1
|
Gökmen İ, Taştekin E, Demir N, Özcan E, Akgül F, Hacıoğlu MB, Erdoğan B, Topaloğlu S, Çiçin İ. Molecular Pattern and Clinical Implications of KRAS/NRAS and BRAF Mutations in Colorectal Cancer. Curr Issues Mol Biol 2023; 45:7803-7812. [PMID: 37886935 PMCID: PMC10605734 DOI: 10.3390/cimb45100491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/13/2023] [Accepted: 09/16/2023] [Indexed: 10/28/2023] Open
Abstract
The aim of our study was to evaluate the incidence of KRAS/NRAS and BRAF mutations, analyze molecular patterns, and investigate associations with clinical parameters of these mutations in CRC KRAS/NRAS and BRAF mutations analyzed by next-generation sequencing. The detection rates of these mutations and patients' demographics were recorded and the relationship between them was evaluated using the chi-square test. KRAS mutation was detected in 332 of 694 patients, while the mutation rates in KRAS exons 2/3 and 4 were 39.6%/3.2% and 5%, respectively. The most common mutation pattern was KRAS G12D. Five atypical variants were detected: V14I in KRAS exon 2, A18D, Q22K and T50I in exon 3, and T148P in exon 4. NRAS mutation was detected in 29 (4.5%) patients. One atypical variant L80W was detected in NRAS exon 3. BRAF mutation was seen in 37 (5.3%) patients, with BRAFV600E (83.8%) being the most common mutation pattern. NRAS mutation was significantly more frequent in patients > 64 years of age, BRAF mutation in women, and NRAS/BRAF mutations in right colon tumors. Grouping BRAF mutations into BRAFV600E and BRAFnon-V600E and their analysis according to specific tumor localizations showed that all four BRAFnon-V600E mutations originated in the rectum. In our study, KRAS exon 2 and other RAS mutation rates were higher than in the literature, while the BRAF v.600E mutation rate was similar. NRAS and BRAF mutations were significantly more frequent in the right colon. BRAF mutation was more common in women and in the right colon.
Collapse
Affiliation(s)
- İvo Gökmen
- Division of Medical Oncology, Department of Internal Medicine, Trakya University School of Medicine, Edirne 22030, Turkey; (E.Ö.); (F.A.); (M.B.H.); (S.T.); (İ.Ç.)
| | - Ebru Taştekin
- Department of Pathology, Trakya University School of Medicine, Edirne 22030, Turkey;
| | - Nazan Demir
- Department of Medical Oncology, Sultan I. Murat Public Hospital, Edirne 22030, Turkey;
| | - Erkan Özcan
- Division of Medical Oncology, Department of Internal Medicine, Trakya University School of Medicine, Edirne 22030, Turkey; (E.Ö.); (F.A.); (M.B.H.); (S.T.); (İ.Ç.)
| | - Fahri Akgül
- Division of Medical Oncology, Department of Internal Medicine, Trakya University School of Medicine, Edirne 22030, Turkey; (E.Ö.); (F.A.); (M.B.H.); (S.T.); (İ.Ç.)
| | - Muhammed Bekir Hacıoğlu
- Division of Medical Oncology, Department of Internal Medicine, Trakya University School of Medicine, Edirne 22030, Turkey; (E.Ö.); (F.A.); (M.B.H.); (S.T.); (İ.Ç.)
| | - Bülent Erdoğan
- Division of Medical Oncology, Department of Internal Medicine, Trakya University School of Medicine, Edirne 22030, Turkey; (E.Ö.); (F.A.); (M.B.H.); (S.T.); (İ.Ç.)
| | - Sernaz Topaloğlu
- Division of Medical Oncology, Department of Internal Medicine, Trakya University School of Medicine, Edirne 22030, Turkey; (E.Ö.); (F.A.); (M.B.H.); (S.T.); (İ.Ç.)
| | - İrfan Çiçin
- Division of Medical Oncology, Department of Internal Medicine, Trakya University School of Medicine, Edirne 22030, Turkey; (E.Ö.); (F.A.); (M.B.H.); (S.T.); (İ.Ç.)
| |
Collapse
|
2
|
He X, Lan H, Jin K, Liu F. Can immunotherapy reinforce chemotherapy efficacy? a new perspective on colorectal cancer treatment. Front Immunol 2023; 14:1237764. [PMID: 37790928 PMCID: PMC10543914 DOI: 10.3389/fimmu.2023.1237764] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/25/2023] [Indexed: 10/05/2023] Open
Abstract
As one of the main threats to human life (the fourth most dangerous and prevalent cancer), colorectal cancer affects many people yearly, decreases patients' quality of life, and causes irreparable financial and social damages. In addition, this type of cancer can metastasize and involve the liver in advanced stages. However, current treatments can't completely eradicate this disease. Chemotherapy and subsequent surgery can be mentioned among the current main treatments for this disease. Chemotherapy has many side effects, and regarding the treatment of this type of tumor, chemotherapy can lead to liver damage, such as steatohepatitis, steatosis, and sinus damage. These damages can eventually lead to liver failure and loss of its functions. Therefore, it seems that other treatments can be used in addition to chemotherapy to increase its efficiency and reduce its side effects. Biological therapies and immunotherapy are one of the leading suggestions for combined treatment. Antibodies (immune checkpoint blockers) and cell therapy (DC and CAR-T cells) are among the immune system-based treatments used to treat tumors. Immunotherapy targets various aspects of the tumor that may lead to 1) the recruitment of immune cells, 2) increasing the immunogenicity of tumor cells, and 3) leading to the elimination of inhibitory mechanisms established by the tumor. Therefore, immunotherapy can be used as a complementary treatment along with chemotherapy. This review will discuss different chemotherapy and immunotherapy methods for colorectal cancer. Then we will talk about the studies that have dealt with combined treatment.
Collapse
Affiliation(s)
- Xing He
- Department of Gastroenterology, Jinhua Wenrong Hospital, Jinhua, Zhejiang, China
| | - Huanrong Lan
- Department of Surgical Oncology, Hangzhou Cancer Hospital, Hangzhou, Zhejiang, China
| | - Ketao Jin
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Fanlong Liu
- Department of Colorectal Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
3
|
Tsai KY, Chang YJ, Huang CY, Prince GMSH, Chen HA, Makondi PT, Shen YR, Wei PL. Novel heavily fucosylated glycans as a promising therapeutic target in colorectal cancer. J Transl Med 2023; 21:505. [PMID: 37496011 PMCID: PMC10373344 DOI: 10.1186/s12967-023-04363-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/16/2023] [Indexed: 07/28/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is highly prevalent and lethal globally, and its prognosis remains unsatisfactory. Drug resistance is regarded as the main cause of treatment failure leading to tumor recurrence and metastasis. The overexpression of fucosylated epitopes, which are usually modifications of glycoproteins, was reported to occur in various epithelial cancers. However, the effects of treatments that target these antigens in colorectal cancer remain unclear. METHODS This study investigated the expression of heavily fucosylated glycans (HFGs) in 30 clinical samples from patients with CRC and other normal human tissues. The complement-dependent cytotoxicity was explored in vitro through treatment with anti-HFG monoclonal antibody (mAb) alone or in combination with chemotherapeutic agents. In vivo inhibitory effects were also examined using a xenograft mouse model. RESULTS Immunohistochemistry staining and western blotting revealed that HFG expression was higher in human colorectal cancer tissues than in normal tissues. In DLD-1 and SW1116 cells, which overexpress fucosylated epitopes, anti-HFG mAb produced observable cytotoxic effects, especially when it was combined with chemotherapeutic agents. The xenograft model also demonstrated that anti-HFG mAb had potent and dose-dependent inhibitory effects on colorectal tumor growth. CONCLUSIONS As a novel cancer antigen, HFGs are a promising treatment target, and the implementation of anti-HFG mAb treatment for CRC warrants further investigation.
Collapse
Affiliation(s)
- Kuei-Yen Tsai
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
- Division of General Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 235041, Taiwan
| | - Yu-Jia Chang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
- Cancer Research Center and Translational Laboratory, Department of Medical Research, Taipei Medical University Hospital, Taipei Medical University, Taipei, 11031, Taiwan
- Department of Pathology, Wan Fang Hospital, Taipei Medical University, Taipei, 11696, Taiwan
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, 116, Taiwan
| | - Chien-Yu Huang
- School of Medicine, National Tsing Hua University, Hsinchu, 30013, Taiwan
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - G M Shazzad Hossain Prince
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Hsin-An Chen
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
- Division of General Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 235041, Taiwan
| | | | - Ying-Rou Shen
- Research Department, GlycoNex Inc., New Taipei City, 22175, Taiwan
| | - Po-Li Wei
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan.
- Cancer Research Center and Translational Laboratory, Department of Medical Research, Taipei Medical University Hospital, Taipei Medical University, Taipei, 11031, Taiwan.
- Division of Colorectal Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei Medical University, 252 Wuxing Street, Sinyi District, Taipei, 11031, Taiwan.
- Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, 11031, Taiwan.
| |
Collapse
|
4
|
Li Y, Lou J, Hong S, Hou D, Lv Y, Guo Z, Wang K, Xu Y, Zhai Y, Liu H. The role of heavy metals in the development of colorectal cancer. BMC Cancer 2023; 23:616. [PMID: 37400750 PMCID: PMC10316626 DOI: 10.1186/s12885-023-11120-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/27/2023] [Indexed: 07/05/2023] Open
Abstract
OBJECTIVE To investigate the relationship among 18 heavy metals, microsatellite instability (MSI) status, ERCC1, XRCC1 (rs25487), BRAF V600E and 5 tumor markers and their role in the development of colorectal cancer (CRC). METHODS A total of 101 CRC patients and 60 healthy controls were recruited in the present study. The levels of 18 heavy metals were measured by ICP-MS. MSI status and the genetic polymorphism were determined by PCR (FP205-02, Tiangen Biochemical Technology Co., Ltd., Beijing, China) and Sanger sequencing. Spearman's rank correlation was used to analyze the relationship among various factors. RESULTS The level of selenium (Se) was lower in the CRC group compared with the control group (p < 0.01), while vanadium (V), arsenic (As), tin (Sn), barium (Ba) and lead (Pb) were higher (p < 0.05), chromium (Cr) and copper (Cu) were significantly higher (p < 0.0001) in the CRC group than those in the control group. Multivariate logistic regression analysis indicated that Cr, Cu, As and Ba were the risk factors for CRC. In addition, CRC was positively correlated with V, Cr, Cu, As, Sn, Ba and Pb, but negatively correlated with Se. MSI was positively correlated with BRAF V600E, but negatively correlated with ERCC1. BRAF V600E was positively correlated with antimony (Sb), thallium (Tl), CA19-9, NSE, AFP and CK19. XRCC1 (rs25487) was found to be positively correlated with Se but negatively correlated with Co. The levels of Sb and Tl were significantly higher in the BRAF V600E positive group compared to the negative group. The mRNA expression level of ERCC1 was significantly higher (P = 0.035) in MSS compared to MSI. And there was a significant correlation between XRCC1 (rs25487) polymorphism and MSI status (P<0.05). CONCLUSION The results showed that low level of Se and high levels of V, As, Sn, Ba, Pb, Cr, and Cu increased the risk of CRC. Sb and Tl may cause BRAF V600E mutations, leading to MSI. XRCC1 (rs25487) was positively correlated with Se but negatively correlated with Co. The expression of ERCC1 may be related to MSS, while the XRCC1 (rs25487) polymorphism is related to MSI.
Collapse
Affiliation(s)
- Yongsheng Li
- Department of Colorectal Surgery, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, 046000, China
| | - Jingwei Lou
- Shanghai Biotecan Pharmaceuticals Co., Ltd, Shanghai, 201204, China
| | - Shaozhong Hong
- Department of Colorectal Surgery, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, 046000, China
| | - Dengfeng Hou
- Department of Colorectal Surgery, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, 046000, China
| | - Yandong Lv
- Department of Colorectal Surgery, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, 046000, China
| | - Zhiqiang Guo
- Department of Colorectal Surgery, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, 046000, China
| | - Kai Wang
- Department of Colorectal Surgery, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, 046000, China
| | - Yue Xu
- Shanghai Biotecan Pharmaceuticals Co., Ltd, Shanghai, 201204, China
| | - Yufeng Zhai
- Shanghai Biotecan Pharmaceuticals Co., Ltd, Shanghai, 201204, China.
| | - Hongzhou Liu
- Department of Colorectal Surgery, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, 046000, China.
| |
Collapse
|
5
|
Park CL, Rajadurai CV, Ton Nu TN, Mandilaras V. An Unconventional Regimen of Carboplatin and Paclitaxel in Metastatic Colorectal Carcinosarcoma: A Case Report and Review of Literature. Curr Oncol 2023; 30:4897-4903. [PMID: 37232827 DOI: 10.3390/curroncol30050369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 04/27/2023] [Accepted: 05/03/2023] [Indexed: 05/27/2023] Open
Abstract
Colorectal carcinosarcoma is an exceedingly rare subtype of colorectal cancer that displays the histological and molecular features of both mesenchymal and epithelial tumors. Due to its rarity, there are no guidelines regarding the systemic treatment of this disease. This report describes a case of a 76-year-old woman with colorectal carcinosarcoma with extensive metastatic burden treated with carboplatin and paclitaxel. After four cycles of chemotherapy, the patient had an excellent clinical and radiographical response to treatment. To the best of our knowledge, this is the first report addressing the use of carboplatin and paclitaxel in this disease. We reviewed seven published case reports of metastatic colorectal carcinosarcoma where various systemic treatments were offered. Remarkably, there are no previously published reports where even a partial response was noted, which underscores the aggressiveness of this disease. While further studies are required to validate our experience and assess long-term outcomes, this case suggests an alternative treatment regimen for metastatic colorectal carcinosarcoma.
