use in ACS, to summarize its role in PCI in patients with ACS, and to compare IVUS and OCT.
Collapse
Affiliation(s)
- Anastasios Apostolos
- First Department of Cardiology, Medical School, National and Kapodistrian University of Athens, "Hippokration" General Hospital of Athens, 11528 Athens, Greece
| | - Antonios Karanasos
- Department of Cardiology, Faculty of Medicine, University of Patras, University Hospital of Patras, 26504 Patras, Greece
| | - Nikolaos Ktenopoulos
- First Department of Cardiology, Medical School, National and Kapodistrian University of Athens, "Hippokration" General Hospital of Athens, 11528 Athens, Greece
| | - Sotirios Tsalamandris
- First Department of Cardiology, Medical School, National and Kapodistrian University of Athens, "Hippokration" General Hospital of Athens, 11528 Athens, Greece
| | - Panayotis K Vlachakis
- First Department of Cardiology, Medical School, National and Kapodistrian University of Athens, "Hippokration" General Hospital of Athens, 11528 Athens, Greece
| | - Ioannis Kachrimanidis
- First Department of Cardiology, Medical School, National and Kapodistrian University of Athens, "Hippokration" General Hospital of Athens, 11528 Athens, Greece
| | - Ioannis Skalidis
- Department of Cardiology, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland
| | - Marios Sagris
- First Department of Cardiology, Medical School, National and Kapodistrian University of Athens, "Hippokration" General Hospital of Athens, 11528 Athens, Greece
| | - Leonidas Koliastasis
- First Department of Cardiology, Medical School, National and Kapodistrian University of Athens, "Hippokration" General Hospital of Athens, 11528 Athens, Greece
| | - Maria Drakopoulou
- First Department of Cardiology, Medical School, National and Kapodistrian University of Athens, "Hippokration" General Hospital of Athens, 11528 Athens, Greece
| | - Andreas Synetos
- First Department of Cardiology, Medical School, National and Kapodistrian University of Athens, "Hippokration" General Hospital of Athens, 11528 Athens, Greece
| | - Konstantinos Tsioufis
- First Department of Cardiology, Medical School, National and Kapodistrian University of Athens, "Hippokration" General Hospital of Athens, 11528 Athens, Greece
| | - Konstantinos Toutouzas
- First Department of Cardiology, Medical School, National and Kapodistrian University of Athens, "Hippokration" General Hospital of Athens, 11528 Athens, Greece
| |
Collapse
|
2
|
Yeung AWK, AlHadidi A, Vyas R, Bornstein MM, Watanabe H, Tanaka R. Nonionizing diagnostic imaging modalities for visualizing health and pathology of periodontal and peri-implant tissues. Periodontol 2000 2024; 95:87-101. [PMID: 38951932 DOI: 10.1111/prd.12591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/20/2024] [Accepted: 06/17/2024] [Indexed: 07/03/2024]
Abstract
Radiographic examination has been an essential part of the diagnostic workflow in periodontology and implant dentistry. However, radiographic examination unavoidably involves ionizing radiation and its associated risks. Clinicians and researchers have invested considerable efforts in assessing the feasibility and capability of utilizing nonionizing imaging modalities to replace traditional radiographic imaging. Two such modalities have been extensively evaluated in clinical settings, namely, ultrasonography (USG) and magnetic resonance imaging (MRI). Another modality, optical coherence tomography (OCT), has been under investigation more recently. This review aims to provide an overview of the literature and summarize the usage of USG, MRI, and OCT in evaluating health and pathology of periodontal and peri-implant tissues. Clinical studies have shown that USG could accurately measure gingival height and crestal bone level, and classify furcation involvement. Due to physical constraints, USG may be more applicable to the buccal surfaces of the dentition even with an intra-oral probe. Clinical studies have also shown that MRI could visualize the degree of soft-tissue inflammation and osseous edema, the extent of bone loss at furcation involvement sites, and periodontal bone level. However, there was a lack of clinical studies on the evaluation of peri-implant tissues by MRI. Moreover, an MRI machine is very expensive, occupies much space, and requires more time than cone-beam computed tomography (CBCT) or intraoral radiographs to complete a scan. The feasibility of OCT to evaluate periodontal and peri-implant tissues remains to be elucidated, as there are only preclinical studies at the moment. A major shortcoming of OCT is that it may not reach the bottom of the periodontal pocket, particularly for inflammatory conditions, due to the absorption of near-infrared light by hemoglobin. Until future technological breakthroughs finally overcome the limitations of USG, MRI and OCT, the practical imaging modalities for routine diagnostics of periodontal and peri-implant tissues remain to be plain radiographs and CBCTs.
