1
|
Bai F, Deng Y, Li L, Lv M, Razzokov J, Xu Q, Xu Z, Chen Z, Chen G, Chen Z. Advancements and challenges in brain cancer therapeutics. EXPLORATION (BEIJING, CHINA) 2024; 4:20230177. [PMID: 39713205 PMCID: PMC11655316 DOI: 10.1002/exp.20230177] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/02/2024] [Indexed: 12/24/2024]
Abstract
Treating brain tumors requires a nuanced understanding of the brain, a vital and delicate organ. Location, size, tumor type, and surrounding tissue health are crucial in developing treatment plans. This review comprehensively summarizes various treatment options that are available or could be potentially available for brain tumors, including physical therapies (radiotherapy, ablation therapy, photodynamic therapy, tumor-treating field therapy, and cold atmospheric plasma therapy) and non-physical therapies (surgical resection, chemotherapy, targeted therapy, and immunotherapy). Mechanisms of action, potential side effects, indications, and latest developments, as well as their limitations, are highlighted. Furthermore, the requirements for personalized, multi-modal treatment approaches in this rapidly evolving field are discussed, emphasizing the balance between efficacy and patient safety.
Collapse
Affiliation(s)
- Fan Bai
- Paul C Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health EngineeringShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChina
- Advanced Therapeutic CenterNational Innovation Center for Advanced Medical DevicesShenzhenChina
| | - Yueyang Deng
- Department of Biomedical EngineeringMcGill UniversityMontrealQuebecCanada
- Rosalind & Morris Goodman Cancer InstituteMcGill UniversityMontrealQuebecCanada
| | - Long Li
- Paul C Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health EngineeringShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChina
- University of Chinese Academy of SciencesShenzhenGuangdongP. R. China
| | - Ming Lv
- Department of Medical EngineeringMedical Supplies Center of Chinese PLA General HospitalBeijingChina
| | - Jamoliddin Razzokov
- Institute of Fundamental and Applied ResearchNational Research University TIIAMETashkentUzbekistan
- Laboratory of Experimental BiophysicsCentre for Advanced TechnologiesTashkentUzbekistan
- Department of Biomedical EngineeringTashkent State Technical UniversityTashkentUzbekistan
| | - Qingnan Xu
- Paul C Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health EngineeringShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChina
| | - Zhen Xu
- Paul C Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health EngineeringShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChina
| | - Zhaowei Chen
- Institute of Food Safety and Environment MonitoringMOE Key Laboratory for Analytical Science of Food Safety and BiologyCollege of ChemistryFuzhou UniversityFuzhouChina
| | - Guojun Chen
- Department of Biomedical EngineeringMcGill UniversityMontrealQuebecCanada
- Rosalind & Morris Goodman Cancer InstituteMcGill UniversityMontrealQuebecCanada
| | - Zhitong Chen
- Paul C Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health EngineeringShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChina
- Advanced Therapeutic CenterNational Innovation Center for Advanced Medical DevicesShenzhenChina
- University of Chinese Academy of SciencesShenzhenGuangdongP. R. China
- Key Laboratory of Biomedical Imaging Science and SystemChinese Academy of SciencesShenzhenChina
| |
Collapse
|
2
|
Lee PY, Huang BS, Lee SH, Chan TY, Yen E, Lee TF, Cho IC. An investigation into the impact of volumetric rescanning and fractionation treatment on dose homogeneity in liver cancer proton therapy. JOURNAL OF RADIATION RESEARCH 2024; 65:100-108. [PMID: 38037473 PMCID: PMC10803156 DOI: 10.1093/jrr/rrad093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/16/2023] [Indexed: 12/02/2023]
Abstract
The Pencil Beam Scanning (PBS) technique in modern particle therapy offers a highly conformal dose distribution but poses challenges due to the interplay effect, an interaction between respiration-induced organ movement and PBS. This study evaluates the effectiveness of different volumetric rescanning strategies in mitigating this effect in liver cancer proton therapy. We used a Geant4-based Monte Carlo simulation toolkit, 'TOPAS,' and an image registration toolbox, 'Elastix,' to calculate 4D dose distributions from 5 patients' four-dimensional computed tomography (4DCT). We analyzed the homogeneity index (HI) value of the Clinical Tumor Volume (CTV) at different rescan numbers and treatment times. Our results indicate that dose homogeneity stabilizes at a low point after a week of treatment, implying that both rescanning and fractionation treatments help mitigate the interplay effect. Notably, an increase in the number of rescans doesn't significantly reduce the mean dose to normal tissue but effectively prevents high localized doses to tissue adjacent to the CTV. Rescanning techniques, based on statistical averaging, require no extra equipment or patient cooperation, making them widely accessible. However, the number of rescans, tumor location, diaphragm movement, and treatment fractionation significantly influence their effectiveness. Therefore, deciding the number of rescans should involve considering the number of beams, treatment fraction size, and total delivery time to avoid unnecessary treatment extension without significant clinical benefits. The results showed that 2-3 rescans are more clinically suitable for liver cancer patients undergoing proton therapy.