Collapse
Affiliation(s)
- Changsu Lawrence Park
- Department of Medical Oncology, McGill University Health Center, McGill University, Montreal, QC H4A 3J1, Canada
| | - Charles Vincent Rajadurai
- Department of Medical Oncology, McGill University Health Center, McGill University, Montreal, QC H4A 3J1, Canada
| | - Tuyet Nhung Ton Nu
- Department of Pathology, McGill University Health Center, McGill University, Montreal, QC H4A 3J1, Canada
| | - Victoria Mandilaras
- Department of Medical Oncology, McGill University Health Center, McGill University, Montreal, QC H4A 3J1, Canada
| |
Collapse
|
6
|
Bikhchandani M, Amersi F, Hendifar A, Gangi A, Osipov A, Zaghiyan K, Atkins K, Cho M, Aguirre F, Hazelett D, Alvarez R, Zhou L, Hitchins M, Gong J. POLE-Mutant Colon Cancer Treated with PD-1 Blockade Showing Clearance of Circulating Tumor DNA and Prolonged Disease-Free Interval. Genes (Basel) 2023; 14:1054. [PMID: 37239414 PMCID: PMC10218075 DOI: 10.3390/genes14051054] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/28/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
Colon cancer with high microsatellite instability is characterized by a high tumor mutational burden and responds well to immunotherapy. Mutations in polymerase ɛ, a DNA polymerase involved in DNA replication and repair, are also associated with an ultra-mutated phenotype. We describe a case where a patient with POLE-mutated and hypermutated recurrent colon cancer was treated with pembrolizumab. Treatment with immunotherapy in this patient also led to the clearance of circulating tumor DNA (ctDNA). ctDNA is beginning to emerge as a marker for minimal residual disease in many solid malignancies, including colon cancer. Its clearance with treatment suggests that the selection of pembrolizumab on the basis of identifying a POLE mutation on next-generation sequencing may increase disease-free survival in this patient.
Collapse
Affiliation(s)
- Mihir Bikhchandani
- Department of Hematology and Oncology, Kaiser Permanente Los Angeles Medical Center, Los Angeles, CA 90027, USA
| | - Farin Amersi
- Department of Surgery, Division of Surgical Oncology, Samuel Oschin Comprehensive Cancer Institute, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Andrew Hendifar
- Department of Medicine, Division of Hematology and Oncology, Samuel Oschin Comprehensive Cancer Institute, Cedars Sinai Medical Center, 8700 Beverly Blvd, AC 1042B, Los Angeles, CA 90048, USA
| | - Alexandra Gangi
- Department of Surgery, Division of Surgical Oncology, Samuel Oschin Comprehensive Cancer Institute, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Arsen Osipov
- Department of Medicine, Division of Hematology and Oncology, Samuel Oschin Comprehensive Cancer Institute, Cedars Sinai Medical Center, 8700 Beverly Blvd, AC 1042B, Los Angeles, CA 90048, USA
| | - Karen Zaghiyan
- Department of Surgery, Division of Surgical Oncology, Samuel Oschin Comprehensive Cancer Institute, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Katelyn Atkins
- Department of Radiation Oncology, Samuel Oschin Comprehensive Cancer Institute, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | - May Cho
- Department of Medicine, Division of Hematology and Oncology, University of California Irvine, Irvine, CA 92868, USA
| | - Francesca Aguirre
- Department of Biomedical Sciences, Cedars-Sinai, Los Angeles, CA 90048, USA
| | - Dennis Hazelett
- Department of Biomedical Sciences, Cedars-Sinai, Los Angeles, CA 90048, USA
| | - Rocio Alvarez
- Department of Biomedical Sciences, Cedars-Sinai, Los Angeles, CA 90048, USA
| | - Lisa Zhou
- Department of Biomedical Sciences, Cedars-Sinai, Los Angeles, CA 90048, USA
| | - Megan Hitchins
- Department of Biomedical Sciences, Cedars-Sinai, Los Angeles, CA 90048, USA
| | - Jun Gong
- Department of Medicine, Division of Hematology and Oncology, Samuel Oschin Comprehensive Cancer Institute, Cedars Sinai Medical Center, 8700 Beverly Blvd, AC 1042B, Los Angeles, CA 90048, USA
| |
Collapse
|
7
|
Mesti T, Rebersek M, Ocvirk J. The five-year KRAS, NRAS and BRAF analysis results and treatment patterns in daily clinical practice in Slovenia in 1 st line treatment of metastatic colorectal (mCRC) patients with RAS wild-type tumour (wt RAS) - a real- life data report 2013-2018. Radiol Oncol 2023; 57:103-110. [PMID: 36942906 PMCID: PMC10039470 DOI: 10.2478/raon-2023-0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 09/30/2022] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND We preformed a Phase IV non-interventional study to assess KRAS, NRAS and BRAF status in metastatic colorectal cancer (mCRC) patients suitable for 1st line treatment and to evaluate the decisions for 1st line treatment considering the treatment goals in the RAS wild type (wt) patients. The aim of our study was also to evaluate the influence of a waiting period for biomarkers analysis on the start of first-line treatment. PATIENTS AND METHODS Patients with histologically confirmed mCRC adenocarcinoma suitable for first-line treatment fulfilling all inclusion criteria were included in the study. The KRAS, NRAS and BRAF analysis was performed from tissue samples of primary tumor site or metastatic site. All included patients have given consent to participate in the study by signing the informed consent form. RESULTS From April 2013 to March 2018 at the Institute of Oncology Ljubljana 650 patients were included, 637 of them were treated with first- line systemic treatment according to RAS and BRAF status. Remaining 13 patients with mCRC did not receive systemic first-line treatment. The distribution of patients with KRAS mutated and wild-type tumors, was almost equal, 48.8% and 47.9% respectively, 89 % of the patients had wt NRAS tumours and 86.1% had wt BRAF tumours. The most frequently prescribed treatment was bevacizumab-based therapy (53.1%), either in combination with doublet chemotherapy or with mono-chemotherapy. EGFR inhibitors cetuximab and panitumumab were prescribed in wt RAS mCRC patients (30.9%). The waiting period for biomarkers analysis was two weeks. CONCLUSIONS Our real-world data, single centre 5-year analysis showed that the distribution between wild type and mutated type tumors of the patients with mCRC was approximately the same, as worldwide, so the Slovenian population with mCRC has the same ratio distribution of KRAS, NRAS and BRAF wild and mutated genes. We concluded that a two-week waiting period for biomarkers analysis did not influence the first line treatment decision, so it was in the accordance with the worldwide treatment guidelines based on evidence-based medicine.
Collapse
Affiliation(s)
- Tanja Mesti
- Department of Medical Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Martina Rebersek
- Department of Medical Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Janja Ocvirk
- Department of Medical Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
8
|
Ray SK, Mukherjee S. Starring Role of Biomarkers and Anticancer Agents as a Major Driver in Precision Medicine of Cancer Therapy. Curr Mol Med 2023; 23:111-126. [PMID: 34939542 DOI: 10.2174/1566524022666211221152947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 10/18/2021] [Accepted: 10/26/2021] [Indexed: 12/16/2022]
Abstract
Precision medicine is the most modern contemporary medicine approach today, based on great amount of data on people's health, individual characteristics, and life circumstances, and employs the most effective ways to prevent and cure diseases. Precision medicine in cancer is the most precise and viable treatment for every cancer patient based on the disease's genetic profile. Precision medicine changes the standard one size fits all medication model, which focuses on average responses to care. Consolidating modern methodologies for streamlining and checking anticancer drugs can have long-term effects on understanding the results. Precision medicine can help explicit anticancer treatments using various drugs and even in discovery, thus becoming the paradigm of future cancer medicine. Cancer biomarkers are significant in precision medicine, and findings of different biomarkers make this field more promising and challenging. Naturally, genetic instability and the collection of extra changes in malignant growth cells are ways cancer cells adapt and survive in a hostile environment, for example, one made by these treatment modalities. Precision medicine centers on recognizing the best treatment for individual patients, dependent on their malignant growth and genetic characterization. This new era of genomics progressively referred to as precision medicine, has ignited a new episode in the relationship between genomics and anticancer drug development.
Collapse
Affiliation(s)
| | - Sukhes Mukherjee
- Department of Biochemistry. All India Institute of Medical Sciences. Bhopal, Madhya Pradesh-462020. India
| |
Collapse
|
9
|
Benelli R, Costa D, Salvini L, Tardito S, Tosetti F, Villa F, Zocchi MR, Poggi A. Targeting of colorectal cancer organoids with zoledronic acid conjugated to the anti-EGFR antibody cetuximab. J Immunother Cancer 2022; 10:jitc-2022-005660. [PMID: 36543375 PMCID: PMC9772689 DOI: 10.1136/jitc-2022-005660] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Antibody-drug conjugates (ADC) are essential therapeutic options to treat solid and hematological cancers. The anti-epidermal growth factor-receptor (EGFR) antibody cetuximab (Cet) is used for the therapy of colorectal carcinoma (CRC). Anti-CRC Vδ2 cytolytic T lymphocytes can be elicited by the priming of tumor cells with the aminobisphosphonate zoledronic acid (ZA) and consequent presentation of isopentenyl pyrophosphates through butyrophilin (BTN) family members such as BTN3A1 and BTN2A1. A major drawback that impairs the targeting of ZA to CRC is the bone tropism of aminobisphosphonates. METHODS The phosphoric group of ZA was linked to free amino groups of Cet in the presence of imidazole following the labeling of phosphoric groups of DNA to amino groups of proteins. The generation of Cet-ZA ADC was confirmed by matrix assisted laser desorption ionization mass spectrometry and inductively coupled plasma-mass spectrometry analysis. Thirteen CRC organoids were obtained with a chemically defined serum-free medium in Geltrex domes. Proliferation and activation of cytolytic activity against CRC organoids by Vδ2 T cells was detected with flow cytometry, crystal violet and cytotoxic probe assays and image analysis. Immunohistochemistry and quantification of BTN3A1 or BTN2A1 expression and the number of tumor infiltrating Vδ2 T cells in CRC were performed by automatic immunostaining, whole slide scanning and computerized analysis of digital pathology imaging. RESULTS The novel ADC Cet-ZA was generated with a drug antibody ratio of 4.3 and displayed a reactivity similar to the unconjugated antibody. More importantly, patient-derived CRC organoids, or CRC tumor cell suspensions, could trigger the expansion of Vδ2 T cells from peripheral blood and tumor infiltrating lymphocytes when primed with Cet-ZA. Furthermore, Cet-ZA triggered Vδ2 T cell-mediated killing of CRC organoids. The expression of BTN3A1 and BTN2A1 was detected not only in CRC organoids but also in CRC specimens, together with a considerable amount of tumor infiltrating Vδ2 T cells. CONCLUSIONS These findings are proof of concept that the Cet-ZA ADC can be used to target specifically CRC organoids and may suggest a new experimental approach to deliver aminobisphosphonates to EGFR+ solid tumors.
Collapse
Affiliation(s)
- Roberto Benelli
- Molecular Oncology and Angiogenesis Unit, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Delfina Costa
- Molecular Oncology and Angiogenesis Unit, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Laura Salvini
- Technologies Facilities, Fondazione Toscana Life Sciences, Siena, Italy
| | - Samuele Tardito
- Molecular Oncology and Angiogenesis Unit, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Francesca Tosetti
- Molecular Oncology and Angiogenesis Unit, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Federico Villa
- Molecular Oncology and Angiogenesis Unit, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Maria Raffaella Zocchi
- Division of Immunology, Transplants and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessandro Poggi
- Molecular Oncology and Angiogenesis Unit, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| |
Collapse
|
10
|
miR-106b as an emerging therapeutic target in cancer. Genes Dis 2022; 9:889-899. [PMID: 35685464 PMCID: PMC9170583 DOI: 10.1016/j.gendis.2021.02.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/24/2021] [Accepted: 02/03/2021] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) comprise short non-coding RNAs that function in regulating the expression of tumor suppressors or oncogenes and modulate oncogenic signaling pathways in cancer. miRNAs expression alters significantly in several tumor tissues and cancer cell lines. For example, miR-106b functions as an oncogene and increases in multiple cancers. The miR-106b directly targets genes involved in tumorigenesis, proliferation, invasion, migration, and metastases. This review has focused on the miR-106b function and its downstream target in different cancers and provide perspective into how miR-106 regulates cancer cell proliferation, migration, invasion, and metastases by regulating the tumor suppressor genes. Since miRNAs-based therapies are currently being developed to enhance cancer therapy outcomes, miR-106b could be an attractive and prospective candidate in different cancer types for detection, diagnosis, and prognosis assessment in the tumor.
Collapse
|
11
|
de Assis JV, Coutinho LA, Oyeyemi IT, Oyeyemi OT, Grenfell RFEQ. Diagnostic and therapeutic biomarkers in colorectal cancer: a review. Am J Cancer Res 2022; 12:661-680. [PMID: 35261794 PMCID: PMC8900002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/22/2022] [Indexed: 06/14/2023] Open
Abstract
Colorectal cancer (CRC) is a public health concern and the second most common type of cancer among men and women causing a significant mortality. Biomarkers closely linked to the disease morbidity could holds potential as diagnostic and/or prognostic biomarker for the disease. This review provides an overview of recent advances in the search for colorectal cancer biomarkers through genomics and proteomics according to clinical function and application. Specifically, a number of biomarkers were identified and discussed. Emphasis was placed on their clinical applications relative to the diagnosis and prognosis of CRC. The discovery of more sensitive and specific markers for CRC is an urgent need, and the study of molecular targets is extremely important in this process, as they will allow for a better understanding of colorectal carcinogenesis, identification and validation of potential genetic signatures.
Collapse
Affiliation(s)
- Jéssica Vieira de Assis
- Diagnosis and Therapy of Infectious Diseases and Cancer, René Rachou Institute, Oswaldo Cruz Foundation (Fiocruz)Belo Horizonte, Minas Gerais, Brazil
| | - Lucélia Antunes Coutinho
- Diagnosis and Therapy of Infectious Diseases and Cancer, René Rachou Institute, Oswaldo Cruz Foundation (Fiocruz)Belo Horizonte, Minas Gerais, Brazil
| | | | - Oyetunde Timothy Oyeyemi
- Diagnosis and Therapy of Infectious Diseases and Cancer, René Rachou Institute, Oswaldo Cruz Foundation (Fiocruz)Belo Horizonte, Minas Gerais, Brazil
- Department of Biological Sciences, University of Medical SciencesOndo, Ondo State, Nigeria
| | - Rafaella Fortini e Queiroz Grenfell
- Diagnosis and Therapy of Infectious Diseases and Cancer, René Rachou Institute, Oswaldo Cruz Foundation (Fiocruz)Belo Horizonte, Minas Gerais, Brazil
- Department of Infectious Diseases, College of Veterinary Medicine, University of GeorgiaAthens, Georgia, United States of America
| |
Collapse
|
12
|
Thomas DM, Hackett JM, Plestina S. Unlocking Access to Broad Molecular Profiling: Benefits, Barriers, and Policy Solutions. Public Health Genomics 2021; 25:1-10. [PMID: 34959236 DOI: 10.1159/000520000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 09/28/2021] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES "Personalized healthcare" is generating new approaches to disease management by considering inter-individual variability in genes, environment, and lifestyle. Technologies such as comprehensive genomic profiling (CGP) are drivers of this shift. Here, we address the significant hurdles to the equitable implementation of CGP into routine clinical practice. METHODS This article draws on published evidence on the value of genomic profiling, as well as interviews with nine academic and clinical experts from six different countries to validate findings and test policy proposals for reforms. RESULTS The potential benefits of CGP extend beyond direct patient outcomes, to healthcare systems with societal and economic impacts. Among key barriers impeding integration into routine clinical practice are the lack of infrastructure to ensure reliable clinical testing and the limited understanding of genomics among healthcare personnel. In addition, the absence of health economic evidence supporting broader use of CGP is creating concerns for payers regarding the systemic benefits and affordability of this technology. CONCLUSION Policy proposals that aim to improve equitable patient access to CGP will need to consider new funding models, health technology assessment processes that capture both patient and systemic benefits, and appropriate regulatory standards to determine the quality of genomic profiling tests.