Collapse
Affiliation(s)
- Andy Wai Kan Yeung
- Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Abeer AlHadidi
- Oral and Maxillofacial Pathology, Radiology and Medicine, New York University, New York, New York, USA
| | - Rutvi Vyas
- University of Detroit Mercy School of Dentistry, Detroit, Michigan, USA
| | - Michael M Bornstein
- Department of Oral Health & Medicine, University Center for Dental Medicine Basel UZB, University of Basel, Basel, Switzerland
| | - Hiroshi Watanabe
- Dental Radiology and Radiation Oncology, Department of Oral Restitution, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ray Tanaka
- Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
3
|
Ali ZA, Shin D, Chaturvedi A, Waksman R. We now have enough evidence to support systematic OCT in daily PCI practice: pros and cons. EUROINTERVENTION 2024; 20:533-535. [PMID: 38726715 PMCID: PMC11067511 DOI: 10.4244/eij-e-24-00008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Affiliation(s)
- Ziad A Ali
- St. Francis Hospital, Roslyn, NY, USA
- Cardiovascular Research Foundation, New York, NY, USA
- New York Institute of Technology, Old Westbury, NY, USA
| | | | - Abhishek Chaturvedi
- Section of Interventional Cardiology, MedStar Washington Hospital Center, Washington, D.C., USA
| | - Ron Waksman
- Section of Interventional Cardiology, MedStar Washington Hospital Center, Washington, D.C., USA
| |
Collapse
|
4
|
Bec J, Zhou X, Villiger M, Southard JA, Bouma B, Marcu L. Dual modality intravascular catheter system combining pulse-sampling fluorescence lifetime imaging and polarization-sensitive optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2024; 15:2114-2132. [PMID: 38633060 PMCID: PMC11019710 DOI: 10.1364/boe.516515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/08/2024] [Accepted: 02/08/2024] [Indexed: 04/19/2024]
Abstract
The clinical management of coronary artery disease and the prevention of acute coronary syndromes require knowledge of the underlying atherosclerotic plaque pathobiology. Hybrid imaging modalities capable of comprehensive assessment of biochemical and morphological plaques features can address this need. Here we report the first implementation of an intravascular catheter system combining fluorescence lifetime imaging (FLIm) with polarization-sensitive optical coherence tomography (PSOCT). This system provides multi-scale assessment of plaque structure and composition via high spatial resolution morphology from OCT, polarimetry-derived tissue microstructure, and biochemical composition from FLIm, without requiring any molecular contrast agent. This result was achieved with a low profile (2.7 Fr) double-clad fiber (DCF) catheter and high speed (100 fps B-scan rate, 40 mm/s pullback speed) console. Use of a DCF and broadband rotary junction required extensive optimization to mitigate the reduction in OCT performance originating from additional reflections and multipath artifacts. This challenge was addressed by the development of a broad-band (UV-visible-IR), high return loss (47 dB) rotary junction. We demonstrate in phantoms, ex vivo swine coronary specimens and in vivo swine heart (percutaneous coronary access) that the FLIm-PSOCT catheter system can simultaneously acquire co-registered FLIm data over four distinct spectral bands (380/20 nm, 400/20 nm, 452/45 nm, 540/45 nm) and PSOCT backscattered intensity, birefringence, and depolarization. The unique ability to collect complementary information from tissue (e.g., morphology, extracellular matrix composition, inflammation) with a device suitable for percutaneous coronary intervention offers new opportunities for cardiovascular research and clinical diagnosis.