Collapse
Affiliation(s)
- Pei-Yi Lee
- Proton and Radiation Therapy Center, Department of Radiation Oncology, Kaohsiung Chang Gung Memorial Hospital, No. 129, Dapi Rd., Niaosong Dist., Kaohsiung City, 833401, Taiwan
| | - Bing-Shen Huang
- Proton and Radiation Therapy Center, Department of Radiation Oncology, Kaohsiung Chang Gung Memorial Hospital, No. 129, Dapi Rd., Niaosong Dist., Kaohsiung City, 833401, Taiwan
- Proton and Radiation Therapy Center, Department of Radiation Oncology, Linkou Chang Gung Memorial Hospital, No. 15, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 333011, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, No. 259, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 333323, Taiwan
- Department of Medical Imaging and Radiological Sciences, College of Medicine, Chang Gung University, No. 259, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 333323, Taiwan
| | - Shen-Hao Lee
- Proton and Radiation Therapy Center, Department of Radiation Oncology, Linkou Chang Gung Memorial Hospital, No. 15, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 333011, Taiwan
| | - Tsz-Yui Chan
- Department of Medical Imaging and Radiological Sciences, College of Medicine, Chang Gung University, No. 259, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 333323, Taiwan
| | - Eric Yen
- Institute of Physics, Academia Sinica, No. 128, Sec. 2, Academia Rd., Nangang Dist., Taipei City, 115201, Taiwan
| | - Tsair-Fwu Lee
- Medical Physics and Informatics Laboratory of Electronics Engineering, National Kaohsiung University of Science and Technology, No. 415, Jiangong Rd., Sanmin Dist., Kaohsiung City, 807618, Taiwan
| | - I-Chun Cho
- Research Center for Radiation Medicine, Chang Gung University, No. 259, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 333323, Taiwan
- Institute for Radiological Research, Chang Gung University, No. 259, Wenhua 1st Rd., Guishan Dist., Taiwan Taoyuan City, 333323 Taiwan
| |
Collapse
|
3
|
Zhao Y, Haworth A, Rowshanfarzad P, Ebert MA. Focal Boost in Prostate Cancer Radiotherapy: A Review of Planning Studies and Clinical Trials. Cancers (Basel) 2023; 15:4888. [PMID: 37835581 PMCID: PMC10572027 DOI: 10.3390/cancers15194888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/28/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023] Open
Abstract
BACKGROUND Focal boost radiotherapy was developed to deliver elevated doses to functional sub-volumes within a target. Such a technique was hypothesized to improve treatment outcomes without increasing toxicity in prostate cancer treatment. PURPOSE To summarize and evaluate the efficacy and variability of focal boost radiotherapy by reviewing focal boost planning studies and clinical trials that have been published in the last ten years. METHODS Published reports of focal boost radiotherapy, that specifically incorporate dose escalation to intra-prostatic lesions (IPLs), were reviewed and summarized. Correlations between acute/late ≥G2 genitourinary (GU) or gastrointestinal (GI) toxicity and clinical factors were determined by a meta-analysis. RESULTS By reviewing and summarizing 34 planning studies and 35 trials, a significant dose escalation to the GTV and thus higher tumor control of focal boost radiotherapy were reported consistently by all reviewed studies. Reviewed trials reported a not significant difference in toxicity between focal boost and conventional radiotherapy. Acute ≥G2 GU and late ≥G2 GI toxicities were reported the most and least prevalent, respectively, and a negative correlation was found between the rate of toxicity and proportion of low-risk or intermediate-risk patients in the cohort. CONCLUSION Focal boost prostate cancer radiotherapy has the potential to be a new standard of care.
Collapse
Affiliation(s)
- Yutong Zhao
- School of Physics, Mathematics and Computing, The University of Western Australia, Crawley, WA 6009, Australia; (P.R.); (M.A.E.)
| | - Annette Haworth
- Institute of Medical Physics, School of Physics, The University of Sydney, Camperdown, NSW 2050, Australia;
| | - Pejman Rowshanfarzad
- School of Physics, Mathematics and Computing, The University of Western Australia, Crawley, WA 6009, Australia; (P.R.); (M.A.E.)
- Centre for Advanced Technologies in Cancer Research (CATCR), Perth, WA 6000, Australia
| | - Martin A. Ebert
- School of Physics, Mathematics and Computing, The University of Western Australia, Crawley, WA 6009, Australia; (P.R.); (M.A.E.)
- Department of Radiation Oncology, Sir Charles Gairdner Hospital, Nedlands, WA 6009, Australia
- 5D Clinics, Claremont, WA 6010, Australia
- School of Medicine and Population Health, University of Wisconsin, Madison WI 53706, USA
| |
Collapse
|
4
|
Liu CH, Lin CY, Huang BS, Wei YC, Chang TY, Yeh CH, Sung PS, Jiang JL, Lin LY, Chang JTC, Fan KH. Risk of temporal lobe necrosis between proton beam and volumetric modulated arc therapies in patients with different head and neck cancers. Radiat Oncol 2023; 18:155. [PMID: 37735389 PMCID: PMC10512503 DOI: 10.1186/s13014-023-02344-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/05/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND To investigate the frequency of temporal lobe necrosis (TLN) soon after radiotherapy (RT) and identify differences among patients with various types of head and neck cancer (HNC) and between different RT methods. METHODS We retrospectively reviewed 483 patients with HNC who had completed RT in our hospital after January, 2015. These patients were followed-up at the radio-oncology department and received contrast-enhanced magnetic resonance imaging (MRI) or computed tomography (CT) to identify metastases or recurrence of cancer at regular intervals. Meanwhile, the occurrence of TLN, graded according to the Common Terminology Criteria for Adverse Events V5.0, was recorded. We categorized the patients into nasopharyngeal carcinoma (NPC) and non-NPC groups and compared the cumulative occurrence of TLN between the groups using Kaplan-Meier and Cox regression analyses. We further compared the cumulative occurrence of TLN between proton beam therapy (PBT) and volumetric modulated arc therapy (VMAT) in patients with any HNC, NPC, and non-NPC HNC. RESULTS Compared with the non-NPC group, the NPC group had a higher frequency of TLN (5.6% vs. 0.4%, p < 0.01) and were more commonly associated with TLN in the Kaplan-Meier analysis (p < 0.01) and the Cox regression model after covariates were adjusted for (adjusted hazard ratio: 13.35, 95% confidence interval: 1.37-130.61) during the follow-up period. Furthermore, the frequency of TLN was similar between patients receiving PBT and those receiving VMAT (PBT vs. VMAT: 4.7% vs. 6.3%, p = 0.76). Kaplan-Meier analysis revealed that the accumulated risks of TLN were similar between PBT and VMAT in patients with any HNC (p = 0.44), NPC (p = 0.84), and non-NPC HNC (p = 0.70). CONCLUSION Our study demonstrated that patients with NPC are susceptible to TLN during the early period after RT. In addition, PBT may be associated with an equivalent risk of TLN when compared with VMAT in patients with NPC or other HNCs.