Collapse
Affiliation(s)
- David M Thomas
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | | | - Stjepko Plestina
- Department of Oncology, University Hospital Centre Zagreb|KBCZ, Zagreb, Croatia
| |
Collapse
|
13
|
Pashirzad M, Khorasanian R, Fard MM, Arjmand MH, Langari H, Khazaei M, Soleimanpour S, Rezayi M, Ferns GA, Hassanian SM, Avan A. The Therapeutic Potential of MAPK/ERK Inhibitors in the Treatment of Colorectal Cancer. Curr Cancer Drug Targets 2021; 21:932-943. [PMID: 34732116 DOI: 10.2174/1568009621666211103113339] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/16/2021] [Accepted: 08/24/2021] [Indexed: 11/22/2022]
Abstract
The MAPK/ERK signaling pathway regulates cancer cell proliferation, apoptosis, inflammation, angiogenesis, metastasis and drug resistance. Mutations and up-regulation of components of the MAPK/ERK signaling pathway, as well as over-activation of this critical signaling pathway, are frequently observed in colorectal carcinomas. Targeting the MAPK/ERK signaling pathway, using specific pharmacological inhibitors, elicits potent anti-tumor effects, supporting the therapeutic potential of these inhibitors in the treatment of CRC. Several drugs have recently been developed for the inhibition of the MEK/ERK pathway in preclinical and clinical settings, such as MEK162 and MK-2206. MEK1/2 inhibitors demonstrate promising efficacy and anticancer activity for the treatment of this malignancy. This review summarizes the current knowledge on the role of the MAPK/ERK signaling pathway in the pathogenesis of CRC and the potential clinical value of synthetic inhibitors of this pathway in preventing CRC progression for a better understanding, and hence, better management of colorectal cancer.
Collapse
Affiliation(s)
- Mehran Pashirzad
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad. Iran
| | - Reihaneh Khorasanian
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad. Iran
| | - Maryam Mahmoudi Fard
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad. Iran
| | - Mohammad-Hassan Arjmand
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord. Iran
| | - Hadis Langari
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord. Iran
| | - Majid Khazaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad. Iran
| | - Saman Soleimanpour
- Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad. Iran
| | - Majid Rezayi
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord. Iran
| | - Gordon A Ferns
- Division of Pulmonary and Critical Care Medicine, Washington University, School of Medicine, Saint Louis, MO. United States
| | - Seyed Mahdi Hassanian
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad. Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad. Iran
| |
Collapse
|
14
|
Arhin ND, Shen C, Bailey CE, Matsuoka LK, Hawkins AT, Holowatyj AN, Ciombor KK, Hopkins MB, Geiger TM, Kam AE, Roth MT, Lebeck Lee CM, Lapelusa M, Dasari A, Eng C. Surgical resection and survival outcomes in metastatic young adult colorectal cancer patients. Cancer Med 2021; 10:4269-4281. [PMID: 34132476 PMCID: PMC8267130 DOI: 10.1002/cam4.3940] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 12/17/2022] Open
Abstract
Background The incidence of colorectal cancer in adults younger than age 50 has increased with rates expected to continue to increase over the next decade. The objective of this study is to examine the survival benefit of surgical resection (primary and/or metastatic) versus palliative therapy in this patient population. Methods We identified 6708 young adults aged 18–45 years diagnosed with metastatic colorectal cancer (mCRC) from 2004 to 2015 from the SEER database. Overall survival (OS) was analyzed using Kaplan–Meier estimation, log rank test, and multivariate Cox proportional hazards model. Results Sixty‐three percent of patients in our study underwent primary tumor resection (PTR), with 40% undergoing PTR alone and 23% undergoing both resection of primary disease and metastasectomy. The median OS for patients who underwent both PTR and metastasectomy was 36 months, compared to 13 months for those who did not receive any surgical intervention. The multivariate analysis showed significant OS benefit of receiving both PTR and metastasectomy (HR 0.34, 95% CI: 0.31–0.37, p < 0.001) compared to palliative therapy. Undergoing PTR only and metastasectomy only were also associated with improved OS (HR 0.46, 95% CI: 0.43–0.49, p < 0.001 and HR 0.64, 95% CI: 0.55–0.76, p < 0.001, respectively). Conclusion This is the largest observational study to evaluate survival outcomes in young‐onset mCRC patients and the role of surgical intervention of the primary and/or metastatic site. Our study provides evidence of statistically significant increase in OS for young mCRC patients who undergo surgical intervention of the primary and/or metastatic site.
Collapse
Affiliation(s)
- Nina D Arhin
- Division of Hematology and Oncology, Department of Internal Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Chan Shen
- Department of Surgery, Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA, USA
| | - Christina E Bailey
- Division of Surgical Oncology and Endocrine Surgery, Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lea K Matsuoka
- Division of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alexander T Hawkins
- Section of Colon & Rectal Surgery, Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Andreana N Holowatyj
- Department of Medicine, Vanderbilt University Medical Center/Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
| | - Kristen K Ciombor
- Division of Hematology and Oncology, Department of Internal Medicine, Vanderbilt University Medical Center/Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
| | - Michael B Hopkins
- Division of General Surgery, Colon and Rectal Surgery, Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Timothy M Geiger
- Division of General Surgery, Colon and Rectal Surgery, Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Audrey E Kam
- Division of Hematology, Oncology and Cell Therapy, Department of Internal Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Marc T Roth
- Division of Hematology and Oncology, Department of Internal Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Michael Lapelusa
- Department of Internal Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Arvind Dasari
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Cathy Eng
- Division of Hematology and Oncology, Department of Internal Medicine, Vanderbilt University Medical Center/Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
| |
Collapse
|
15
|
Gudiño V, Pohl SÖG, Billard CV, Cammareri P, Bolado A, Aitken S, Stevenson D, Hall AE, Agostino M, Cassidy J, Nixon C, von Kriegsheim A, Freile P, Popplewell L, Dickson G, Murphy L, Wheeler A, Dunlop M, Din F, Strathdee D, Sansom OJ, Myant KB. RAC1B modulates intestinal tumourigenesis via modulation of WNT and EGFR signalling pathways. Nat Commun 2021; 12:2335. [PMID: 33879799 PMCID: PMC8058071 DOI: 10.1038/s41467-021-22531-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 03/16/2021] [Indexed: 02/07/2023] Open
Abstract
Current therapeutic options for treating colorectal cancer have little clinical efficacy and acquired resistance during treatment is common, even following patient stratification. Understanding the mechanisms that promote therapy resistance may lead to the development of novel therapeutic options that complement existing treatments and improve patient outcome. Here, we identify RAC1B as an important mediator of colorectal tumourigenesis and a potential target for enhancing the efficacy of EGFR inhibitor treatment. We find that high RAC1B expression in human colorectal cancer is associated with aggressive disease and poor prognosis and deletion of Rac1b in a mouse colorectal cancer model reduces tumourigenesis. We demonstrate that RAC1B interacts with, and is required for efficient activation of the EGFR signalling pathway. Moreover, RAC1B inhibition sensitises cetuximab resistant human tumour organoids to the effects of EGFR inhibition, outlining a potential therapeutic target for improving the clinical efficacy of EGFR inhibitors in colorectal cancer.
Collapse
Affiliation(s)
- Victoria Gudiño
- Cancer Research UK Edinburgh Centre, MRC Institute of Genetics & Molecular Medicine, The University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, UK
- Inflammatory Bowel Disease Unit, Department of Gastroenterology, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) - CIBEREHD, Barcelona, Spain
| | - Sebastian Öther-Gee Pohl
- Cancer Research UK Edinburgh Centre, MRC Institute of Genetics & Molecular Medicine, The University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, UK
| | - Caroline V Billard
- Cancer Research UK Edinburgh Centre, MRC Institute of Genetics & Molecular Medicine, The University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, UK
| | - Patrizia Cammareri
- Cancer Research UK Edinburgh Centre, MRC Institute of Genetics & Molecular Medicine, The University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, UK
| | - Alfonso Bolado
- Cancer Research UK Edinburgh Centre, MRC Institute of Genetics & Molecular Medicine, The University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, UK
| | - Stuart Aitken
- MRC Human Genetics Unit, MRC Institute of Genetics & Molecular Medicine, The University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, UK
- Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, UK
| | - David Stevenson
- Cancer Research UK Beatson Institute, Garscube Estate, Bearsden, Glasgow, G61 1BD, UK
| | - Adam E Hall
- Cancer Research UK Edinburgh Centre, MRC Institute of Genetics & Molecular Medicine, The University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, UK
| | - Mark Agostino
- School of Pharmacy and Biomedical Sciences, Curtin Health and Innovation Research Institute, Curtin University, Perth, WA, 6845, Australia
- Curtin Institute for Computation, Curtin University, Perth, WA, 6845, Australia
| | - John Cassidy
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, CB2 0RE, UK
| | - Colin Nixon
- Cancer Research UK Beatson Institute, Garscube Estate, Bearsden, Glasgow, G61 1BD, UK
| | - Alex von Kriegsheim
- Cancer Research UK Edinburgh Centre, MRC Institute of Genetics & Molecular Medicine, The University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, UK
| | - Paz Freile
- Cancer Research UK Edinburgh Centre, MRC Institute of Genetics & Molecular Medicine, The University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, UK
- MRC Human Genetics Unit, MRC Institute of Genetics & Molecular Medicine, The University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, UK
- Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, UK
| | - Linda Popplewell
- School of Biological Sciences, Royal Holloway - University of London, Egham, Surrey, TW20 0EX, UK
| | - George Dickson
- School of Biological Sciences, Royal Holloway - University of London, Egham, Surrey, TW20 0EX, UK
| | - Laura Murphy
- Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, UK
| | - Ann Wheeler
- Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, UK
| | - Malcolm Dunlop
- Cancer Research UK Edinburgh Centre, MRC Institute of Genetics & Molecular Medicine, The University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, UK
- MRC Human Genetics Unit, MRC Institute of Genetics & Molecular Medicine, The University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, UK
- Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, UK
| | - Farhat Din
- Cancer Research UK Edinburgh Centre, MRC Institute of Genetics & Molecular Medicine, The University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, UK
- MRC Human Genetics Unit, MRC Institute of Genetics & Molecular Medicine, The University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, UK
- Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, UK
| | - Douglas Strathdee
- Cancer Research UK Beatson Institute, Garscube Estate, Bearsden, Glasgow, G61 1BD, UK
| | - Owen J Sansom
- Cancer Research UK Beatson Institute, Garscube Estate, Bearsden, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Bearsden, Glasgow, G61 1QH, UK
| | - Kevin B Myant
- Cancer Research UK Edinburgh Centre, MRC Institute of Genetics & Molecular Medicine, The University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, UK.
| |
Collapse
|
16
|
Chen J, Lou H. Complete Response to Pembrolizumab in Advanced Colon Cancer Harboring Somatic POLE F367S Mutation with Microsatellite Stability Status: A Case Study. Onco Targets Ther 2021; 14:1791-1796. [PMID: 33727829 PMCID: PMC7955730 DOI: 10.2147/ott.s300987] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 02/24/2021] [Indexed: 12/30/2022] Open
Abstract
Background Polymerase epsilon (POLE) mutations are considered as one of the most potential and promising biomarkers for immune checkpoint inhibitors (ICIs) in patients with colorectal cancer. However, the treatment of ICIs sometimes also resulted in unsatisfactory results in patients with POLE mutations, which revealed that not all mutations on POLE contribute to tumor regression in colorectal cancer. Case Presentation We herein reported a case in which the patient with advanced colon cancer harboring somatic POLE F367S mutation, along with microsatellite stability status, has achieved efficacy of complete response to the programmed cell death 1 (PD-1) receptor inhibitor pembrolizumab, as well as a progression-free survival more than 49 months, and still in extension. Conclusion Somatic POLE F367S mutation might be presented as a sensitive predictor to pembrolizumab in patients with colon cancer.
Collapse
Affiliation(s)
- Jianxin Chen
- Department of Medical Oncology, Quzhou People's Hospital, Quzhou, 324000, Zhejiang, People's Republic of China
| | - Haizhou Lou
- Department of Oncology, Sir Run Run Shaw Hospital Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang, People's Republic of China
| |
Collapse
|
17
|
Ali O, Tolaymat M, Hu S, Xie G, Raufman JP. Overcoming Obstacles to Targeting Muscarinic Receptor Signaling in Colorectal Cancer. Int J Mol Sci 2021; 22:ijms22020716. [PMID: 33450835 PMCID: PMC7828259 DOI: 10.3390/ijms22020716] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/08/2021] [Accepted: 01/10/2021] [Indexed: 01/05/2023] Open
Abstract
Despite great advances in our understanding of the pathobiology of colorectal cancer and the genetic and environmental factors that mitigate its onset and progression, a paucity of effective treatments persists. The five-year survival for advanced, stage IV disease remains substantially less than 20%. This review examines a relatively untapped reservoir of potential therapies to target muscarinic receptor expression, activation, and signaling in colorectal cancer. Most colorectal cancers overexpress M3 muscarinic receptors (M3R), and both in vitro and in vivo studies have shown that activating these receptors stimulates cellular programs that result in colon cancer growth, survival, and spread. In vivo studies using mouse models of intestinal neoplasia have shown that using either genetic or pharmacological approaches to block M3R expression and activation, respectively, attenuates the development and progression of colon cancer. Moreover, both in vitro and in vivo studies have shown that blocking the activity of matrix metalloproteinases (MMPs) that are induced selectively by M3R activation, i.e., MMP1 and MMP7, also impedes colon cancer growth and progression. Nonetheless, the widespread expression of muscarinic receptors and MMPs and their importance for many cellular functions raises important concerns about off-target effects and the safety of employing similar strategies in humans. As we highlight in this review, highly selective approaches can overcome these obstacles and permit clinicians to exploit the reliance of colon cancer cells on muscarinic receptors and their downstream signal transduction pathways for therapeutic purposes.