Collapse
Affiliation(s)
- Julien Bec
- Biomedical Engineering, University of California, Davis, CA 95616, USA
| | - Xiangnan Zhou
- Biomedical Engineering, University of California, Davis, CA 95616, USA
| | - Martin Villiger
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Jeffrey A. Southard
- Division of Cardiovascular Medicine, UC Davis Health System, University of California-Davis, Sacramento, CA 95817, USA
| | - Brett Bouma
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Laura Marcu
- Biomedical Engineering, University of California, Davis, CA 95616, USA
| |
Collapse
|
5
|
Shafiabadi Hassani N, Ogliari LC, Vieira de Oliveira Salerno PR, Pereira GTR, Ribeiro MH, Palma Dallan LA. In-Stent Restenosis Overview: From Intravascular Imaging to Optimal Percutaneous Coronary Intervention Management. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:549. [PMID: 38674195 PMCID: PMC11051745 DOI: 10.3390/medicina60040549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/13/2024] [Accepted: 03/18/2024] [Indexed: 04/28/2024]
Abstract
Despite ongoing progress in stent technology and deployment techniques, in-stent restenosis (ISR) still remains a major issue following percutaneous coronary intervention (PCI) and accounts for 10.6% of all interventions in the United States. With the continuous rise in ISR risk factors such as obesity and diabetes, along with an increase in the treatment of complex lesions with high-risk percutaneous coronary intervention (CHIP), a substantial growth in ISR burden is expected. This review aims to provide insight into the mechanisms, classification, and management of ISR, with a focus on exploring innovative approaches to tackle this complication comprehensively, along with a special section addressing the approach to complex calcified lesions.
Collapse
Affiliation(s)
- Neda Shafiabadi Hassani
- Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA; (N.S.H.); (P.R.V.d.O.S.); (G.T.R.P.)
- Intravascular Imaging Core Laboratory, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Lucas Carlini Ogliari
- SOS Cardio Hospital and Imperial Hospital de Caridade, Florianópolis 88020-210, SC, Brazil; (L.C.O.); (M.H.R.)
| | - Pedro Rafael Vieira de Oliveira Salerno
- Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA; (N.S.H.); (P.R.V.d.O.S.); (G.T.R.P.)
- Intravascular Imaging Core Laboratory, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Gabriel Tensol Rodrigues Pereira
- Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA; (N.S.H.); (P.R.V.d.O.S.); (G.T.R.P.)
- Intravascular Imaging Core Laboratory, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Marcelo Harada Ribeiro
- SOS Cardio Hospital and Imperial Hospital de Caridade, Florianópolis 88020-210, SC, Brazil; (L.C.O.); (M.H.R.)
| | - Luis Augusto Palma Dallan
- Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA; (N.S.H.); (P.R.V.d.O.S.); (G.T.R.P.)
| |
Collapse
|
6
|
Dall’Orto CC, Ferreira Lopes RP, Eurípedes LV, Pinto Filho GV, da Silva MR. Acute Coronary Syndrome with Non-Obstructive Plaque on Angiography and Features of Vulnerable Plaque on Intracoronary Optical Coherence Tomography. Diagnostics (Basel) 2023; 13:3118. [PMID: 37835863 PMCID: PMC10572796 DOI: 10.3390/diagnostics13193118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/22/2023] [Accepted: 09/30/2023] [Indexed: 10/15/2023] Open
Abstract
Optical coherence tomography (OCT) has a high spatial resolution and is useful in identifying coronary lesions with high-risk features (vulnerable plaques). These plaques are strongly associated with acute coronary syndrome (ACS). In this report, we present the case of a 43-year-old male patient presenting with typical chest pain that began three hours prior to admission. The patient exhibited an elevation of the ST segments of the anterior and lateral walls. Invasive stratification revealed a 40% lesion in the middle segment of the left anterior descending (LAD) artery. The patient was given optimized clinical treatment as he had a nonobstructive lesion in the LAD at the time of angiography. During the treatment, the patient continued to complain of angina on exertion. A follow-up coronary angiography, along with OCT analysis of the middle-to-moderate lesion in the LAD, revealed a plaque predominantly rich in lipids with signs of vulnerability. A percutaneous coronary intervention was performed. The patient's recovery was uneventful, and he was discharged the day after the procedure. This case illustrates the evolution of intravascular imaging, particularly OCT, in the detection of vulnerable plaques.