Collapse
Affiliation(s)
- Chi-Hung Liu
- Stroke Center, Department of Neurology, Linkou Medical Center, Chang Gung Memorial Hospital, Taoyüan, Taiwan
- School of Medicine, College of Medicine, Chang Gung University, Taoyüan, Taiwan
- Institute of Health Policy and Management, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Chien-Yu Lin
- School of Medicine, College of Medicine, Chang Gung University, Taoyüan, Taiwan
- Department of Radiation Oncology, Proton and Radiation Therapy Center, Chang Gung Medical Foundation, Linkou Chang Gung Memorial Hospital, Taoyüan, Taiwan
- Taipei Chang Gung Head and Neck Oncology Group, Chang Gung Memorial Hospital Linkou Medical Center, Taoyüan, Taiwan
- Particle Physics and Beam Delivery Core Laboratory of Institute for Radiological Research, Linkou Medical Center, Chang Gung University/Chang Gung Memorial Hospital, Taoyüan, Taiwan
| | - Bing-Shen Huang
- School of Medicine, College of Medicine, Chang Gung University, Taoyüan, Taiwan
- Department of Radiation Oncology, Proton and Radiation Therapy Center, Chang Gung Medical Foundation, Linkou Chang Gung Memorial Hospital, Taoyüan, Taiwan
| | - Yi-Chia Wei
- Department of Neurology, Keelung Chang Gung Memorial Hospital, Keelung, Taiwan
- Community Medicine Research Center, Keelung Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Ting-Yu Chang
- Stroke Center, Department of Neurology, Linkou Medical Center, Chang Gung Memorial Hospital, Taoyüan, Taiwan
- School of Medicine, College of Medicine, Chang Gung University, Taoyüan, Taiwan
| | - Chih-Hua Yeh
- School of Medicine, College of Medicine, Chang Gung University, Taoyüan, Taiwan
- Department of Neuroradiology, Linkou Medical Center, Chang Gung Memorial Hospital, Taoyüan, Taiwan
| | - Pi-Shan Sung
- Department of Neurology, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, Taiwan
| | - Jian-Lin Jiang
- Stroke Center, Department of Neurology, Linkou Medical Center, Chang Gung Memorial Hospital, Taoyüan, Taiwan
| | - Li-Ying Lin
- School of Medicine, College of Medicine, Chang Gung University, Taoyüan, Taiwan
| | - Joseph Tung-Chieh Chang
- School of Medicine, College of Medicine, Chang Gung University, Taoyüan, Taiwan.
- Department of Radiation Oncology, Proton and Radiation Therapy Center, Chang Gung Medical Foundation, Linkou Chang Gung Memorial Hospital, Taoyüan, Taiwan.
- Taipei Chang Gung Head and Neck Oncology Group, Chang Gung Memorial Hospital Linkou Medical Center, Taoyüan, Taiwan.
| | - Kang-Hsing Fan
- School of Medicine, College of Medicine, Chang Gung University, Taoyüan, Taiwan.
- Department of Radiation Oncology, Proton and Radiation Therapy Center, Chang Gung Medical Foundation, Linkou Chang Gung Memorial Hospital, Taoyüan, Taiwan.
- Taipei Chang Gung Head and Neck Oncology Group, Chang Gung Memorial Hospital Linkou Medical Center, Taoyüan, Taiwan.
- Department of Radiation Oncology, New Taipei Municipal Tu-Cheng Hospital, New Taipei City, Taiwan.
| |
Collapse
|
5
|
Oonsiri S, Kingkaew S, Vimolnoch M, Chatchumnan N, Oonsiri P. Dosimetric Characteristics of Radiophotoluminescent Glass Dosimeters for Proton Beams. J Med Phys 2023; 48:238-242. [PMID: 37969142 PMCID: PMC10642601 DOI: 10.4103/jmp.jmp_71_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/16/2023] [Accepted: 07/17/2023] [Indexed: 11/17/2023] Open
Abstract
Purpose The purpose of the study was to investigate the dosimetric characteristics of radiophotoluminescent glass dosimeters (RGDs) for pencil beam scanning proton therapy. The RGD's end-to-end testing of intensity-modulated proton therapy (IMPT) plans was also evaluated. Materials and Methods The dosimetric characteristics of the GD-302M type glass dosimeter were studied in terms of uniformity, short-term and long-term reproducibility, stability of the magazine position readout, dose linearity in the range from 0.2 to 20 Gy, energy response in 70-220 MeV, and fading effect. The reference conditions of the spot scanning beam from the Varian ProBeam Compact system were operation at 160 MeV, a 2 cm water-equivalent depth in a solid water phantom, a 10 cm × 10 cm field size at the isocenter, and 2 Gy dose delivery. End-to-end testing of IMPT plans for the head, abdomen, and pelvis was verified using the Alderson Rando phantom. The overall uncertainty analysis was confirmed in this study. Results The relative response of RGDs for the uniformity test was within 0.95-1.05. The percentages of the coefficients of variation for short-term and long-term reproducibility were 1.16% and 1.50%, respectively. The dose ACE glass dosimetry reader FGD-1000 showed a stable magazine position readout. The dose was found to be linear with R2 = 0.9988. The energy response relative to 160 MeV was approximately within 4.0%. The fading effect was within 2.4%. For the end-to-end test, the difference between the treatment plan and RGD measurement was within 1.0%. The overall uncertainty of the RGD measurement for the proton beam was 4.6%, which covered all energy ranges in this study. Conclusion The experimental study indicates that the RGDs have the potential to be used in the dosimetry of therapeutic proton beams, including end-to-end dosimetry.
Collapse
Affiliation(s)
- Sornjarod Oonsiri
- Department of Radiology, Division of Radiation Oncology, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Sakda Kingkaew
- Department of Radiology, Division of Radiation Oncology, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Mananchaya Vimolnoch
- Department of Radiology, Division of Radiation Oncology, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Nichakan Chatchumnan
- Department of Radiology, Division of Radiation Oncology, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Puntiwa Oonsiri
- Department of Radiology, Division of Radiation Oncology, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| |
Collapse
|
6
|
Hong S, Laack N, Mahajan A, Choby G, O'Brien E, Stokken J, Janus J, Van Gompel JJ. Analysis of Early Outcomes of Pencil Beam Proton Therapy Compared with Passive Scattering Proton Therapy for Clival Chordoma. World Neurosurg 2023; 171:e644-e653. [PMID: 36563848 DOI: 10.1016/j.wneu.2022.12.081] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/15/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVE To assess the early outcomes of the following 2 types of proton therapy: passive scattering proton therapy (PSPT) and pencil beam proton therapy (PBPT). METHODS The consecutive patients who had surgery in our facility were retrospectively reviewed. RESULTS Thirty-two patients were identified (PBPT 22 patients [69%]). The mean (±standard deviation [SD]) tumor size was 3.8 ± 1.8 cm, and the most common location was the upper clivus (41%). Four cases (13%) were revision surgeries referred from elsewhere, and 2 cases underwent additional surgery elsewhere to achieve near-total resection before radiation. The cerebrospinal fluid leak occurred in 3 patients (9%). The mean (±SD) prescribed dose of PSPT and PBPT was 74 ± 3 Gy and 72 ± 3 Gy, respectively (P = 0.07). The mean (±SD) fractionation of PSPT and PBPT was 39 ± 2 and 36 ± 2, respectively (P = 0.001). Radiation toxicities were recorded in endocrine (11 patients [34%]), ophthalmic (3 patients [9%]), otologic (7 patients [22%]), and radiation necrosis (4 patients [13%]). PSPT was associated with endocrinopathy (odds ratio [OR], 10.5; 95% confidence interval, 1.86-59.4, P = 0.008), and radiation dose was associated with otologic toxicity (OR 1.57; 95% confidence interval, 1.02-2.44; P = 0.04). The gross-near total resection group had better progression-free survival than the subtotal resection group regardless of radiation therapy (P = 0.01). Overall, 3-year progression-free survival was 73%, and 5-year overall survival was 93%. CONCLUSIONS The PBPT group showed comparable outcome to the PSPT group. The degree of resection was more important than the modality of proton therapy. Further follow-up and cases are necessary to evaluate the benefit of PBPT.