Collapse
Affiliation(s)
- Osman Ali
- Department of Medicine, Division of Gastroenterology & Hepatology, University of Maryland School of Medicine, Baltimore, MA 21201, USA; (O.A.); (M.T.); (S.H.); (G.X.)
| | - Mazen Tolaymat
- Department of Medicine, Division of Gastroenterology & Hepatology, University of Maryland School of Medicine, Baltimore, MA 21201, USA; (O.A.); (M.T.); (S.H.); (G.X.)
| | - Shien Hu
- Department of Medicine, Division of Gastroenterology & Hepatology, University of Maryland School of Medicine, Baltimore, MA 21201, USA; (O.A.); (M.T.); (S.H.); (G.X.)
- Veterans Affairs Maryland Healthcare System, Baltimore, MA 21201, USA
| | - Guofeng Xie
- Department of Medicine, Division of Gastroenterology & Hepatology, University of Maryland School of Medicine, Baltimore, MA 21201, USA; (O.A.); (M.T.); (S.H.); (G.X.)
- Veterans Affairs Maryland Healthcare System, Baltimore, MA 21201, USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MA 21201, USA
| | - Jean-Pierre Raufman
- Department of Medicine, Division of Gastroenterology & Hepatology, University of Maryland School of Medicine, Baltimore, MA 21201, USA; (O.A.); (M.T.); (S.H.); (G.X.)
- Veterans Affairs Maryland Healthcare System, Baltimore, MA 21201, USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MA 21201, USA
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MA 21201, USA
- Correspondence: ; Tel.: +1-410-328-8728
| |
Collapse
|
18
|
Daveri E, Adamo AM, Alfine E, Zhu W, Oteiza PI. Hexameric procyanidins inhibit colorectal cancer cell growth through both redox and non-redox regulation of the epidermal growth factor signaling pathway. Redox Biol 2021; 38:101830. [PMID: 33338921 PMCID: PMC7750420 DOI: 10.1016/j.redox.2020.101830] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 01/08/2023] Open
Abstract
Dietary proanthocyanidins (PAC) consumption is associated with a decreased risk for colorectal cancer (CRC). Dysregulation of the epidermal growth factor (EGF) receptor (EGFR) signaling pathway is frequent in human cancers, including CRC. We previously showed that hexameric PAC (Hex) exert anti-proliferative and pro-apoptotic actions in human CRC cells. This work investigated if Hex could exert anti-CRC effects through its capacity to regulate the EGFR pathway. In proliferating Caco-2 cells, Hex acted attenuating EGF-induced EGFR dimerization and NADPH oxidase-dependent phosphorylation at Tyr 1068, decreasing EGFR location at lipid rafts, and inhibiting the downstream activation of pro-proliferative and anti-apoptotic pathways, i.e. Raf/MEK/ERK1/2 and PI3K/Akt. Hex also promoted EGFR internalization both in the absence and presence of EGF. While Hex decreased EGFR phosphorylation at Tyr 1068, it increased EGFR Tyr 1045 phosphorylation. The latter provides a docking site for the ubiquitin ligase c-Cbl and promotes EGFR degradation by lysosomes. Importantly, Hex acted synergistically with the EGFR-targeted chemotherapeutic drug Erlotinib, both in their capacity to decrease EGFR phosphorylation and inhibit cell growth. Thus, dietary PAC could exert anti-CRC actions by modulating, through both redox- and non-redox-regulated mechanisms, the EGFR pro-oncogenic signaling pathway. Additionally, Hex could also potentiate the actions of EGFR-targeted drugs.
Collapse
Affiliation(s)
- Elena Daveri
- Departments of Nutrition University of California, Davis, 95616, Davis, CA, USA; Departments of Environmental Toxicology, University of California, Davis, 95616, Davis, CA, USA; Unit of Immunotherapy of Human Tumors, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133, Milan, Italy
| | - Ana M Adamo
- Department of Biological Chemistry and IQUIFIB (UBA-CONICET), Facultad de Farmacia y Bioquímica, 1113, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Eugenia Alfine
- Departments of Nutrition University of California, Davis, 95616, Davis, CA, USA; Departments of Environmental Toxicology, University of California, Davis, 95616, Davis, CA, USA
| | - Wei Zhu
- Departments of Nutrition University of California, Davis, 95616, Davis, CA, USA; Departments of Environmental Toxicology, University of California, Davis, 95616, Davis, CA, USA
| | - Patricia I Oteiza
- Departments of Nutrition University of California, Davis, 95616, Davis, CA, USA; Departments of Environmental Toxicology, University of California, Davis, 95616, Davis, CA, USA.
| |
Collapse
|
19
|
Role of NEU3 Overexpression in the Prediction of Efficacy of EGFR-Targeted Therapies in Colon Cancer Cell Lines. Int J Mol Sci 2020; 21:ijms21228805. [PMID: 33233823 PMCID: PMC7699864 DOI: 10.3390/ijms21228805] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 12/12/2022] Open
Abstract
The epidermal growth factor receptor (EGFR), through the MAP kinase and PI3K-Akt-mTOR axis, plays a pivotal role in colorectal cancer (CRC) pathogenesis. The membrane-associated NEU3 sialidase interacts with and desialylates EGFR by promoting its dimerization and downstream effectors’ activation. Among the targeted therapies against EGFR, the monoclonal antibody cetuximab is active only in a subgroup of patients not carrying mutations in the MAP kinase pathway. In order to better understand the EGFR-NEU3 interplay and the mechanisms of pharmacological resistance, we investigated the role of NEU3 deregulation in cetuximab-treated CRC cell lines transiently transfected with NEU3 using Western blot analysis. Our results indicate that NEU3 overexpression can enhance EGFR activation only if EGFR is overexpressed, indicating the existence of a threshold for NEU3-mediated EGFR activation. This enhancement mainly leads to the constitutive activation of the MAP kinase pathway. Consequently, we suggest that the evaluation of NEU3 expression cannot entirely substitute the evaluation of EGFR because EGFR-negative cases cannot be stimulated by NEU3. Furthermore, NEU3-mediated hyperactivation of EGFR is counterbalanced by the administration of cetuximab, hypothesizing that a combined treatment of NEU3- and EGFR-targeted therapies may represent a valid option for CRC patients, which must be investigated in the future.
Collapse
|
20
|
Nazemalhosseini-Mojarad E, Kishani Farahani R, Mehrizi M, Baghaei K, Yaghoob Taleghani M, Golmohammadi M, Peyravian N, Ashtari S, Pourhoseingholi MA, Asadzadeh Aghdaei H, Zali MR. Prognostic Value of BRAF and KRAS Mutation in Relation to Colorectal Cancer Survival in Iranian Patients: Correlated to Microsatellite Instability. J Gastrointest Cancer 2020; 51:53-62. [PMID: 30635874 DOI: 10.1007/s12029-019-00201-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE To evaluate the prognostic role of BRAF and KRAS mutations after adjustment for microsatellite instability (MSI) in Iranian colorectal cancer (CRC) patients. METHODS BRAF and KRAS mutations and MSI status were assessed in 258 Iranian subjects with CRC. Two hundred fifty-eight consecutive stages I-IV CRC patients, who underwent surgical resection of adenocarcinoma from 2012 to 2016, were enrolled in the research. Pyrosequencing and Cast-PCR methods were used to the detection of KRAS and BRAF mutations. Kaplan-Meier and Cox regression were employed to estimate hazard ratios (HR) for the association between BRAF and KRAS mutation and overall survival (OS). RESULTS KRAS and BRAF mutations were detected in 36 (14%) and 15 (5.8%) cases of 258 patients with CRC, respectively. BRAF mutations that all comprised V600E and KRAS mutations was found in codon 12 and 13 (80.6% and 19.4%), respectively. KRAS mutations were detected in 19 (15.4%) patients of 123 microsatellite stable (MSS) CRC and it is significantly associated with tumor location and metastasis. BRAF and KRAS mutant vs. wild type of BRAF and KRAS, 5-year OS was 73.3% vs. 82.3% and 83.3% vs. 81.5% (long-rank P > 0.05), respectively. KRAS mutant vs. KRAS-wild-type tumors in MSS/MSI-L status CRC patients, 5-year OS was 78.9% vs. 90.4% (long-rank p = 0.046). CONCLUSION The present study revealed that BRAF and KRAS mutations were not related to the worse overall survival, while KRAS mutation can be a prognostic factor for overall survival in sporadic microsatellite-stable (MSS) status in Iranian CRC patients.
Collapse
Affiliation(s)
- Ehsan Nazemalhosseini-Mojarad
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Roya Kishani Farahani
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Mehrizi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kaveh Baghaei
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Erabi Ave, P.O. Box 1985717413, Tehran, Velenjak, Iran
| | - Mohammad Yaghoob Taleghani
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mina Golmohammadi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Noshad Peyravian
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Ashtari
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Erabi Ave, P.O. Box 1985717413, Tehran, Velenjak, Iran.
| | - Mohmad Amin Pourhoseingholi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Erabi Ave, P.O. Box 1985717413, Tehran, Velenjak, Iran
| | - Hamid Asadzadeh Aghdaei
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Erabi Ave, P.O. Box 1985717413, Tehran, Velenjak, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Erabi Ave, P.O. Box 1985717413, Tehran, Velenjak, Iran
| |
Collapse
|
21
|
Peltonen R, Ahopelto K, Hagström J, Böckelman C, Haglund C, Isoniemi H. High TKTL1 expression as a sign of poor prognosis in colorectal cancer with synchronous rather than metachronous liver metastases. Cancer Biol Ther 2020; 21:826-831. [PMID: 32795237 PMCID: PMC7515493 DOI: 10.1080/15384047.2020.1803008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer in the world. More than half of all affected patients develop liver metastases during the course of the disease, and over half experience recurrence despite radical primary surgery. Transketolase-like protein 1 (TKTL1) is a key enzyme in the glucose metabolism of cancer cells, and its expression in tumor tissue was previously shown to indicate a poor prognosis in colorectal cancer. In this study, we investigated the prognostic significance of TKTL1 in 111 patients with surgically resected colorectal liver metastases, with a minimum follow-up time of 10.3 years. TKTL1 expression was examined in tissue samples of both primary tumors and liver metastases, and compared to clinicopathological parameters, disease-free survival, and overall survival. We show that a high expression of TKTL1 in primary tumor tissue associated with poor disease-free survival in patients with synchronous liver metastases (P = .026, Kaplan-Meier log-rank test), but with better disease-free survival in patients with metachronous metastases, although not statistically significantly (P = .073). We found similar tendencies for TKTL1 expression in liver metastases. Thus, TKTL1 could serve as a candidate marker to identify patients who benefit from liver resection or who need more aggressive perioperative chemotherapy.
Collapse
Affiliation(s)
- Reetta Peltonen
- Transplantation and Liver Surgery, Abdominal Center, University of Helsinki and Helsinki University Hospital , Helsinki, Finland
| | - Kaisa Ahopelto
- Transplantation and Liver Surgery, Abdominal Center, University of Helsinki and Helsinki University Hospital , Helsinki, Finland.,Research Programs Unit, Translational Cancer Medicine, University of Helsinki , Helsinki, Finland
| | - Jaana Hagström
- Research Programs Unit, Translational Cancer Medicine, University of Helsinki , Helsinki, Finland.,Department of Pathology and Oral Pathology, University of Helsinki and Helsinki University Hospital , Helsinki, Finland
| | - Camilla Böckelman
- Research Programs Unit, Translational Cancer Medicine, University of Helsinki , Helsinki, Finland.,Department of Gastrointestinal Surgery, University of Helsinki and Helsinki University Hospital , Helsinki, Finland
| | - Caj Haglund
- Research Programs Unit, Translational Cancer Medicine, University of Helsinki , Helsinki, Finland.,Department of Gastrointestinal Surgery, University of Helsinki and Helsinki University Hospital , Helsinki, Finland
| | - Helena Isoniemi
- Transplantation and Liver Surgery, Abdominal Center, University of Helsinki and Helsinki University Hospital , Helsinki, Finland.,Research Programs Unit, Translational Cancer Medicine, University of Helsinki , Helsinki, Finland
| |
Collapse
|
22
|
Karimi M, Wang C, Bahadini B, Hajjar G, Fakih M. Integrating Academic and Community Practices in the Management of Colorectal Cancer: The City of Hope Model. J Clin Med 2020; 9:jcm9061687. [PMID: 32498251 PMCID: PMC7357113 DOI: 10.3390/jcm9061687] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/16/2020] [Accepted: 05/26/2020] [Indexed: 12/13/2022] Open
Abstract
Colorectal cancer (CRC) management continues to evolve. In metastatic CRC, several clinical and molecular biomarkers are now recommended to guide treatment decisions. Primary tumor location (right versus left) has been shown to predict benefit from anti-epidermal growth factor receptors (EGFRs) in rat sarcoma viral oncogene homologue (RAS) and v-raf murine sarcoma viral oncogene homolog B1 (BRAF) wild-type patients. Anti-EGFR therapy has not resulted in any benefit in RAS-mutated tumors, irrespective of the primary tumor location. BRAF-V600E mutations have been associated with poor prognosis and treatment resistance but may benefit from a combination of anti-EGFR therapy and BRAF inhibitors. Human epidermal growth factor receptor 2 (HER-2) amplification was recently shown to predict relative resistance to anti-EGFR therapy but a response to dual HER-2 targeting within the RAS wild-type population. Finally, the mismatch repair (MMR)-deficient subgroup benefits significantly from immunotherapeutic strategies. In addition to the increasingly complex biomarker landscape in CRC, metastatic CRC remains one of the few malignancies that benefits from metastasectomies, ablative therapies, and regional hepatic treatments. This treatment complexity requires a multi-disciplinary approach to treatment and close collaborations between various stakeholders in large cancer center networks. Here, we describe the City of Hope experience and strategy to enhance colorectal cancer care across its network.
Collapse
Affiliation(s)
- Misagh Karimi
- Department of Medical Oncology and Therapeutic Research, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA; (M.K.); (C.W.)
| | - Chongkai Wang
- Department of Medical Oncology and Therapeutic Research, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA; (M.K.); (C.W.)
| | - Bahareh Bahadini
- Department of Medical Oncology and Hematology, City of Hope National Medical Center, Mission Hills, CA 91345, USA; (B.B.); (G.H.)
| | - George Hajjar
- Department of Medical Oncology and Hematology, City of Hope National Medical Center, Mission Hills, CA 91345, USA; (B.B.); (G.H.)
| | - Marwan Fakih
- Department of Medical Oncology and Therapeutic Research, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA; (M.K.); (C.W.)