Collapse
Affiliation(s)
- Clarissa Campo Dall’Orto
- Department of Hemodynamic and Interventional Cardiology of the Advanced Hemodynamic Therapy Center, Brazilian Society of Health Support Hospital, Teixeira de Freitas 45987-088, Bahia, Brazil
| | | | | | | | | |
Collapse
|
7
|
Tornifoglio B, Johnston RD, Stone AJ, Kerskens C, Lally C. Microstructural and mechanical insight into atherosclerotic plaques: an ex vivo DTI study to better assess plaque vulnerability. Biomech Model Mechanobiol 2023; 22:1515-1530. [PMID: 36652053 PMCID: PMC10511397 DOI: 10.1007/s10237-022-01671-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 12/08/2022] [Indexed: 01/19/2023]
Abstract
Non-invasive microstructural characterisation has the potential to determine the stability, or lack thereof, of atherosclerotic plaques and ultimately aid in better assessing plaques' risk to rupture. If linked with mechanical characterisation using a clinically relevant imaging technique, mechanically sensitive rupture risk indicators could be possible. This study aims to provide this link-between a clinically relevant imaging technique and mechanical characterisation within human atherosclerotic plaques. Ex vivo diffusion tensor imaging, mechanical testing, and histological analysis were carried out on human carotid atherosclerotic plaques. DTI-derived tractography was found to yield significant mechanical insight into the mechanical properties of more stable and more vulnerable microstructures. Coupled with insights from digital image correlation and histology, specific failure characteristics of different microstructural arrangements furthered this finding. More circumferentially uniform microstructures failed at higher stresses and strains when compared to samples which had multiple microstructures, like those seen in a plaque cap. The novel findings in this study motivate diagnostic measures which use non-invasive characterisation of the underlying microstructure of plaques to determine their vulnerability to rupture.
Collapse
Affiliation(s)
- B Tornifoglio
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin, Ireland
- Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - R D Johnston
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin, Ireland
- Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - A J Stone
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin, Ireland
- Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
- Department of Medical Physics and Clinical Engineering, St. Vincent's University Hospital, Dublin, Ireland
| | - C Kerskens
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin, Ireland
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - C Lally
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin, Ireland.
- Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland.
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
8
|
Rabindran B, Corben AD. Wide-field optical coherence tomography for microstructural analysis of key tissue types: a proof-of-concept evaluation. Pathol Oncol Res 2023; 29:1611167. [PMID: 37521364 PMCID: PMC10374948 DOI: 10.3389/pore.2023.1611167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 07/05/2023] [Indexed: 08/01/2023]
Abstract
Introduction: The presence of positive margins following tumor resection is a frequent cause of re-excision surgery. Nondestructive, real-time intraoperative histopathological imaging methods may improve margin status assessment at the time of surgery; optical coherence tomography (OCT) has been identified as a potential solution but has not been tested with the most common tissue types in surgical oncology using a single, standardized platform. Methods: This was a proof-of-concept evaluation of a novel device that employs wide-field OCT (WF-OCT; OTIS 2.0 System) to image tissue specimens. Various cadaveric tissues were obtained from a single autopsy and were imaged with WF-OCT then processed for permanent histology. The quality and resolution of the WF-OCT images were evaluated and compared to histology and with images in previous literature. Results: A total of 30 specimens were collected and tissue-specific microarchitecture consistent with previous literature were identified on both WF-OCT images and histology slides for all specimens, and corresponding sections were correlated. Application of vacuum pressure during scanning did not affect specimen integrity. On average, specimens were scanned at a speed of 10.3 s/cm2 with approximately three features observed per tissue type. Conclusion: The WF-OCT images captured in this study displayed the key features of the most common human tissue types encountered in surgical oncology with utility comparable to histology, confirming the utility of an FDA-cleared imaging platform. With further study, WF-OCT may have the potential to bridge the gap between the immediate information needs of the operating room and the longer timeline inherent to histology workflow.