Collapse
Affiliation(s)
- Sukwoo Hong
- Department of Neurological Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Nadia Laack
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Anita Mahajan
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Garret Choby
- Department of Otolaryngology, Mayo Clinic, Rochester, Minnesota, USA
| | - Erin O'Brien
- Department of Otolaryngology, Mayo Clinic, Rochester, Minnesota, USA
| | - Janalee Stokken
- Department of Otolaryngology, Mayo Clinic, Rochester, Minnesota, USA
| | - Jeffrey Janus
- Department of Otolaryngology, Mayo Clinic, Rochester, Minnesota, USA
| | - Jamie J Van Gompel
- Department of Neurological Surgery, Mayo Clinic, Rochester, Minnesota, USA; Department of Otolaryngology, Mayo Clinic, Rochester, Minnesota, USA.
| |
Collapse
|
7
|
Zaki P, Chuong MD, Schaub SK, Lo SS, Ibrahim M, Apisarnthanarax S. Proton Beam Therapy and Photon-Based Magnetic Resonance Image-Guided Radiation Therapy: The Next Frontiers of Radiation Therapy for Hepatocellular Carcinoma. Technol Cancer Res Treat 2023; 22:15330338231206335. [PMID: 37908130 PMCID: PMC10621304 DOI: 10.1177/15330338231206335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 08/21/2023] [Accepted: 09/21/2023] [Indexed: 11/02/2023] Open
Abstract
External beam radiation therapy (EBRT) has increasingly been utilized in the treatment of hepatocellular carcinoma (HCC) due to technological advances with positive clinical outcomes. Innovations in EBRT include improved image guidance, motion management, treatment planning, and highly conformal techniques such as intensity-modulated radiation therapy (IMRT) and stereotactic body radiation therapy (SBRT). Moreover, proton beam therapy (PBT) and magnetic resonance image-guided radiation therapy (MRgRT) have expanded the capabilities of EBRT. PBT offers the advantage of minimizing low- and moderate-dose radiation to the surrounding normal tissue, thereby preserving uninvolved liver and allowing for dose escalation. MRgRT provides the advantage of improved soft tissue delineation compared to computerized tomography (CT) guidance. Additionally, MRgRT with online adaptive therapy is particularly useful for addressing motion not otherwise managed and reducing high-dose radiation to the normal tissue such as the stomach and bowel. PBT and online adaptive MRgRT are emerging technological advancements in EBRT that may provide a significant clinical benefit for patients with HCC.
Collapse
Affiliation(s)
- Peter Zaki
- Department of Radiation Oncology, University of Washington, Seattle, WA, USA
| | - Michael D. Chuong
- Department of Radiation Oncology, Miami Cancer Institute, Miami, FL, USA
| | - Stephanie K. Schaub
- Department of Radiation Oncology, University of Washington, Seattle, WA, USA
| | - Simon S. Lo
- Department of Radiation Oncology, University of Washington, Seattle, WA, USA
| | - Mariam Ibrahim
- School of Medicine, St. George's University, St. George's, Grenada
| | | |
Collapse
|
8
|
Shin H, Yu JI, Park HC, Yoo GS, Cho S, Park JO, Lee KT, Lee KH, Lee JK, Park JK, Heo JS, Han IW, Shin SH. The Feasibility of Stereotactic Body Proton Beam Therapy for Pancreatic Cancer. Cancers (Basel) 2022; 14:cancers14194556. [PMID: 36230475 PMCID: PMC9559584 DOI: 10.3390/cancers14194556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/15/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Background/Purpose: This study aimed to evaluate the clinical outcomes of stereotactic body proton beam therapy (SBPT) for pancreatic cancer. Methods: This retrospective study included 49 patients who underwent SBPT for pancreatic cancer between 2017 and 2020. Survival outcomes, bowel-related toxicities, and failure patterns were analysed. SBPT was performed after induction chemotherapy in 44 (89.8%) patients. The dose-fractionation scheme included 60 gray (Gy) relative biological effectiveness (RBE) in five fractions (n = 42, 85.7%) and 50 GyRBE in five fractions (n = 7, 14.3%). The median follow-up was 16.3 months (range, 1.8−45.0 months). Results: During follow-up, the best responses were complete response, partial response, and stable disease in four (8.2%), 13 (26.5%), and 31 (63.3%) patients, respectively. The 2-year overall survival, progression-free survival, and local control (LC) rates were 67.6%, 38.0%, and 73.0%, respectively. Grade ≥ 3 gastroduodenal (GD) toxicity occurred in three (6.1%) patients. Among them, one patient underwent endoscopic haemostasis. The other two patients received surgical management. They were followed up without disease progression for >30 months after SBPT. Overall, there was no significant dosimetric difference between the grade ≥ 2 and lower toxicity groups. Conclusions: SBPT provides relatively high LC rates with acceptable toxicities in pancreatic cancer.
Collapse
Affiliation(s)
- Hyunju Shin
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
| | - Jeong Il Yu
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
- Correspondence: (J.I.Y.); (H.C.P.)
| | - Hee Chul Park
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
- Correspondence: (J.I.Y.); (H.C.P.)
| | - Gyu Sang Yoo
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
| | - Sungkoo Cho
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
| | - Joon Oh Park
- Divisions of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
| | - Kyu Taek Lee
- Divisions of Gastroenterology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
| | - Kwang Hyuck Lee
- Divisions of Gastroenterology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
| | - Jong Kyun Lee
- Divisions of Gastroenterology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
| | - Joo Kyung Park
- Divisions of Gastroenterology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
| | - Jin Seok Heo
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
| | - In Woong Han
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
| | - Sang Hyun Shin
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
| |
Collapse
|
9
|
Kreinbrink PJ, Lewis LM, Redmond KP, Takiar V. Reirradiation of Recurrent and Second Primary Cancers of the Head and Neck: a Review of the Contemporary Evidence. Curr Treat Options Oncol 2022; 23:295-310. [PMID: 35226310 DOI: 10.1007/s11864-021-00936-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2021] [Indexed: 01/07/2023]
Abstract
OPINION STATEMENT Recurrent and second primary head and neck cancers represent a clinical challenge due to frequently unresectable and/or locally advanced disease. Given that many of these patients have received definitive doses of radiation previously, reirradiation is associated with significant morbidity. Use of modern approaches such as conformal photon-based planning and charged particle therapy using protons or carbon ions allows for greater sparing of normal tissues while maintaining or escalating doses to tumor volumes. While the reirradiation data has consistently shown benefits to local control and even survival from escalation of radiotherapy dose, excessive cumulative doses can result in severe toxicities, including fatal carotid blowout syndrome. For all modalities, appropriate patient selection is of utmost importance. Large-scale trials and multi-institutional registry data are needed to standardize treatment modalities, and to determine optimal doses and volumes for reirradiation.