- Correspondence:
| |
Collapse
|
23
|
C. Huynh J, Schwab E, Ji J, Kim E, Joseph A, Hendifar A, Cho M, Gong J. Recent Advances in Targeted Therapies for Advanced Gastrointestinal Malignancies. Cancers (Basel) 2020; 12:E1168. [PMID: 32384640 PMCID: PMC7281439 DOI: 10.3390/cancers12051168] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/20/2020] [Accepted: 04/30/2020] [Indexed: 12/19/2022] Open
Abstract
The treatment of advanced gastrointestinal (GI) cancers has become increasingly molecularly driven. Molecular profiling for HER2 and PD-L1 status is standard for metastatic gastroesophageal (GEJ) cancers to predict benefits from trastuzumab (HER2-targeted therapy) and pembrolizumab (anti-PD-1 therapy), while extended RAS and BRAF testing is standard in metastatic colorectal cancer to predict benefits from epidermal growth factor receptor (EGFR)-targeted therapies. Mismatch repair (MMR) or microsatellite instability (MSI) testing is standard for all advanced GI cancers to predict benefits from pembrolizumab and in metastatic colorectal cancer, nivolumab with or without ipilimumab. Here we review recent seminal trials that have further advanced targeted therapies in these cancers including Poly (adenosine diphosphate-ribose) polymerases (PARP) inhibition in pancreas cancer, BRAF inhibition in colon cancer, and isocitrate dehydrogenase (IDH) and fibroblast growth factor receptor (FGFR) inhibition in biliary tract cancer. Targeted therapies in GI malignancies constitute an integral component of the treatment paradigm in these advanced cancers and have widely established the need for standard molecular profiling to identify candidates.
Collapse
Affiliation(s)
- Jasmine C. Huynh
- Hematology Oncology, University of California, Davis, Sacramento, CA 95817, USA; (E.K.); (A.J.); (M.C.)
| | - Erin Schwab
- Hematology Oncology, University of California, Davis, Sacramento, CA 95817, USA; (E.K.); (A.J.); (M.C.)
| | - Jingran Ji
- Internal Medicine, University of California, Davis, Sacramento, CA 95817, USA;
| | - Edward Kim
- Hematology Oncology, University of California, Davis, Sacramento, CA 95817, USA; (E.K.); (A.J.); (M.C.)
| | - Anjali Joseph
- Hematology Oncology, University of California, Davis, Sacramento, CA 95817, USA; (E.K.); (A.J.); (M.C.)
| | - Andrew Hendifar
- Hematology Oncology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (A.H.); (J.G.)
| | - May Cho
- Hematology Oncology, University of California, Davis, Sacramento, CA 95817, USA; (E.K.); (A.J.); (M.C.)
| | - Jun Gong
- Hematology Oncology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (A.H.); (J.G.)
| |
Collapse
|
24
|
Hernández-Sandoval JA, Gutiérrez-Angulo M, Magaña-Torres MT, Alvizo-Rodríguez CR, Ramírez-Plascencia HHF, Flores-López BA, Valenzuela-Pérez JA, Peregrina-Sandoval J, Moreno-Ortiz JM, Domínguez-Valentín M, Ayala-Madrigal MDLL. Prevalence of the BRAF p.v600e variant in patients with colorectal cancer from Mexico and its estimated frequency in Latin American and Caribbean populations. J Investig Med 2020; 68:985-991. [PMID: 32184228 PMCID: PMC7306871 DOI: 10.1136/jim-2020-001301] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2020] [Indexed: 01/08/2023]
Abstract
This study aimed to investigate the frequency of the somatic BRAF p.V600E in patients with colorectal cancer (CRC) in Mexico and compare it with those estimated for Latin American and Caribbean populations. One hundred and one patients with CRC with AJCC stages ranging I–IV from Western Mexico were included, out of which 55% were male and 61% had AJCC stage III–IV, with a mean age of 60 years. PCR-Sanger sequencing was used to identify the BRAF p.V600E variant. In addition, a systematic literature search in PubMed/Medline database and Google of the 42 countries in Latin America and the Caribbean led to the collection of information on the BRAF p.V600E variant frequency of 17 population reports. To compare the BRAF variant prevalence among populations, a statistical analysis was performed using GraphPad Prism V.6.0. We found that 4% of patients with CRC were heterozygous for the p.V600E variant. The χ2 test showed no significant difference (p>0.05) in p.V600E detection when comparing with other Latin American and Caribbean CRC populations, except for Chilean patients (p=0.02). Our observational study provides the first evidence on the frequency of BRAF p.V600E in patients with CRC from Western Mexico, which is 4%, but increases to 7.8% for all of Latin America and the Caribbean. The patient mean age and genetic descent on the observed frequencies of the variant in populations could influence the frequency differences.
Collapse
Affiliation(s)
- Jesús Arturo Hernández-Sandoval
- Instituto de Genética Humana "Dr. Enrique Corona Rivera" y Doctorado en Genética Humana, Departamento de Biología Molecular y Genómica, CUCS, Universidad de Guadalajara, Guadalajara, Jalisco, México
| | - Melva Gutiérrez-Angulo
- Instituto de Genética Humana "Dr. Enrique Corona Rivera" y Doctorado en Genética Humana, Departamento de Biología Molecular y Genómica, CUCS, Universidad de Guadalajara, Guadalajara, Jalisco, México.,Departamento de Clínicas, CUALTOS, Universidad de Guadalajara, Tepatitlán de Morelos, Jalisco, México
| | - María Teresa Magaña-Torres
- División de Genética, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco, México
| | - Carlos Rogelio Alvizo-Rodríguez
- Instituto de Genética Humana "Dr. Enrique Corona Rivera" y Doctorado en Genética Humana, Departamento de Biología Molecular y Genómica, CUCS, Universidad de Guadalajara, Guadalajara, Jalisco, México
| | - Helen Haydee Fernanda Ramírez-Plascencia
- Instituto de Genética Humana "Dr. Enrique Corona Rivera" y Doctorado en Genética Humana, Departamento de Biología Molecular y Genómica, CUCS, Universidad de Guadalajara, Guadalajara, Jalisco, México
| | - Beatriz Armida Flores-López
- Instituto de Genética Humana "Dr. Enrique Corona Rivera" y Doctorado en Genética Humana, Departamento de Biología Molecular y Genómica, CUCS, Universidad de Guadalajara, Guadalajara, Jalisco, México
| | | | - Jorge Peregrina-Sandoval
- Laboratorio de Inmunología, CUCBA, Universidad de Guadalajara, Zapopan, Jalisco, México.,Laboratorio de Patología Clínica, Hospital Civil "Fray Antonio Alcalde", Guadalajara, Jalisco, México
| | - José Miguel Moreno-Ortiz
- Instituto de Genética Humana "Dr. Enrique Corona Rivera" y Doctorado en Genética Humana, Departamento de Biología Molecular y Genómica, CUCS, Universidad de Guadalajara, Guadalajara, Jalisco, México
| | - Mev Domínguez-Valentín
- Department of Tumor Biology, Institute for Cancer Research, University of Oslo, Oslo, Norway.,Instituto de Investigación, Universidad Católica Los Angeles de Chimbote, Chimbote, Áncash, Perú
| | - María de la Luz Ayala-Madrigal
- Instituto de Genética Humana "Dr. Enrique Corona Rivera" y Doctorado en Genética Humana, Departamento de Biología Molecular y Genómica, CUCS, Universidad de Guadalajara, Guadalajara, Jalisco, México
| |
Collapse
|
25
|
Aranda E, Polo E, Camps C, Carrato A, Díaz-Rubio E, Guillem V, López R, Antón A. Treatment patterns for metastatic colorectal cancer in Spain. Clin Transl Oncol 2020; 22:1455-1462. [PMID: 31974819 PMCID: PMC7381444 DOI: 10.1007/s12094-019-02279-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 12/19/2019] [Indexed: 11/27/2022]
Abstract
Purpose The primary aim of this retrospective study was to describe the treatment patterns according to the type of treatment received by patients with metastatic colorectal cancer (mCRC) in Spain. Methods This was a retrospective, observational, multicenter study performed by 33 sites throughout Spain that included consecutive patients aged 18 years or older who had received or were receiving treatment for mCRC. Results At the time of inclusion, of the 873 evaluable patients, 507 (58%) had received two lines, 235 (27%) had received three lines, 106 (12%) had received four lines, and the remaining patients had received up to ten lines. The most frequent chemotherapy schemes were the FOLFOX or CAPOX regimens (66%) for first-line treatment, FOLFOX, CAPOX or FOLFIRI (70%) for second-line treatment, and FOLFOX, FOLFIRI or other fluoropyrimidine-based regimens for third- and fourth-line (over 60%) treatment. Sixty percent of patients received targeted therapy as part of their first-line treatment, and this proportion increased up to approximately 70% of patients as part of the second-line of treatment. A relevant proportion of patients were treated with unknown KRAS, and especially the BRAF, mutation statuses. Conclusions This study reveals inconsistencies regarding adherence to the recommendations of the ESMO guidelines for the management of mCRC in Spain. Improved adherence to the standard practice described in such guidelines for the determination of RAS and BRAF mutation statuses and the use of targeted therapies in first-line treatment should be considered to guarantee that patients can benefit from the best therapeutic approaches available.
Collapse
Affiliation(s)
- E Aranda
- Oncology Department, Maimonides Institute of Biomedical Research (IMIBIC), Reina Sofía Hospital, University of Córdoba, Córdoba, Spain. .,CIBERONC, Instituto de Salud Carlos III, Madrid, Spain. .,Oncology Dapartment, Hospital Universitario Reina Sofía, Av. Menendez Pidal, s/n, 14004, Córdoba, Spain.
| | - E Polo
- Medical Oncology Department, Miguel Servet University Hospital, IIS Aragón, Zaragoza, Spain
| | - C Camps
- Molecular Oncology Laboratory, Fundación Investigación Hospital General Universitario de Valencia, Valencia, Spain.,CIBERONC, Valencia, Spain.,Department of Medical Oncology, Consorcio Hospital General Universitario de Valencia, Valencia, Spain.,Department of Medicine, Universitat de Valencia, Valencia, Spain
| | - A Carrato
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain.,Medical Oncology, Ramón y Cajal Universtity Hospital, IRYCIS, Alcalá University, Madrid, Spain
| | - E Díaz-Rubio
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain.,Medical Oncology, Hospital Clínico San Carlos, Madrid, Spain
| | - V Guillem
- Medical Oncology Department, Fundación Instituto Valenciano de Oncología, Valencia, Spain
| | - R López
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain.,Servicio de Oncología Médica y Grupo de Oncología Médica Traslacional (Oncomet), Hospital Clínico Universitario e Instituto de Investigación Sanitaria (IDIS) de Santiago, Santiago de Compostela, Spain
| | - A Antón
- Medical Oncology Department, Miguel Servet University Hospital, IIS Aragón, Zaragoza, Spain
| |
Collapse
|
26
|
Abstract
Benign cysts and neoplasms of the maxillofacial region can vary in behavior, with some growing rapidly and resulting in destruction of surrounding structures. Despite their benign histology, many require often-morbid treatment to prevent recurrence of these lesions. Several less invasive and adjunctive medical treatments have been developed to lessen the morbidity of surgical treatment. As the molecular and genomic pathogenesis of these lesions is better understood, more directed treatments may lessen the burden for patients.
Collapse
Affiliation(s)
- Zachary S Peacock
- Department of Oral and Maxillofacial Surgery, Massachusetts General Hospital, Harvard School of Dental Medicine, 55 Fruit Street Warren 1201, Boston, MA 02421, USA.
| |
Collapse
|
27
|
Chang YS, Lee CC, Ke TW, Chang CM, Chao DS, Huang HY, Chang JG. Molecular characterization of colorectal cancer using whole-exome sequencing in a Taiwanese population. Cancer Med 2019; 8:3738-3747. [PMID: 31127692 PMCID: PMC6639182 DOI: 10.1002/cam4.2282] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 03/14/2019] [Accepted: 05/14/2019] [Indexed: 12/21/2022] Open
Abstract
Next‐generation sequencing (NGS) technology is currently used to establish mutational profiles in many heterogeneous diseases. The aim of this study was to evaluate the mutational spectrum in Taiwanese patients with colorectal cancer (CRC) to help clinicians identify the best treatment method. Whole‐exome sequencing was conducted in 32 surgical tumor tissues from patients with CRC. DNA libraries were generated using the Illumina TruSeq DNA Exome, and sequencing was performed on the Illumina NextSeq 500 system. Variants were annotated and compared to those obtained from publicly available databases. The analysis revealed frequent mutations in APC (59.38%), TP53 (50%), RAS (28.13%), FBXW7 (18.75%), RAF (9.38%), PIK3CA (9.38%), SMAD4 (9.38%), and SOX9 (9.38%). A mutation in TCF7L2 was also detected, but at lower frequencies. Two or more mutations were found in 22 (68.75%) samples. The mutation rates for the WNT, P53, RTK‐RAS, TGF‐β, and PI3K pathways were 78.13%, 56.25%, 40.63%, 18.75%, and 15.63%, respectively. RTK‐RAS pathway mutations were correlated with tumor size (P = 0.028). We also discovered 23 novel mutations in NRAS, PIK3CA, SOX9, APC, SMAD4, MSH3, MSH4, PMS1 PMS2, AXIN2, ERBB2, PIK3R1, TGFBR2, and ATM that were not reported in the COSMIC, The Cancer Genome Atlas, and dbSNP databases. In summary, we report the mutational landscape of CRC in a Taiwanese population. NGS is a cost‐effective and time‐saving method, and we believe that NGS will help clinicians to treat CRC patients in the near future.