Collapse
Affiliation(s)
| | - Adriana D. Corben
- Icahn School of Medicine at Mount Sinai, Mount Sinai Hospital, New York, NY, United States
| |
Collapse
|
9
|
Onea HL, Spinu M, Homorodean C, Olinic M, Lazar FL, Ober MC, Stoian D, Itu LM, Olinic DM. Distinctive Morphological Patterns of Complicated Coronary Plaques in Acute Coronary Syndromes: Insights from an Optical Coherence Tomography Study. Diagnostics (Basel) 2022; 12:diagnostics12112837. [PMID: 36428897 PMCID: PMC9689106 DOI: 10.3390/diagnostics12112837] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/07/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
Optical coherence tomography (OCT) is an ideal imaging technique for assessing culprit coronary plaque anatomy. We investigated the morphological features and mechanisms leading to plaque complication in a single-center observational retrospective study on 70 consecutive patients with an established diagnosis of acute coronary syndrome (ACS) who underwent OCT imaging after coronary angiography. Three prominent morphological entities were identified. Type I or intimal discontinuity, which was found to be the most common mechanism leading to ACS and was seen in 35 patients (50%), was associated with thrombus (68.6%; p = 0.001), mostly affected the proximal plaque segment (60%; p = 0.009), and had no distinctive underlying plaque features. Type II, a significant stenosis with vulnerability features (inflammation in 16 patients, 84.2%; thin-cap fibroatheroma (TCFA) in 10 patients, 52.6%) and a strong association with lipid-rich plaques (94.7%; p = 0.002), was observed in 19 patients (27.1%). Type III, a protrusive calcified nodule, which was found to be the dominant morphological pattern in 16 patients (22.9%), was found in longer plaques (20.8 mm vs. 16.8 mm ID vs. 12.4 mm SS; p = 0.04) and correlated well with TCFA (93.8%; p = 0.02) and inflammation (81.3%). These results emphasize the existence of a wide spectrum of coronary morphological patterns related to ACS.
Collapse
Affiliation(s)
- Horea-Laurentiu Onea
- Medical Clinic Number 1, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Mihail Spinu
- Medical Clinic Number 1, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- Department of Interventional Cardiology, Cluj County Emergency Hospital, 400006 Cluj-Napoca, Romania
- Correspondence: ; Tel.: +40-746259047
| | - Calin Homorodean
- Medical Clinic Number 1, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- Department of Interventional Cardiology, Cluj County Emergency Hospital, 400006 Cluj-Napoca, Romania
| | - Maria Olinic
- Medical Clinic Number 1, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- Department of Interventional Cardiology, Cluj County Emergency Hospital, 400006 Cluj-Napoca, Romania
| | - Florin-Leontin Lazar
- Department of Interventional Cardiology, Cluj County Emergency Hospital, 400006 Cluj-Napoca, Romania
| | - Mihai Claudiu Ober
- Department of Interventional Cardiology, Cluj County Emergency Hospital, 400006 Cluj-Napoca, Romania
| | - Diana Stoian
- Advanta, Siemens SRL, 500097 Brasov, Romania
- Department of Automation and Information Technology, Transilvania University of Brașov, 500174 Brasov, Romania
| | - Lucian Mihai Itu
- Advanta, Siemens SRL, 500097 Brasov, Romania
- Department of Automation and Information Technology, Transilvania University of Brașov, 500174 Brasov, Romania
| | - Dan Mircea Olinic
- Medical Clinic Number 1, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- Department of Interventional Cardiology, Cluj County Emergency Hospital, 400006 Cluj-Napoca, Romania
| |
Collapse
|
10
|
Optical coherence tomography in the diagnosis of myocardial infarction with non-obstructive coronary arteries. Adv Cardiol 2022; 18:192-200. [PMID: 36751279 PMCID: PMC9885232 DOI: 10.5114/aic.2022.121233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 10/23/2022] [Indexed: 11/24/2022]
Abstract
Myocardial infarction with non-obstructive coronary arteries (MINOCA) is a working diagnosis and requires identification of the underlying causes to optimize treatment, improve prognosis, and prevent the recurrence of myocardial infarction. According to the literature, the prognosis of patients diagnosed with MINOCA is comparable to the group of patients with myocardial infarction (MI) and significant stenosis of the coronary arteries. Intracoronary imaging is a crucial diagnostic tool used in identifying epicardial causes of MINOCA that are not visible in coronary angiography. Optical coherence tomography (OCT) provides the highest spatial resolution, simultaneously allowing detailed visualization of plaque pathology in individuals with MINOCA and identifying the cause of MI in up to 80% of patients. Common causes of a MINOCA may include plaque disruption, spontaneous coronary artery dissection (SCAD), coronary artery spasm, and coronary thromboembolism. The optimization of pharmacological treatment in this group of patients, especially dual antiplatelet therapy and statins, improves the prognosis. Data on the indications for invasive treatment of patients with MINOCA based on OCT findings are insufficient. There is a strong need for research comparing treatment strategies, especially in high-risk lesions visualized in OCT. The main aim of this review is to demonstrate the usefulness of OCT in determining the mechanism of MINOCA.