Collapse
Affiliation(s)
- Paul J Kreinbrink
- University of Cincinnati Departments of Radiation Oncology, Cincinnati, OH, USA
| | - Luke M Lewis
- University of Cincinnati Departments of Radiation Oncology, Cincinnati, OH, USA
| | - Kevin P Redmond
- University of Cincinnati Departments of Radiation Oncology, Cincinnati, OH, USA
| | - Vinita Takiar
- University of Cincinnati Departments of Radiation Oncology, Cincinnati, OH, USA. .,Cincinnati VA Medical Center, Cincinnati, OH, USA. .,University of Cincinnati Medical Center, 234 Goodman Street, ML 0757, Cincinnati, OH, 45267, USA.
| |
Collapse
|
10
|
Breen WG, Paulino AC, Hartsell WF, Mangona VS, Perkins SM, Indelicato DJ, Harmsen WS, Tranby BN, Bajaj BVM, Gallotto SL, Yock TI, Laack NN. Factors Associated with Acute Toxicity in Pediatric Patients Treated with Proton Radiotherapy: A Report from the Pediatric Proton Consortium Registry. Pract Radiat Oncol 2021; 12:155-162. [PMID: 34929404 DOI: 10.1016/j.prro.2021.10.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/08/2021] [Accepted: 10/14/2021] [Indexed: 10/19/2022]
Abstract
PURPOSE/OBJECTIVES Limited prospective information regarding acute toxicity in pediatric patients receiving proton therapy (PT) exists. In this study, Pediatric Proton Consortium Registry (PPCR) data was analyzed for factors associated with development of acute toxicity in children receiving passively scattered or pencil beam scanning PT. MATERIALS/METHODS Pediatric patients treated with PT and enrolled on the PPCR from 2016-2017 at seven institutions were included. Data was entered on presence versus absence of acute general, cardiac, endocrine, eye, gastrointestinal (GI), genitourinary, hematologic, mouth, musculoskeletal, neurologic, psychologic, respiratory, and skin toxicities prior to (baseline) and at the end of PT (acute). Associations between patient and treatment variables with development of acute toxicity were assessed with multivariable modelling. RESULTS Of 422 patients included, PT technique was passively scattered in 241 (57%), pencil beam scanning in 180 (43%), and missing in 1 (<1%) patient. Median age was 9.9 years. Daily anesthesia for treatment was used in 169 (40%). Treatments were categorized as craniospinal irradiation (CSI) (n=100, 24%), focal CNS PT (n=157, 38%), or body PT (n=158, 38%). Passively scattered PT was associated with increased risk of hematologic toxicity compared to pencil beam scanning PT (OR: 3.03, 95% CI: 1.38-6.70, p=0.006). There were no other differences toxicities between PT techniques. Uninsured patients had increased risk of GI (OR: 2.71, 1.12-6.58, p=0.027) and hematologic toxicity (OR: 10.67, 2.68-42.46, p<0.001). Patients receiving concurrent chemotherapy were more likely to experience skin (OR: 2.45, 1.23-4.88, p=0.011), hematologic (OR: 2.87, 1.31-6.25, p=0.008), GI (OR: 2.37, 1.33-4.21, p=0.003), and mouth toxicities (OR: 2.03, 1.10-3.73, p=0.024). Patients receiving 49-55 Gy were more likely to experience skin (OR: 2.18, 1.06-4.44, p=0.033) toxicity than those receiving <49 Gy. CONCLUSION The PPCR registry highlights broad differences in acute toxicity rates in children receiving PT, and identifies opportunities for improvements in prevention, monitoring, and treatment of toxicities.
Collapse
Affiliation(s)
- William G Breen
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN
| | - Arnold C Paulino
- Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | | | - Stephanie M Perkins
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO
| | | | - W Scott Harmsen
- Department of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN.
| | | | | | | | - Torunn I Yock
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA
| | - Nadia N Laack
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN.
| |
Collapse
|
11
|
Matsumoto Y, Fukumitsu N, Ishikawa H, Nakai K, Sakurai H. A Critical Review of Radiation Therapy: From Particle Beam Therapy (Proton, Carbon, and BNCT) to Beyond. J Pers Med 2021; 11:jpm11080825. [PMID: 34442469 PMCID: PMC8399040 DOI: 10.3390/jpm11080825] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/20/2021] [Accepted: 08/22/2021] [Indexed: 12/24/2022] Open
Abstract
In this paper, we discuss the role of particle therapy—a novel radiation therapy (RT) that has shown rapid progress and widespread use in recent years—in multidisciplinary treatment. Three types of particle therapies are currently used for cancer treatment: proton beam therapy (PBT), carbon-ion beam therapy (CIBT), and boron neutron capture therapy (BNCT). PBT and CIBT have been reported to have excellent therapeutic results owing to the physical characteristics of their Bragg peaks. Variable drug therapies, such as chemotherapy, hormone therapy, and immunotherapy, are combined in various treatment strategies, and treatment effects have been improved. BNCT has a high dose concentration for cancer in terms of nuclear reactions with boron. BNCT is a next-generation RT that can achieve cancer cell-selective therapeutic effects, and its effectiveness strongly depends on the selective 10B accumulation in cancer cells by concomitant boron preparation. Therefore, drug delivery research, including nanoparticles, is highly desirable. In this review, we introduce both clinical and basic aspects of particle beam therapy from the perspective of multidisciplinary treatment, which is expected to expand further in the future.
Collapse
Affiliation(s)
- Yoshitaka Matsumoto
- Department of Radiation Oncology, Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan; (K.N.); (H.S.)
- Proton Medical Research Center, University of Tsukuba Hospital, Tsukuba 305-8576, Japan
- Correspondence: ; Tel.: +81-29-853-7100
| | | | - Hitoshi Ishikawa
- National Institute of Quantum and Radiological Science and Technology Hospital, Chiba 263-8555, Japan;
| | - Kei Nakai
- Department of Radiation Oncology, Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan; (K.N.); (H.S.)