Collapse
Affiliation(s)
- Ya-Sian Chang
- Epigenome Research Center, China Medical University Hospital, Taichung, Taiwan.,Department of Laboratory Medicine, China Medical University Hospital, Taichung, Taiwan.,Center for Precision Medicine, China Medical University Hospital, Taichung, Taiwan.,Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan
| | - Chien-Chin Lee
- Epigenome Research Center, China Medical University Hospital, Taichung, Taiwan
| | - Tao-Wei Ke
- Department of Colorectal Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Chieh-Min Chang
- Department of Laboratory Medicine, China Medical University Hospital, Taichung, Taiwan.,Center for Precision Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Dy-San Chao
- Department of Laboratory Medicine, China Medical University Hospital, Taichung, Taiwan.,Center for Precision Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Hsi-Yuan Huang
- Department of Laboratory Medicine, China Medical University Hospital, Taichung, Taiwan.,Center for Precision Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Jan-Gowth Chang
- Epigenome Research Center, China Medical University Hospital, Taichung, Taiwan.,Department of Laboratory Medicine, China Medical University Hospital, Taichung, Taiwan.,Center for Precision Medicine, China Medical University Hospital, Taichung, Taiwan.,School of Medicine, China Medical University, Taichung, Taiwan.,Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan
| |
Collapse
|
28
|
Bangi E, Ang C, Smibert P, Uzilov AV, Teague AG, Antipin Y, Chen R, Hecht C, Gruszczynski N, Yon WJ, Malyshev D, Laspina D, Selkridge I, Rainey H, Moe AS, Lau CY, Taik P, Wilck E, Bhardwaj A, Sung M, Kim S, Yum K, Sebra R, Donovan M, Misiukiewicz K, Schadt EE, Posner MR, Cagan RL. A personalized platform identifies trametinib plus zoledronate for a patient with KRAS-mutant metastatic colorectal cancer. SCIENCE ADVANCES 2019; 5:eaav6528. [PMID: 31131321 PMCID: PMC6531007 DOI: 10.1126/sciadv.aav6528] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 04/12/2019] [Indexed: 05/03/2023]
Abstract
Colorectal cancer remains a leading source of cancer mortality worldwide. Initial response is often followed by emergent resistance that is poorly responsive to targeted therapies, reflecting currently undruggable cancer drivers such as KRAS and overall genomic complexity. Here, we report a novel approach to developing a personalized therapy for a patient with treatment-resistant metastatic KRAS-mutant colorectal cancer. An extensive genomic analysis of the tumor's genomic landscape identified nine key drivers. A transgenic model that altered orthologs of these nine genes in the Drosophila hindgut was developed; a robotics-based screen using this platform identified trametinib plus zoledronate as a candidate treatment combination. Treating the patient led to a significant response: Target and nontarget lesions displayed a strong partial response and remained stable for 11 months. By addressing a disease's genomic complexity, this personalized approach may provide an alternative treatment option for recalcitrant disease such as KRAS-mutant colorectal cancer.
Collapse
Affiliation(s)
- Erdem Bangi
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Celina Ang
- Division of Hematology and Medical Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Peter Smibert
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Andrew V. Uzilov
- Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- SEMA4, a Mount Sinai Venture, 333 Ludlow Street, South Tower, 3rd floor, Stamford, CT 06902, USA
| | - Alexander G. Teague
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yevgeniy Antipin
- Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- SEMA4, a Mount Sinai Venture, 333 Ludlow Street, South Tower, 3rd floor, Stamford, CT 06902, USA
| | - Rong Chen
- Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- SEMA4, a Mount Sinai Venture, 333 Ludlow Street, South Tower, 3rd floor, Stamford, CT 06902, USA
| | - Chana Hecht
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nelson Gruszczynski
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Wesley J. Yon
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Denis Malyshev
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Denise Laspina
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Isaiah Selkridge
- Division of Hematology and Medical Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Hope Rainey
- Division of Hematology and Medical Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Aye S. Moe
- Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- SEMA4, a Mount Sinai Venture, 333 Ludlow Street, South Tower, 3rd floor, Stamford, CT 06902, USA
| | - Chun Yee Lau
- Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- SEMA4, a Mount Sinai Venture, 333 Ludlow Street, South Tower, 3rd floor, Stamford, CT 06902, USA
| | - Patricia Taik
- Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- SEMA4, a Mount Sinai Venture, 333 Ludlow Street, South Tower, 3rd floor, Stamford, CT 06902, USA
| | - Eric Wilck
- Department of Radiology, The Mount Sinai Hospital, New York, NY 10029, USA
| | - Aarti Bhardwaj
- Division of Hematology and Medical Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Max Sung
- Division of Hematology and Medical Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sara Kim
- Department of Pharmacy, The Mount Sinai Hospital, New York, NY 10029, USA
| | - Kendra Yum
- Department of Pharmacy, The Mount Sinai Hospital, New York, NY 10029, USA
| | - Robert Sebra
- Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- SEMA4, a Mount Sinai Venture, 333 Ludlow Street, South Tower, 3rd floor, Stamford, CT 06902, USA
| | - Michael Donovan
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Krzysztof Misiukiewicz
- Division of Hematology and Medical Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Eric E. Schadt
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- SEMA4, a Mount Sinai Venture, 333 Ludlow Street, South Tower, 3rd floor, Stamford, CT 06902, USA
| | - Marshall R. Posner
- Division of Hematology and Medical Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ross L. Cagan
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Corresponding author.
| |
Collapse
|
29
|
Schirripa M, Biason P, Lonardi S, Pella N, Pino MS, Urbano F, Antoniotti C, Cremolini C, Corallo S, Pietrantonio F, Gelsomino F, Cascinu S, Orlandi A, Munari G, Malapelle U, Saggio S, Fontanini G, Rugge M, Mescoli C, Lazzi S, Reggiani Bonetti L, Lanza G, Dei Tos AP, De Maglio G, Martini M, Bergamo F, Zagonel V, Loupakis F, Fassan M. Class 1, 2, and 3 BRAF-Mutated Metastatic Colorectal Cancer: A Detailed Clinical, Pathologic, and Molecular Characterization. Clin Cancer Res 2019; 25:3954-3961. [PMID: 30967421 DOI: 10.1158/1078-0432.ccr-19-0311] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 02/26/2019] [Accepted: 04/03/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE BRAF mutations are grouped in activating RAS-independent signaling as monomers (class 1-V600E) or as dimers (class 2-codons 597/601), and RAS-dependent with impaired kinase activity (class 3-codons 594/596). Although clinical, pathologic, and molecular features of V600EBRAF-mutated metastatic colorectal cancer (mCRC) are well known, limited data are available from the two other classes. EXPERIMENTAL DESIGN Data from 117 patients with BRAF (92 class 1, 12 class 2, and 13 class 3)-mutated mCRC were collected. A total of 540 BRAF wt mCRCs were included as control. IHC profiling was performed to determine the consensus molecular subtypes (CMS), cytokeratin 7/20 profiles, tumor-infiltrating lymphocyte infiltration, and BM1/BM2 categorization. Overall survival (OS) and progression-free survival were evaluated by Kaplan-Meier and log-rank test. RESULTS Class 3 BRAF-mutated mCRC was more frequently left sided (P = 0.0028), pN0 (P = 0.0159), and without peritoneal metastases (P = 0.0176) compared with class 1, whereas class 2 cases were similar to class 1. Hazard ratio for OS, as compared with BRAF wt, was 2.38 [95% confidence interval (CI), 1.61-3.54] for class 1, 1.90 (95% CI, 0.85-4.26) for class 2, and 0.93 (95% CI, 0.51-1.69) for class 3 (P < 0.0001). Class 2 and 3 tumors were all assigned to CMS2-3. A higher median CD3/CD8-positive lymphocyte infiltration was observed in BRAF-mutated class 2 (P = 0.033) compared with class 3 cases. CONCLUSIONS For the first time, different clinical and pathologic features and outcome data were reported according to the three BRAF mutation classes in mCRC. Specific targeted treatment strategies should be identified in the near future for such patients.
Collapse
Affiliation(s)
- Marta Schirripa
- Department of Oncology, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Paola Biason
- Department of Oncology, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Sara Lonardi
- Department of Oncology, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Nicoletta Pella
- Department of Oncology, University and General Hospital, Udine, Italy
| | - Maria Simona Pino
- Medical Oncology Unit, Department of Oncology, Azienda USL Toscana Centro, S. Maria Annunziata Hospital, Florence, Italy
| | - Federica Urbano
- Department of Radiological Sciences, Oncology and Pathology, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Carlotta Antoniotti
- Unit of Medical Oncology, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Chiara Cremolini
- Unit of Medical Oncology, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Salvatore Corallo
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Filippo Pietrantonio
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.,Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy
| | - Fabio Gelsomino
- Department of Oncology and Haematology, University Hospital of Modena, Modena, Italy
| | - Stefano Cascinu
- Department of Oncology and Haematology, University Hospital of Modena, Modena, Italy
| | - Armando Orlandi
- U.O.C Oncologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Giada Munari
- Department of Oncology, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy.,Surgical Pathology and Cytopathology Unit, Department of Medicine (DIMED), University of Padua, Padua, Italy
| | - Umberto Malapelle
- Department of Public Health, University Federico II of Naples, Naples, Italy
| | - Serena Saggio
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Gabriella Fontanini
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Massimo Rugge
- Surgical Pathology and Cytopathology Unit, Department of Medicine (DIMED), University of Padua, Padua, Italy
| | - Claudia Mescoli
- Surgical Pathology and Cytopathology Unit, Department of Medicine (DIMED), University of Padua, Padua, Italy
| | - Stefano Lazzi
- Department of Medical Biotechnology, Section of Pathology, University of Siena, Siena, Italy
| | - Luca Reggiani Bonetti
- Department of Diagnostic Medicine and Public Health, Section of Pathology, Università di Modena e Reggio Emilia, Policlinico di Modena, Modena, Italy
| | - Giovanni Lanza
- Department of Pathology, University of Ferrara, Ferrara, Italy
| | - Angelo Paolo Dei Tos
- Department of Pathology and Molecular Genetics, Treviso General Hospital, Treviso, Italy
| | | | - Maurizio Martini
- Dipartimento Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, area di Anatomia Patologica, Fondazione policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Istituto di Anatomia Patologica, Università Cattolica Del Sacro Cuore, Rome, Italy
| | - Francesca Bergamo
- Department of Oncology, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Vittorina Zagonel
- Department of Oncology, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Fotios Loupakis
- Department of Oncology, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy.
| | - Matteo Fassan
- Surgical Pathology and Cytopathology Unit, Department of Medicine (DIMED), University of Padua, Padua, Italy
| |
Collapse
|
30
|
Calderón-Aparicio A, Orue A. Precision oncology in Latin America: current situation, challenges and perspectives. Ecancermedicalscience 2019; 13:920. [PMID: 31281417 PMCID: PMC6546257 DOI: 10.3332/ecancer.2019.920] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Anti-cancer cytotoxic treatments like platinum-derived compounds often show low therapeutic efficacy, high-risk side effects and resistance. Hence, targeted treatments designed to attack only tumour cells avoiding these harmful side effects are highly needed in clinical practice. Due to this, precision oncology has arisen as an approach to specifically target alterations present only in cancer cells, minimising side effects for patients. It involves the use of molecular biomarkers present in each kind of tumour for diagnosis, prognosis and treatment. Since these biomarkers are specific for each cancer type, physicians use them to stratify, diagnose or take the best therapeutic options for each patient depending on the features of the specific tumour. AIM This review aims to describe the current situation, limitations, advantages and perspectives about precision oncology in Latin America. MAIN BODY For many years, many biomarkers have been used in a clinical setting in developed countries. However, in Latin American countries, their broad application has not been affordable partially due to financial and technical limitations associated with precarious health systems and poor access of low-income populations to quality health care. Furthermore, the genetic mixture in Latin American populations could generate differences in treatment responses from one population to another (pharmacoethnicity) and this should be evaluated before establishing precision therapy in particular populations. Some research groups in the region have done a lot of work in this field and these data should be taken as a starting point to establish networks oriented to finding clinically useful cancer biomarkers in Latin American populations. CONCLUSION Latin America must create policies allowing excluded populations to gain access to health systems and next generation anti-cancer drugs, i.e. high-cost targeted therapies to improve survival. Also, cancer clinical research must be oriented to establish cancer biomarkers adapted to specific populations with different ethnicity, allowing the improvement of patient outcomes.
Collapse
Affiliation(s)
- Ali Calderón-Aparicio
- Tumor Cell Biology Laboratory, Instituto Venezolano de Investigaciones Científicas IVIC, Centro de Microbiología, Caracas 1020A, Venezuela
| | - Andrea Orue
- Tumor Cell Biology Laboratory, Instituto Venezolano de Investigaciones Científicas IVIC, Centro de Microbiología, Caracas 1020A, Venezuela
| |
Collapse
|
31
|
Sandhu J, Lavingia V, Fakih M. Systemic treatment for metastatic colorectal cancer in the era of precision medicine. J Surg Oncol 2019; 119:564-582. [PMID: 30802315 DOI: 10.1002/jso.25421] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 02/10/2019] [Indexed: 01/05/2023]
Abstract
The treatment of metastatic colorectal cancer has evolved over the last two decades with the FDA approval of several cytotoxic, biological, and targeted agents. In this paper, we review the impact of sidedness, RAS, BRAF, HER-2, and other immune biomarkers on metastatic colorectal cancer treatment selection and sequencing in both the palliative and curative intent settings.
Collapse
Affiliation(s)
- Jaideep Sandhu
- Department of Medical Oncology, City of Hope National Medical Center, Duarte, California
| | | | - Marwan Fakih
- Medical Oncology and Therapeutics Research, Briskin Center for Clinical Research, GI Medical Oncology, City of Hope Comprehensive Cancer Center, Duarte, California
| |
Collapse
|
32
|
Kim CA, Ahmed S, Ahmed S, Brunet B, Chalchal H, Deobald R, Doll C, Dupre MP, Gordon V, Lee-Ying RM, Lim H, Liu D, Loree JM, McGhie JP, Mulder K, Park J, Yip B, Wong RP, Zaidi A. Report from the 19th annual Western Canadian Gastrointestinal Cancer Consensus Conference; Winnipeg, Manitoba; 29-30 September 2017. ACTA ACUST UNITED AC 2018; 25:275-284. [PMID: 30111968 DOI: 10.3747/co.25.4109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The 19th annual Western Canadian Gastrointestinal Cancer Consensus Conference (wcgccc) was held in Winnipeg, Manitoba, 29-30 September 2017. The wcgccc is an interactive multidisciplinary conference attended by health care professionals from across Western Canada (British Columbia, Alberta, Saskatchewan, and Manitoba) who are involved in the care of patients with gastrointestinal cancer. Surgical, medical, and radiation oncologists; pathologists; radiologists; and allied health care professionals participated in presentation and discussion sessions for the purpose of developing the recommendations presented here. This consensus statement addresses current issues in the management of colorectal cancer.