Collapse
|
11
|
Zhang M, Xie Z, Long H, Ren K, Hou L, Wang Y, Xu X, Lei W, Yang Z, Ahmed S, Zhang H, Zhao G. Current advances in the imaging of atherosclerotic vulnerable plaque using nanoparticles. Mater Today Bio 2022; 14:100236. [PMID: 35341094 PMCID: PMC8943324 DOI: 10.1016/j.mtbio.2022.100236] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/13/2022] [Accepted: 03/05/2022] [Indexed: 01/29/2023]
Abstract
Vulnerable atherosclerotic plaques of the artery wall that pose a significant risk of cardio-cerebral vascular accidents remain the global leading cause of morbidity and mortality. Thus, early delineation of vulnerable atherosclerotic plaques is of clinical importance for prevention and treatment. The currently available imaging technologies mainly focus on the structural assessment of the vascular wall. Unfortunately, several disadvantages in these strategies limit the improvement in imaging effect. Nanoparticle technology is a novel diagnostic strategy for targeting and imaging pathological biomarkers. New functionalized nanoparticles that detect hallmarks of vulnerable plaques are promising for advance further control of this critical illness. The review aims to address the current opportunities and challenges for the use of nanoparticle technology in imagining vulnerable plaques.
Collapse
|
12
|
Optical Coherence Tomography-OCT for Characterization of Non-Atherosclerotic Coronary Lesions in Acute Coronary Syndromes. J Clin Med 2022; 11:jcm11010265. [PMID: 35012006 PMCID: PMC8745669 DOI: 10.3390/jcm11010265] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/20/2021] [Accepted: 01/02/2022] [Indexed: 11/17/2022] Open
Abstract
Cardiovascular diseases are the main cause of death worldwide, with coronary artery disease being the predominant underlying etiology. The most prevalent coronary lesions are represented by the atherosclerotic plaques, in more than 85% of cases, but there are several other non-atherosclerotic lesions such as spontaneous coronary artery dissection and/or hematoma and spontaneous recanalization of coronary thrombus, which are less common, approximately 5% of cases, but with similar clinical manifestations as well as complications. There are insufficient data regarding the pathological mechanism, true prevalence and optimal treatment of these kind of coronary lesions. Optical coherence tomography (OCT) is an intracoronary imaging technique, developed in order to overcome the diagnostic limitations of a standard coronary angiography and has an extremely high resolution, similar to that of a usual histological evaluation of a biopsy sample, thus, OCT provides a histological-like information, but in a in vivo environment. The aim of this article is to review the current knowledge regarding non-atherosclerotic coronary lesions, with an emphasis on the importance of OCT for optimal identification, characterization of pathogenic mechanisms and optimal treatment selection.