- Proton Medical Research Center, University of Tsukuba Hospital, Tsukuba 305-8576, Japan
| | - Hideyuki Sakurai
- Department of Radiation Oncology, Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan; (K.N.); (H.S.)
- Proton Medical Research Center, University of Tsukuba Hospital, Tsukuba 305-8576, Japan
| |
Collapse
|
12
|
Kubeš J, Haas A, Vondráček V, Andrlík M, Navrátil M, Sláviková S, Vítek P, Dědečková K, Prausová J, Ondrová B, Vinakurau Š, Grebenyuk A, Doležal T, Velacková B, Rosina J. Ultrahypofractionated Proton Radiation Therapy in the Treatment of Low and Intermediate-Risk Prostate Cancer-5-Year Outcomes. Int J Radiat Oncol Biol Phys 2021; 110:1090-1097. [PMID: 33587990 DOI: 10.1016/j.ijrobp.2021.02.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/28/2021] [Accepted: 02/07/2021] [Indexed: 10/22/2022]
Abstract
PURPOSE To analyze the 5-year biochemical disease-free survival (bDFS) and late toxicity profile in patients with prostate cancer treated with pencil beam scanning (PBS) proton radiation therapy. METHODS AND MATERIALS Between January 2013 and March 2016, 284 patients with prostate cancer were treated using intensity modulated proton therapy (IMPT), with an ultrahypofractionated schedule (36.25 GyE in 5 fractions). Five patients were immediately lost from follow-up and thus were excluded from analysis. Data for 279 patients were prospectively collected and analyzed with a median follow-up time of 56.5 (range, 3.4-87.5) months. The mean age at time of treatment was 64.5 (40.1-85.7) years, and the median prostate-specific antigen (PSA) value was 6.35 μg/L (0.67-17.3 μg/L). A total of 121 (43.4%) patients had low-risk, 125 patients (44.8%) had favorable, and 33 (11.8%) unfavorable intermediate-risk cancer. In addition, 49 (17.6%) patients underwent neoadjuvant hormonal therapy, and no patients had adjuvant hormonal therapy. bDFS and late toxicity profiles were evaluated. RESULTS The median treatment time was 9 days (range, 7-18 days). The 5-year bDFS was 96.9%, 91.7%, and 83.5% for the low-, favorable, and unfavorable intermediate-risk group, respectively. Late toxicity (Common Terminology Criteria for Adverse Events v.4) was as follows: gastrointestinal: grade 1, 62 patients (22%), grade 2, 20 patients (7.2%), and grade 3, 1 patient (0.36%); genitourinary: grade 1, 80 patients (28.7%), grade 2, 14 patients (5%), and grade 3, 0 patients. PSA relapse was observed in 17 patients (6.1%), and lymph node or bone recurrence was detected in 11 patients. Four (1.4%) local recurrences were detected. Nine patients (3.2%) died of causes unrelated to prostate cancer. No deaths related to prostate cancer were reported. CONCLUSION Ultrahypofractionated proton beam radiation therapy for prostate cancer is effective with long-term bDFS comparable with other fractionation schedules and with minimal serious long-term GI and GU toxicity.
Collapse
Affiliation(s)
- Jiří Kubeš
- Department of Oncology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic; Proton Therapy Center Czech, Prague, Czech Republic; Department of Health Care Disciplines and Population Protection, Faculty of Biomedical Engineering, Czech Technical University in Prague, Kladno, Czech Republic
| | - Alexandra Haas
- Department of Oncology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic; Proton Therapy Center Czech, Prague, Czech Republic
| | - Vladimír Vondráček
- Proton Therapy Center Czech, Prague, Czech Republic; Department of Health Care Disciplines and Population Protection, Faculty of Biomedical Engineering, Czech Technical University in Prague, Kladno, Czech Republic
| | - Michal Andrlík
- Proton Therapy Center Czech, Prague, Czech Republic; Department of Health Care Disciplines and Population Protection, Faculty of Biomedical Engineering, Czech Technical University in Prague, Kladno, Czech Republic.
| | - Matěj Navrátil
- Proton Therapy Center Czech, Prague, Czech Republic; Department of Health Care Disciplines and Population Protection, Faculty of Biomedical Engineering, Czech Technical University in Prague, Kladno, Czech Republic
| | - Silvia Sláviková
- Department of Oncology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic; Proton Therapy Center Czech, Prague, Czech Republic
| | - Pavel Vítek
- Department of Oncology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic; Proton Therapy Center Czech, Prague, Czech Republic
| | - Kateřina Dědečková
- Department of Oncology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic; Proton Therapy Center Czech, Prague, Czech Republic
| | - Jana Prausová
- Department of Oncology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Barbora Ondrová
- Department of Oncology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic; Proton Therapy Center Czech, Prague, Czech Republic
| | - Štěpán Vinakurau
- Department of Oncology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic; Proton Therapy Center Czech, Prague, Czech Republic
| | - Alexander Grebenyuk
- Pavlov First Saint Petersburg State Medical University, Department of Health Protection and Disaster Medicine, Saint Petersburg, Russia
| | | | | | - Jozef Rosina
- Department of Health Care Disciplines and Population Protection, Faculty of Biomedical Engineering, Czech Technical University in Prague, Kladno, Czech Republic; Department of Medical Biophysics and Informatics, 3rd Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
13
|
Lecornu M, Lesueur P, Salleron J, Balosso J, Stefan D, Kao W, Plouhinec T, Vela A, Dutheil P, Bouter J, Marty PA, Thariat J, Quintyn JC. Prospective Assessment of Early Proton Therapy-Induced Optic Neuropathy in Patients With Intracranial, Orbital or Sinonasal Tumors: Impact of A Standardized Ophthalmological Follow Up. Front Oncol 2021; 11:673886. [PMID: 34211847 PMCID: PMC8239302 DOI: 10.3389/fonc.2021.673886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 05/27/2021] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Proton therapy (PT) can be a good option to achieve tumor control while reducing the probability of radiation induced toxicities compared to X-ray-based radiotherapy. However, there are still uncertainties about the effects of PT on the organs in direct contact with the irradiated volume. The aim of this prospective series was to report 6-month follow-up of clinical and functional optic neuropathy rates of patients treated by proton therapy using a standardized comprehensive optic examination. METHODS AND MATERIALS Standardized ophthalmological examinations were performed to analyze subclinical anomalies in a systematic way before treatment and 6 months after the end of proton therapy with: Automatic visual field, Visual evoked potential (VEP) and optic coherence of tomography (OCT). RESULTS From October 2018 to July 2020 we analyzed 81 eyes. No significant differences were found in the analysis of the clinical examination of visual functions by the radiation oncologist. However, considering VEP, the impairment was statistically significant for both fibers explored at 30'angle (p:0.007) and 60'angle (p <0.001). In patients with toxicity, the distance of the target volume from the optical pathways was more important with a p-value for 30'VEP at 0.035 and for 60'VEP at 0.039. CONCLUSIONS These results confirm uncertainties concerning relative biological effectiveness of proton therapy, linear energy transfer appears to be more inhomogeneous especially in areas close to the target volumes. The follow-up of patients after proton therapy is not an easy process to set up but it is necessary to improve our knowledges about the biological effects of proton therapy in real life. Our study which will continue during the coming years, suggests that follow-up with in-depth examinations such as VEP as a biomarker could improve the detection of early abnormalities.