Collapse
Affiliation(s)
- C A Kim
- Manitoba-Medical Oncology (Kim, Gordon, Wong) and Radiation Oncology (Shahida Ahmed), CancerCare Manitoba, University of Manitoba, Winnipeg; Surgery (Park, Yip) and Pathology (Dupre), University of Manitoba, Winnipeg
| | - S Ahmed
- Saskatchewan- Medical Oncology (Shahid Ahmed, Zaidi), Radiation Oncology (Brunet), and Surgery (Deobald), Saskatchewan Cancer Agency, University of Saskatchewan, Saskatoon; Medical Oncology (Chalchal), Allan Blair Cancer Centre, Regina
| | - S Ahmed
- Manitoba-Medical Oncology (Kim, Gordon, Wong) and Radiation Oncology (Shahida Ahmed), CancerCare Manitoba, University of Manitoba, Winnipeg; Surgery (Park, Yip) and Pathology (Dupre), University of Manitoba, Winnipeg
| | - B Brunet
- Saskatchewan- Medical Oncology (Shahid Ahmed, Zaidi), Radiation Oncology (Brunet), and Surgery (Deobald), Saskatchewan Cancer Agency, University of Saskatchewan, Saskatoon; Medical Oncology (Chalchal), Allan Blair Cancer Centre, Regina
| | - H Chalchal
- Saskatchewan- Medical Oncology (Shahid Ahmed, Zaidi), Radiation Oncology (Brunet), and Surgery (Deobald), Saskatchewan Cancer Agency, University of Saskatchewan, Saskatoon; Medical Oncology (Chalchal), Allan Blair Cancer Centre, Regina
| | - R Deobald
- Saskatchewan- Medical Oncology (Shahid Ahmed, Zaidi), Radiation Oncology (Brunet), and Surgery (Deobald), Saskatchewan Cancer Agency, University of Saskatchewan, Saskatoon; Medical Oncology (Chalchal), Allan Blair Cancer Centre, Regina
| | - C Doll
- Alberta-Medical Oncology (Mulder), Cross Cancer Institute, University of Alberta, Edmonton; Medical Oncology (Lee-Ying) and Radiation Oncology (Doll), Tom Baker Cancer Centre, University of Calgary, Calgary
| | - M P Dupre
- Manitoba-Medical Oncology (Kim, Gordon, Wong) and Radiation Oncology (Shahida Ahmed), CancerCare Manitoba, University of Manitoba, Winnipeg; Surgery (Park, Yip) and Pathology (Dupre), University of Manitoba, Winnipeg
| | - V Gordon
- Manitoba-Medical Oncology (Kim, Gordon, Wong) and Radiation Oncology (Shahida Ahmed), CancerCare Manitoba, University of Manitoba, Winnipeg; Surgery (Park, Yip) and Pathology (Dupre), University of Manitoba, Winnipeg
| | - R M Lee-Ying
- Alberta-Medical Oncology (Mulder), Cross Cancer Institute, University of Alberta, Edmonton; Medical Oncology (Lee-Ying) and Radiation Oncology (Doll), Tom Baker Cancer Centre, University of Calgary, Calgary
| | - H Lim
- British Columbia-Medical Oncology (Lim, Loree), BC Cancer, University of British Columbia, Vancouver; Medical Oncology (McGhie), BC Cancer, University of British Columbia, Victoria; Radiology (Liu), University of British Columbia, Vancouver
| | - D Liu
- British Columbia-Medical Oncology (Lim, Loree), BC Cancer, University of British Columbia, Vancouver; Medical Oncology (McGhie), BC Cancer, University of British Columbia, Victoria; Radiology (Liu), University of British Columbia, Vancouver
| | - J M Loree
- British Columbia-Medical Oncology (Lim, Loree), BC Cancer, University of British Columbia, Vancouver; Medical Oncology (McGhie), BC Cancer, University of British Columbia, Victoria; Radiology (Liu), University of British Columbia, Vancouver
| | - J P McGhie
- British Columbia-Medical Oncology (Lim, Loree), BC Cancer, University of British Columbia, Vancouver; Medical Oncology (McGhie), BC Cancer, University of British Columbia, Victoria; Radiology (Liu), University of British Columbia, Vancouver
| | - K Mulder
- Alberta-Medical Oncology (Mulder), Cross Cancer Institute, University of Alberta, Edmonton; Medical Oncology (Lee-Ying) and Radiation Oncology (Doll), Tom Baker Cancer Centre, University of Calgary, Calgary
| | - J Park
- Manitoba-Medical Oncology (Kim, Gordon, Wong) and Radiation Oncology (Shahida Ahmed), CancerCare Manitoba, University of Manitoba, Winnipeg; Surgery (Park, Yip) and Pathology (Dupre), University of Manitoba, Winnipeg
| | - B Yip
- Manitoba-Medical Oncology (Kim, Gordon, Wong) and Radiation Oncology (Shahida Ahmed), CancerCare Manitoba, University of Manitoba, Winnipeg; Surgery (Park, Yip) and Pathology (Dupre), University of Manitoba, Winnipeg
| | - R P Wong
- Manitoba-Medical Oncology (Kim, Gordon, Wong) and Radiation Oncology (Shahida Ahmed), CancerCare Manitoba, University of Manitoba, Winnipeg; Surgery (Park, Yip) and Pathology (Dupre), University of Manitoba, Winnipeg
| | - A Zaidi
- Saskatchewan- Medical Oncology (Shahid Ahmed, Zaidi), Radiation Oncology (Brunet), and Surgery (Deobald), Saskatchewan Cancer Agency, University of Saskatchewan, Saskatoon; Medical Oncology (Chalchal), Allan Blair Cancer Centre, Regina
| | | |
Collapse
|
33
|
Ma W, Brodie S, Agersborg S, Funari VA, Albitar M. Significant Improvement in Detecting BRAF, KRAS, and EGFR Mutations Using Next-Generation Sequencing as Compared with FDA-Cleared Kits. Mol Diagn Ther 2018. [PMID: 28639239 PMCID: PMC5606956 DOI: 10.1007/s40291-017-0290-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Introduction We compared mutations detected in EGFR, KRAS, and BRAF genes using next-generation sequencing (NGS) and confirmed by Sanger sequencing with mutations that could be detected by FDA-cleared testing kits. Methods Paraffin-embedded tissue from 822 patients was tested for mutations in EGFR, KRAS, and BRAF by NGS. Sanger sequencing of hot spots was used with locked nucleic acid to increase sensitivity for specific hot-spot mutations. This included 442 (54%) lung cancers, 168 (20%) colorectal cancers, 29 (4%) brain tumors, 33 (4%) melanomas, 14 (2%) thyroid cancers, and 16% others (pancreas, head and neck, and cancer of unknown origin). Results were compared with the approved list of detectable mutations in FDA kits for EGFR, KRAS, and BRAF. Results Of the 101 patients with EGFR abnormalities as detected by NGS, only 58 (57%) were detectable by cobas v2 and only 35 (35%) by therascreen. Therefore, 42 and 65%, respectively, more mutations were detected by NGS, including two patients with EGFR amplification. Of the 117 patients with BRAF mutation detected by NGS, 62 (53%) mutations were within codon 600, detectable by commercial kits, but 55 (47%) of the mutations were outside codon V600, detected by NGS only. Of the 321 patients with mutations in KRAS detected by NGS, 284 (88.5%) had mutations detectable by therascreen and 300 (93.5%) had mutations detectable by cobas. Therefore, 11.5 and 6.5% additional KRAS mutations were detected by NGS, respectively. Conclusion NGS provides significantly more comprehensive testing for mutations as compared with FDA-cleared kits currently available commercially.
Collapse
Affiliation(s)
- Wanlong Ma
- NeoGenomics Laboratories, 31 Columbia, Aliso Viejo, CA, 92656, USA
| | - Steven Brodie
- NeoGenomics Laboratories, 31 Columbia, Aliso Viejo, CA, 92656, USA
| | - Sally Agersborg
- NeoGenomics Laboratories, 31 Columbia, Aliso Viejo, CA, 92656, USA
| | - Vincent A Funari
- NeoGenomics Laboratories, 31 Columbia, Aliso Viejo, CA, 92656, USA
| | - Maher Albitar
- NeoGenomics Laboratories, 31 Columbia, Aliso Viejo, CA, 92656, USA.
| |
Collapse
|
34
|
Kim T, Kim T, Choi S, Ko H, Park D, Lee Y. Combination of BEZ235 and Metformin Has Synergistic Effect on Cell Viability in Colorectal Cancer Cells. Dev Reprod 2018; 22:133-142. [PMID: 30023463 PMCID: PMC6048307 DOI: 10.12717/dr.2018.22.2.133] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 06/08/2018] [Accepted: 06/14/2018] [Indexed: 12/25/2022]
Abstract
Patients with type II diabetes mellitus are more susceptible to colorectal cancer (CRC) incidence than non-diabetics. The anti-diabetic drug metformin is most commonly prescribed for the treatment of this disease and has recently shown antitumor effect in preclinical studies. The aberrant mutational activation in the components of RAS/RAF/MEK/ERK and PI3K/AKT/mTOR signaling pathway is very frequently observed in CRC. We previously reported that metformin inhibits the phosphorylation of ERK and BEZ235, a dual inhibitor of PI3K and mTOR, has anti-tumor activity against HCT15 CRC cells harboring mutations of KRAS and PIK3CA. Therefore, we hypothesized that simultaneous inhibition of two pathways by combining metformin with BEZ235 could be more effective in the suppression of proliferation than single agent treatment in HCT15 CRC cells. Here, we investigated the combinatory effect of metformin and BEZ235 on the cell survival in HCT15 CRC cells. Our study shows that both of the two signaling pathways can be blocked by this combinational strategy: metformin suppressed both pathways by inhibiting the phosphorylation of ERK, 4E-BP1 and S6, and BEZ235 suppressed PI3K/AKT/ mTOR pathway by reducing the phosphorylation of 4E-BP1 and S6. This combination treatment synergistically reduced cell viability. The combination index (CI) values ranged from 0.44 to 0.88, indicating synergism for the combination. These results offer a preclinical rationale for the potential therapeutic option for the treatment of CRC.
Collapse
Affiliation(s)
- Taewan Kim
- Dept. of Medicine, Jeju National University School of Medicine, Jeju 63243, Korea
| | - Taehyung Kim
- Dept. of Medicine, Jeju National University School of Medicine, Jeju 63243, Korea
| | - Soonyoung Choi
- Dept. of Medicine, Jeju National University School of Medicine, Jeju 63243, Korea
| | - Hyeran Ko
- Dept. of Medicine, Jeju National University School of Medicine, Jeju 63243, Korea
| | - Deokbae Park
- Dept. of Histology, Jeju National University School of Medicine, Jeju 63243, Korea
| | - Youngki Lee
- Dept. of Histology, Jeju National University School of Medicine, Jeju 63243, Korea
| |
Collapse
|
35
|
BRAF Inhibitors for BRAF V600E Mutant Colorectal Cancers: Literature Survey and Case Report. Case Rep Surg 2018; 2018:8782328. [PMID: 29850361 PMCID: PMC5925159 DOI: 10.1155/2018/8782328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Accepted: 03/18/2018] [Indexed: 01/08/2023] Open
Abstract
The main method of fighting against colon cancer is targeted treatment. BRAF inhibitors, which are accepted as standard treatment for V600E mutant malign melanomas, are the newest approach for targeted treatment of V600E mutant colorectal cancers. In this case report, we share our experience about the use of BRAF inhibitor vemurafenib on a V600E mutant metastatic right colon adenocarcinoma patient. A 59-year-old male with only lung multiple metastatic V600E mutant right colon cancer presented to our clinic. The patient was evaluated and FOLFOX + bevacizumab treatment was initiated, which was then continued with vemurafenib. A remarkable response was achieved with vemurafenib treatment in which the drug resistance occurred approximately in the sixth month. Even though the patient benefited majorly from vemurafenib, he died on the 20th month of the diagnosis. The expected overall survival for metastatic V600E mutant colon adenocarcinoma patients is 4.7 months. BRAF inhibitors provide new treatment alternatives for V600E mutant colorectal cancers, with prolonged overall survival. BRAF inhibitors in combination with MEK inhibitors are reported as feasible treatment to overcome BRAF inhibitor drug resistance on which phase studies are still in progress. To conclude, BRAF inhibitors alone or in combination with other drugs provide a chance for curing BRAF V600E mutant colorectal cancer patients.
Collapse
|
36
|
A Network Pharmacology Approach to Uncover the Multiple Mechanisms of Hedyotis diffusa Willd. on Colorectal Cancer. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:6517034. [PMID: 29619072 PMCID: PMC5829364 DOI: 10.1155/2018/6517034] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 12/25/2017] [Indexed: 02/08/2023]
Abstract
Background As one of the most frequently diagnosed cancer diseases globally, colorectal cancer (CRC) remains an important cause of cancer-related death. Although the traditional Chinese herb Hedyotis diffusa Willd. (HDW) has been proven to be effective for treating CRC in clinical practice, its definite mechanisms have not been completely deciphered. Objective The aim of our research is to systematically explore the multiple mechanisms of HDW on CRC. Methods This study adopted the network pharmacology approach, which was mainly composed of active component gathering, target prediction, CRC gene collection, network analysis, and gene enrichment analysis. Results The network analysis showed that 10 targets might be the therapeutic targets of HDW on CRC, namely, HRAS, PIK3CA, KRAS, TP53, APC, BRAF, GSK3B, CDK2, AKT1, and RAF1. The gene enrichment analysis implied that HDW probably benefits patients with CRC by modulating pathways related to cancers, infectious diseases, endocrine system, immune system, nervous system, signal transduction, cellular community, and cell motility. Conclusions This study partially verified and predicted the pharmacological and molecular mechanism of HDW against CRC from a holistic perspective, which will also lay a foundation for the further experimental research and clinical rational application of HDW.
Collapse
|
37
|
Strubberg AM, Madison BB. MicroRNAs in the etiology of colorectal cancer: pathways and clinical implications. Dis Model Mech 2017; 10:197-214. [PMID: 28250048 PMCID: PMC5374322 DOI: 10.1242/dmm.027441] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) are small single-stranded RNAs that repress mRNA translation
and trigger mRNA degradation. Of the ∼1900 miRNA-encoding genes present
in the human genome, ∼250 miRNAs are reported to have changes in
abundance or altered functions in colorectal cancer. Thousands of studies have
documented aberrant miRNA levels in colorectal cancer, with some miRNAs reported
to actively regulate tumorigenesis. A recurrent phenomenon with miRNAs is their
frequent participation in feedback loops, which probably serve to reinforce or
magnify biological outcomes to manifest a particular cellular phenotype. Here,
we review the roles of oncogenic miRNAs (oncomiRs), tumor suppressive miRNAs
(anti-oncomiRs) and miRNA regulators in colorectal cancer. Given their stability
in patient-derived samples and ease of detection with standard and novel
techniques, we also discuss the potential use of miRNAs as biomarkers in the
diagnosis of colorectal cancer and as prognostic indicators of this disease.
MiRNAs also represent attractive candidates for targeted therapies because their
function can be manipulated through the use of synthetic antagonists and miRNA
mimics. Summary: This Review provides an overview of some important
microRNAs and their roles in colorectal cancer.