Collapse
|
13
|
Lau YS, Tan LK, Chan CK, Chee KH, Liew YM. Automated segmentation of metal stent and bioresorbable vascular scaffold in intravascular optical coherence tomography images using deep learning architectures. Phys Med Biol 2021; 66. [PMID: 34911053 DOI: 10.1088/1361-6560/ac4348] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/15/2021] [Indexed: 11/11/2022]
Abstract
Percutaneous coronary intervention (PCI) with stent placement is a treatment effective for coronary artery diseases. Intravascular optical coherence tomography (OCT) with high resolution is used clinically to visualize stent deployment and restenosis, facilitating PCI operation and for complication inspection. Automated stent struts segmentation in OCT images is necessary as each pullback of OCT images could contain thousands of stent struts. In this paper, a deep learning framework is proposed and demonstrated for the automated segmentation of two major clinical stent types: metal stents and bioresorbable vascular scaffolds (BVS). U-Net, the current most prominent deep learning network in biomedical segmentation, was implemented for segmentation with cropped input. The architectures of MobileNetV2 and DenseNet121 were also adapted into U-Net for improvement in speed and accuracy. The results suggested that the proposed automated algorithm's segmentation performance approaches the level of independent human obsevers and is feasible for both types of stents despite their distinct appearance. U-Net with DenseNet121 encoder (U-Dense) performed best with Dice's coefficient of 0.86 for BVS segmentation, and precision/recall of 0.92/0.92 for metal stent segmentation under optimal crop window size of 256.
Collapse
Affiliation(s)
- Yu Shi Lau
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Li Kuo Tan
- Department of Biomedical Imaging, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Chow Khuen Chan
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Kok Han Chee
- Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Yih Miin Liew
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
14
|
Oura K, Yamaguchi Oura M, Itabashi R, Maeda T. Vascular Imaging Techniques to Diagnose and Monitor Patients with Takayasu Arteritis: A Review of the Literature. Diagnostics (Basel) 2021; 11:diagnostics11111993. [PMID: 34829340 PMCID: PMC8620366 DOI: 10.3390/diagnostics11111993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/16/2021] [Accepted: 10/25/2021] [Indexed: 12/18/2022] Open
Abstract
Takayasu arteritis (TA) is a large vessel vasculitis that causes stenosis, occlusion, and sometimes the aneurysm of the aorta and its major branches. TA often occurs in young women, and because the symptoms are not obvious in the early stages of the disease, diagnosis is difficult and often delayed. In approximately 10% to 20% of patients, TA is reportedly complicated by ischemic stroke or transient ischemic attack. It is important to diagnose TA early and provide appropriate treatment to prevent complications from stroke. Diagnostic imaging techniques to visualize arterial stenosis are widely used in clinical practice. Even if no signs of cerebrovascular events are present at the time of the most recent evaluation of patients with TA, follow-up vascular imaging is important to monitor disease progression and changes in the cerebrovascular risk. However, the optimal imaging technique for monitoring of TA has not been established. Therefore, the purpose of this review is to describe newly available evidence on the usefulness of conventional imaging modalities (digital subtraction angiography, computed tomography angiography, magnetic resonance imaging/angiography, duplex ultrasound, and positron emission tomography) and novel imaging modalities (optical coherence tomography, infrared thermography, contrast-enhanced ultrasonography, and superb microvascular imaging) in the diagnosis and monitoring of TA.
Collapse
|
15
|
Circulating Biomarkers Reflecting Destabilization Mechanisms of Coronary Artery Plaques: Are We Looking for the Impossible? Biomolecules 2021; 11:biom11060881. [PMID: 34198543 PMCID: PMC8231770 DOI: 10.3390/biom11060881] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/11/2021] [Accepted: 06/12/2021] [Indexed: 12/12/2022] Open
Abstract
Despite significant strides to mitigate the complications of acute coronary syndrome (ACS), this clinical entity still represents a major global health burden. It has so far been well-established that most of the plaques leading to ACS are not a result of gradual narrowing of the vessel lumen, but rather a result of sudden disruption of vulnerable atherosclerotic plaques. As most of the developed imaging modalities for vulnerable plaque detection are invasive, multiple biomarkers were proposed to identify their presence. Owing to the pivotal role of lipids and inflammation in the pathophysiology of atherosclerosis, most of the biomarkers originated from one of those processes, whereas recent advancements in molecular sciences shed light on the use of microRNAs. Yet, at present there are no clinically implemented biomarkers or any other method for that matter that could non-invasively, yet reliably, diagnose the vulnerable plaque. Hence, in this review we summarized the available knowledge regarding the pathophysiology of plaque instability, the current evidence on potential biomarkers associated with plaque destabilization and finally, we discussed if search for biomarkers could one day bring us to non-invasive, cost-effective, yet valid way of diagnosing the vulnerable, rupture-prone coronary artery plaques.
Collapse
|