Collapse
Affiliation(s)
- Marie Lecornu
- Radiation Oncology Department, Centre François Baclesse, Caen, France
| | - Paul Lesueur
- Radiation Oncology Department, Centre François Baclesse, Caen, France
- Radiation Oncology Department, Centre Guillaume le Conquérant, Caen, France
- ISTCT UMR6030-CNRS, CEA, Université de Caen-Normandie, Equipe CERVOxy, Caen, France
| | - Julia Salleron
- Cellule Data Biostatistique, Instistut de Cancerologie de Lorraine, Nancy, France
| | - Jacques Balosso
- Radiation Oncology Department, Centre François Baclesse, Caen, France
| | - Dinu Stefan
- Radiation Oncology Department, Institut Universitaire du Cancer de Toulouse, Toulouse, France
| | - William Kao
- Radiation Oncology Department, Centre François Baclesse, Caen, France
| | | | - Anthony Vela
- Radiation Oncology Department, Centre François Baclesse, Caen, France
| | - Pauline Dutheil
- Radiation Oncology Department, Centre François Baclesse, Caen, France
| | - Jordan Bouter
- Radiation Oncology Department, Centre François Baclesse, Caen, France
| | | | - Juliette Thariat
- Radiation Oncology Department, Centre François Baclesse, Caen, France
| | | |
Collapse
|
14
|
Zou W, Diffenderfer ES, Ota K, Boisseau P, Kim MM, Cai Y, Avery SM, Carlson DJ, Wiersma RD, Lin A, Koumenis C, Cengel KA, Metz JM, Dong L, Teo BK. Characterization of a high-resolution 2D transmission ion chamber for independent validation of proton pencil beam scanning of conventional and FLASH dose delivery. Med Phys 2021; 48:3948-3957. [PMID: 33843065 DOI: 10.1002/mp.14882] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/17/2021] [Accepted: 03/25/2021] [Indexed: 12/16/2022] Open
Abstract
INTRODUCTION Ultra-high dose rate (FLASH) radiotherapy has become a popular research topic with the potential to reduce normal tissue toxicities without losing the benefit of tumor control. The development of FLASH proton pencil beam scanning (PBS) delivery requires accurate dosimetry despite high beam currents with correspondingly high ionization densities in the monitoring chamber. In this study, we characterized a newly designed high-resolution position sensing transmission ionization chamber with a purpose-built multichannel electrometer for both conventional and FLASH dose rate proton radiotherapy. METHODS The dosimetry and positioning accuracies of the ion chamber were fully characterized with a clinical scanning beam. On the FLASH proton beamline, the cyclotron output current reached up to 350 nA with a maximum energy of 226.2 MeV, with 210 ± 3 nA nozzle pencil beam current. The ion recombination effect was characterized under various bias voltages up to 1000 V and different beam intensities. The charge collected by the transmission ion chamber was compared with the measurements from a Faraday cup. RESULTS Cross-calibrated with an Advanced Markus chamber (PTW, Freiburg, Germany) in a uniform PBS proton beam field at clinical beam setting, the ion chamber calibration was 38.0 and 36.7 GyE·mm2 /nC at 100 and 226.2 MeV, respectively. The ion recombination effect increased with larger cyclotron current at lower bias voltage while remaining ≤0.5 ± 0.5% with ≥200 V of bias voltage. Above 200 V, the normalized ion chamber readings demonstrated good linearity with the mass stopping power in air for both clinical and FLASH beam intensities. The spot positioning accuracy was measured to be 0.10 ± 0.08 mm in two orthogonal directions. CONCLUSION We characterized a transmission ion chamber system under both conventional and FLASH beam current densities and demonstrated its suitability for use as a proton pencil beam dose and spot position delivery monitor under FLASH dose rate conditions.
Collapse
Affiliation(s)
- Wei Zou
- Department of Radiation Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Eric S Diffenderfer
- Department of Radiation Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Kan Ota
- Pyramid Technical Consultants, Inc, Boston, MA, 02421, USA
| | - Paul Boisseau
- Pyramid Technical Consultants, Inc, Boston, MA, 02421, USA
| | - Michele M Kim
- Department of Radiation Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | | | - Stephen M Avery
- Department of Radiation Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - David J Carlson
- Department of Radiation Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Rodney D Wiersma
- Department of Radiation Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Alexander Lin
- Department of Radiation Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Constantinos Koumenis
- Department of Radiation Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Keith A Cengel
- Department of Radiation Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - James M Metz
- Department of Radiation Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Lei Dong
- Department of Radiation Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Boonkeng K Teo
- Department of Radiation Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
15
|
Stefanowicz S, Wlodarczyk W, Frosch S, Zschaeck S, Troost EGC. Dose-escalated simultaneously integrated boost photon or proton therapy in pancreatic cancer in an in-silico study: Gastrointestinal organs remain critical. Clin Transl Radiat Oncol 2021; 27:24-31. [PMID: 33392399 PMCID: PMC7772695 DOI: 10.1016/j.ctro.2020.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 11/28/2020] [Accepted: 12/04/2020] [Indexed: 11/08/2022] Open
Abstract
Robustly optimized proton plans (rMFO-IMPT) with simultaneously integrated boost (SIB) were clinically applicable. Gastrointestinal organs reached critical dose values in rMFO-IMPT, VMAT and Tomotherapy techniques. rMFO-IMPT significantly reduced the low and intermediate dose to organs at risk. No clinically significant differences on results depending on tumor location or surgical status were observed.