Collapse
Affiliation(s)
- Ashlee M Strubberg
- Division of Gastroenterology, Washington University School of Medicine, Washington University, Saint Louis, MO 63110, USA
| | - Blair B Madison
- Division of Gastroenterology, Washington University School of Medicine, Washington University, Saint Louis, MO 63110, USA
| |
Collapse
|
38
|
Peacock ZS. Controversies in Oral and Maxillofacial Pathology. Oral Maxillofac Surg Clin North Am 2017; 29:475-486. [DOI: 10.1016/j.coms.2017.06.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
39
|
Gong J, Wu D, Chuang J, Tuli R, Simard J, Hendifar A. Moving Beyond Conventional Clinical Trial End Points in Treatment-refractory Metastatic Colorectal Cancer: A Composite Quality-of-life and Symptom Control End Point. Clin Ther 2017; 39:2135-2145. [PMID: 29079389 DOI: 10.1016/j.clinthera.2017.09.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 09/29/2017] [Accepted: 09/29/2017] [Indexed: 12/13/2022]
Abstract
PURPOSE This review highlights the evidence supporting symptom control and quality-of-life (QOL) measures as predictors of survival in treatment-refractory metastatic colorectal cancer (mCRC) and describes a composite symptom control and QOL end point recently reported in a Phase III trial that may serve as a more reasonable end point of efficacy in this population. METHODS A literature search was conducted using MEDLINE to identify clinical studies (including case series and observational, retrospective, and prospective studies) that reported the predictive value of QOL measures for survival in mCRC. The search was limited by the following key words: quality of life, survival, and colorectal cancer. We then performed a second search limited to studies of randomized and Phase III design in mCRC to identify studies that used QOL assessments as their primary end points. A manual search was also performed to include additional studies of potential relevance. FINDINGS There is increasing evidence to support that symptom control and QOL measures are predictors of survival in treatment-refractory mCRC and can serve as an alternative but equally as important end point to survival in this population. A recent large, randomized Phase III trial using a composite primary end point of lean body mass, pain, anorexia, and fatigue reported the feasibility in evaluating benefit in mCRC beyond conventional clinical trial end points. IMPLICATIONS Future studies in treatment-refractory mCRC may be better served by evaluating improvement in symptom control and QOL, which may otherwise serve as the best predictor of survival in last-line treatment settings.
Collapse
Affiliation(s)
- Jun Gong
- Department of Medical Oncology, City of Hope National Medical Center, Duarte, California
| | - Daniel Wu
- Department of Internal Medicine, Harbor-UCLA Medical Center, Torrance, California
| | - Jeremy Chuang
- Department of Internal Medicine, Harbor-UCLA Medical Center, Torrance, California
| | - Richard Tuli
- Gastrointestinal and Neuroendocrine Malignancies, Samuel Oschin Cancer Center, Cedars-Sinai Medical Center, Los Angeles, California
| | | | - Andrew Hendifar
- Gastrointestinal and Neuroendocrine Malignancies, Samuel Oschin Cancer Center, Cedars-Sinai Medical Center, Los Angeles, California.
| |
Collapse
|
40
|
GHERMAN ALEXANDRA, CĂINAP CĂLIN, CONSTANTIN ANNEMARIE, CETEAN SÎNZIANA, CĂINAP SIMONASORANA. Molecular targeted treatment of metastatic colorectal cancer: the cardiovascular adverse effects of Bevacizumab and Cetuximab. CLUJUL MEDICAL (1957) 2017; 90:377-384. [PMID: 29151784 PMCID: PMC5683825 DOI: 10.15386/cjmed-745] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 12/06/2016] [Indexed: 12/21/2022]
Abstract
Novel emerging therapies have changed paradigms in metastatic colorectal cancer. The advantages of molecular targeted treatments, either the anti-angiogenic or the anti-epidermal growth factor receptor drugs, reside in the fact that while their specificity for the cancer cell is higher, their toxicity on normal tissues is significantly lower when compared to chemotherapy. But when it comes to their safety, especially from a cardiovascular point of view, they still need to pass the test of time and further prospective studies are needed. Clinical trial patients are very well selected with regards to comorbidities and therefore, they often differ from real-life patients. In order to maximize the benefits from these drugs, we need to better identify the population at risk, understand and early diagnose their on- and off-target adverse effects and to adequately choose the diagnostic tools; with a better prevention and early treatment, the quality and quantity of our patients' lives can be significantly improved.
Collapse
Affiliation(s)
- ALEXANDRA GHERMAN
- 11th Department of Oncology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - CĂLIN CĂINAP
- 11th Department of Oncology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Prof. Dr. Ion Chiricuta Oncology Institute, Cluj-Napoca, Romania
| | - ANNE-MARIE CONSTANTIN
- 1st Department of Morphological Sciences, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - SÎNZIANA CETEAN
- 2nd Department of General and Inorganic Chemistry, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - SIMONA SORANA CĂINAP
- 2nd Pediatric Clinic, Cluj-Napoca, Romania
- 9th Department of Infant Care, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
41
|
Gong J, Chen Y, Yang L, Pillai R, Shirasawa S, Fakih M. MEK162 Enhances Antitumor Activity of 5-Fluorouracil and Trifluridine in KRAS-mutated Human Colorectal Cancer Cell Lines. Anticancer Res 2017; 37:2831-2838. [PMID: 28551618 DOI: 10.21873/anticanres.11634] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 04/30/2017] [Accepted: 05/03/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND Preclinical evidence demonstrates that mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) pathway inhibition increases sensitivity to 5-fluorouracil (5-FU) in colorectal cancer (CRC) cell lines and xenografts. Here, we aimed to investigate how CRC cell sensitivity to this combination is correlated to Kirsten rat sarcoma (KRAS) and proto-oncogene B-rapidly accelerated fibrosarcoma (BRAF) mutation, that are common in CRC and often lead to resistance to chemotherapy. MATERIALS AND METHODS Wild-type and mutant KRAS/BRAF human CRC cell lines were treated with escalating doses of 5-FU or trifluridine with MEK162 (MEK1/2 inhibitor) for 72 h. Cell viability was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and synergism expressed by the combination index was calculated using CalcuSyn. RESULTS Evidence of synergistic antitumor activity was observed for the majority of human CRC cell lines treated with MEK162 plus 5-FU (4/6) or trifluridine (7/9). Synergism was greater in KRAS- or BRAF-mutant cell lines compared to wild-type KRAS/BRAF CRC cell lines. CONCLUSION The combination of MEK inhibition and trifluridine is worthwhile advancing in clinical development, particularly for treatment-refractory KRAS- or BRAF-mutated metastatic CRC.
Collapse
Affiliation(s)
- Jun Gong
- Department of Medical Oncology, City of Hope National Medical Center, Duarte, CA, U.S.A
| | - Yuan Chen
- Department of Molecular Medicine, City of Hope National Medical Center, Duarte, CA, U.S.A
| | - Lixin Yang
- Department of Pathology, City of Hope National Medical Center, Duarte, CA, U.S.A
| | - Raju Pillai
- Department of Pathology, City of Hope National Medical Center, Duarte, CA, U.S.A
| | - Senji Shirasawa
- Department of Cell Biology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Marwan Fakih
- Medical Oncology and Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA, U.S.A.
| |
Collapse
|
42
|
Cho M, Kessler J, Park JJ, Lee A, Gong J, Singh G, Chen YJ, Ituarte PHG, Fakih M. A single institute retrospective trial of concurrent chemotherapy with SIR-Spheres ® versus SIR-Spheres ® alone in chemotherapy-resistant colorectal cancer liver metastases. J Gastrointest Oncol 2017; 8:608-613. [PMID: 28890809 DOI: 10.21037/jgo.2017.03.15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The use of selective internal radiation therapy with yttrium 90 resin microspheres (SIR-Spheres®) in chemotherapy-resistant colorectal cancer liver metastases has been associated with favorable progression-free survival (PFS) and overall survival when given alone or concurrently with chemotherapy. We conducted a single institute retrospective trial to explore the potential impact of SIR-Spheres® with concurrent chemotherapy vs. SIR-Spheres® alone on liver PFS in patients with colorectal liver metastases (CRLM). METHODS Patients with 5-fluorouracil-refractory CRLM treated with SIR-Spheres® between 2009 and 2014 were identified. Patients were excluded if they received any chemotherapy/targeted regimen following radioembolization on which they did not previously progress. This strategy was adopted to minimize the impact of post-SIR-Spheres® systemic therapy bias on PFS. RESULTS Twenty-seven patients satisfied inclusion criteria and were included in this analysis. Patients' demographics were similar between the two treatment arms, except for the median number of prior therapies. No associated ≥ grade 3 toxicities were noted. Liver disease control rates were 84% and 14% on the SIR-Spheres® plus chemotherapy arms and SIR-Spheres® alone arms, respectively (P=0.001). Median PFS in the liver was 176 days in the SIR-Spheres® plus chemotherapy group vs. 91 days in the SIR-Sphere® alone group (P=0.0009). Median overall survival was 212 days in the SIR-Spheres® plus chemotherapy group vs. 154 days in the SIR-Spheres® alone group (P=0.1023). CONCLUSIONS In patients with 5-fluorouracil-refractory disease, SIR-Spheres® plus chemotherapy is associated with an increased liver disease control rate and a prolonged liver PFS in comparison with SIR-Spheres® alone.
Collapse
Affiliation(s)
- May Cho
- Department of Medical Oncology, City of Hope National Medical Center, Duarte, CA, USA
| | - Jonathan Kessler
- Department of Diagnostic Radiology, City of Hope National Medical Center, Duarte, CA, USA
| | - John J Park
- Department of Diagnostic Radiology, City of Hope National Medical Center, Duarte, CA, USA
| | - Aram Lee
- Department of Diagnostic Radiology, City of Hope National Medical Center, Duarte, CA, USA
| | - Jun Gong
- Department of Medical Oncology, City of Hope National Medical Center, Duarte, CA, USA
| | - Gagandeep Singh
- Department of Surgical Oncology, City of Hope National Medical Center, Duarte, CA, USA
| | - Yi-Jen Chen
- Department of Radiation Oncology, City of Hope National Medical Center, Duarte, CA, USA
| | - Philip H G Ituarte
- Department of Surgical Oncology, City of Hope National Medical Center, Duarte, CA, USA
| | - Marwan Fakih
- Medical Oncology and Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| |
Collapse
|
43
|
Griewank KG, Schilling B. Next-Generation Sequencing to Guide Treatment of Advanced Melanoma. Am J Clin Dermatol 2017; 18:303-310. [PMID: 28229402 DOI: 10.1007/s40257-017-0260-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Next-generation sequencing (NGS) has provided significant insights into the pathogenesis of human malignancies. In advanced melanoma, two therapeutic avenues have appeared and have immediately become the standard of care, i.e. targeted therapy with small molecule inhibitors, and immune checkpoint blockade. Sequencing has always been essential for determining which patients may benefit from targeted therapies (e.g. the presence of BRAF mutations). While sequencing does not currently help recognize which patients might benefit from immune checkpoint blockade, recent data suggest that this may change. Multiple studies have identified tumor mutation profiles associated with patients benefiting from immune checkpoint blockade therapy. These findings suggest comprehensive tumor sequencing may become a critical step for predicting therapy responses to all systemic therapies. In this review, the current and potential future impact of NGS on treatment decisions in advanced melanoma will be summarized and discussed.
Collapse
Affiliation(s)
- Klaus G Griewank
- Department of Dermatology, University Hospital, West German Cancer Center, University Duisburg-Essen and the German Cancer Consortium (DKTK), Hufelandstr. 55, Essen, 45147, Germany.
- Dermatopathologie bei Mainz, Bahnhofstr. 2b, Nieder-Olm, 55268, Germany.
| | - Bastian Schilling
- Department of Dermatology, University Hospital, West German Cancer Center, University Duisburg-Essen and the German Cancer Consortium (DKTK), Hufelandstr. 55, Essen, 45147, Germany.
- Department of Dermatology, Venerology and Allergology, University Hospital Würzburg, Josef-Schneider Straße 2, Würzburg, 97080, Germany.
| |
Collapse
|
44
|
Van Cutsem E, Dekervel J. Not All BRAF-Mutant Metastatic Colorectal Cancers Are Identical: Distinct Clinical Consequences of non-V600 BRAF Mutations. J Clin Oncol 2017; 35:2598-2599. [PMID: 28510493 DOI: 10.1200/jco.2017.72.7057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Eric Van Cutsem
- Eric Van Cutsem and Jeroen Dekervel, University Hospitals Leuven and KULeuven, Leuven, Belgium
| | - Jeroen Dekervel
- Eric Van Cutsem and Jeroen Dekervel, University Hospitals Leuven and KULeuven, Leuven, Belgium
| |
Collapse
|
45
|
Koustas E, Karamouzis MV, Mihailidou C, Schizas D, Papavassiliou AG. Co-targeting of EGFR and autophagy signaling is an emerging treatment strategy in metastatic colorectal cancer. Cancer Lett 2017; 396:94-102. [PMID: 28323034 DOI: 10.1016/j.canlet.2017.03.023] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 03/10/2017] [Accepted: 03/13/2017] [Indexed: 02/07/2023]
Abstract
The epidermal growth factor receptor (EGFR) and its associated pathway is a critical key regulator of CRC development and progression. The monoclonal antibodies (MoAbs) cetuximab and panitumumab, directed against EGFR, represent a major step forward in the treatment of metastatic colorectal cancer (mCRC), in terms of progression-free survival and overall survival in several clinical trials. However, the activity of anti-EGFR MoAbs appears to be limited to a subset of patients with mCRC. Studies have highlighted that acquired-resistance to anti-EGFR MoAbs biochemically converge into Ras/Raf/Mek/Erk and PI3K/Akt/mTOR pathways. Recent data also suggest that acquired-resistance to anti-EGFR MoAbs is accompanied by inhibition of EGFR internalization, ubiqutinization, degradation and prolonged downregulation. It is well established that autophagy, a self-cannibalization process, is considered to be associated with resistance to the anti-EGFR MoAbs therapy. Additionally, autophagy induced by anti-EGFR MoAbs acts as a protective response in cancer cells. Thus, inhibition of autophagy after treatment with EGFR MoAbs can result in autophagic cell death. A combination therapy comprising of anti-EGFR MoAbs and autophagy inhibitors would represent a multi-pronged approach that could be evolved into an active therapeutic strategy in mCRC patients.
Collapse
Affiliation(s)
- Evangelos Koustas
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Michalis V Karamouzis
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece.
| | - Chrysovalantou Mihailidou
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Dimitrios Schizas
- First Department of Surgery, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Athanasios G Papavassiliou
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece.
| |
Collapse
|
46
|
Personalizing Locoregional Therapy for Patients with Metastatic Colorectal Cancer. CURRENT COLORECTAL CANCER REPORTS 2017. [DOI: 10.1007/s11888-017-0356-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|