Purpose To compare the dosimetric results of an in-silico study among intensity-modulated photon (IMRT) and robustly optimized intensity-modulated proton (IMPT) treatment techniques using a dose-escalated simultaneously integrated boost (SIB) approach in locally recurrent or advanced pancreatic cancer patients. Material and methods For each of 15 locally advanced pancreatic cancer patients, a volumetric-modulated arc therapy (VMAT), a Tomotherapy (TOMO), and an IMPT treatment plan was optimized on free-breathing treatment planning computed tomography (CT) images. For the photon treatment plans, doses of 66 Gy and 51 Gy, both as SIB in 30 fractions, were prescribed to the gross tumor volume (GTV) and to the planning target volume (PTV), respectively. For the proton plans, a dose prescription of 66 Gy(RBE) to the GTV and of 51 Gy(RBE) to the clinical target volume (CTV) was planned. For each SIB-treatment plan, doses to the targets and OARs were evaluated and statistically compared. Results All treatment techniques reached the prescribed doses to the GTV and CTV or PTV. The stomach and the bowel, in particular the duodenum and the small bowel, were found to be frequently exposed to doses exceeding 50 Gy, irrespective of the treatment technique. For doses below 50 Gy, the IMPT technique was statistically significant superior to both IMRT techniques regarding decreasing dose to the OARs, e.g. volume of the bowel receiving 15 Gy (V15Gy) was reduced for IMPT compared to VMAT (p = 0.003) and TOMO (p < 0.001). Conclusion With all photon and proton techniques investigated, the radiation dose to gastrointestinal OARs remained critical when treating patients with unresectable locally recurrent or advanced pancreatic cancer using a dose-escalated SIB approach.
Collapse
Affiliation(s)
- Sarah Stefanowicz
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany.,Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany
| | - Waldemar Wlodarczyk
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Susanne Frosch
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany.,Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Sebastian Zschaeck
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Esther G C Troost
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany.,Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany.,German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany, and; Helmholtz Association / Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden; Germany
| |
Collapse
|
16
|
Lehrer EJ, Prabhu AV, Sindhu KK, Lazarev S, Ruiz-Garcia H, Peterson JL, Beltran C, Furutani K, Schlesinger D, Sheehan JP, Trifiletti DM. Proton and Heavy Particle Intracranial Radiosurgery. Biomedicines 2021; 9:31. [PMID: 33401613 PMCID: PMC7823941 DOI: 10.3390/biomedicines9010031] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/23/2020] [Accepted: 12/30/2020] [Indexed: 12/25/2022] Open
Abstract
Stereotactic radiosurgery (SRS) involves the delivery of a highly conformal ablative dose of radiation to both benign and malignant targets. This has traditionally been accomplished in a single fraction; however, fractionated approaches involving five or fewer treatments have been delivered for larger lesions, as well as lesions in close proximity to radiosensitive structures. The clinical utilization of SRS has overwhelmingly involved photon-based sources via dedicated radiosurgery platforms (e.g., Gamma Knife® and Cyberknife®) or specialized linear accelerators. While photon-based methods have been shown to be highly effective, advancements are sought for improved dose precision, treatment duration, and radiobiologic effect, among others, particularly in the setting of repeat irradiation. Particle-based techniques (e.g., protons and carbon ions) may improve many of these shortcomings. Specifically, the presence of a Bragg Peak with particle therapy at target depth allows for marked minimization of distal dose delivery, thus mitigating the risk of toxicity to organs at risk. Carbon ions also exhibit a higher linear energy transfer than photons and protons, allowing for greater relative biological effectiveness. While the data are limited, utilization of proton radiosurgery in the setting of brain metastases has been shown to demonstrate 1-year local control rates >90%, which are comparable to that of photon-based radiosurgery. Prospective studies are needed to further validate the safety and efficacy of this treatment modality. We aim to provide a comprehensive overview of clinical evidence in the use of particle therapy-based radiosurgery.
Collapse
Affiliation(s)
- Eric J. Lehrer
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (E.J.L.); (K.K.S.); (S.L.)
| | - Arpan V. Prabhu
- Department of Radiation Oncology, UAMS Winthrop P. Rockefeller Cancer Institute University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | - Kunal K. Sindhu
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (E.J.L.); (K.K.S.); (S.L.)
| | - Stanislav Lazarev
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (E.J.L.); (K.K.S.); (S.L.)
| | - Henry Ruiz-Garcia
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL 32224, USA; (H.R.-G.); (J.L.P.); (C.B.); (K.F.)
| | - Jennifer L. Peterson
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL 32224, USA; (H.R.-G.); (J.L.P.); (C.B.); (K.F.)
| | - Chris Beltran
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL 32224, USA; (H.R.-G.); (J.L.P.); (C.B.); (K.F.)
| | - Keith Furutani
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL 32224, USA; (H.R.-G.); (J.L.P.); (C.B.); (K.F.)
| | - David Schlesinger
- Department of Neurological Surgery, University of Virginia, Charlottesville, VA 22903, USA; (D.S.); (J.P.S.)
| | - Jason P. Sheehan
- Department of Neurological Surgery, University of Virginia, Charlottesville, VA 22903, USA; (D.S.); (J.P.S.)
| | - Daniel M. Trifiletti
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL 32224, USA; (H.R.-G.); (J.L.P.); (C.B.); (K.F.)
| |
Collapse
|
17
|
Zou W, Diffenderfer ES, Cengel KA, Kim MM, Avery S, Konzer J, Cai Y, Boisseu P, Ota K, Yin L, Wiersma R, Carlson DJ, Fan Y, Busch TM, Koumenis C, Lin A, Metz JM, Teo BK, Dong L. Current delivery limitations of proton PBS for FLASH. Radiother Oncol 2020; 155:212-218. [PMID: 33186682 DOI: 10.1016/j.radonc.2020.11.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 10/30/2020] [Accepted: 11/03/2020] [Indexed: 01/01/2023]
Abstract
PURPOSE Proton Pencil Beam Scanning (PBS) is an attractive solution to realize the advantageous normal tissue sparing elucidated from FLASH high dose rates. The mechanics of PBS spot delivery will impose limitations on the effective field dose rate for PBS. METHODS This study incorporates measurements from clinical and FLASH research beams on uniform single energy and the spread-out Bragg Peak PBS fields to extrapolate the PBS dose rate to high cyclotron beam currents 350, 500, and 800 nA. The impact of the effective field dose rate from cyclotron current, spot spacing, slew time and field size were studied. RESULTS When scanning magnet slew time and energy switching time are not considered, single energy effective field FLASH dose rate (≥40 Gy/s) can only be achieved with less than 4 × 4 cm2 fields when the cyclotron output current is above 500 nA. Slew time and energy switching time remain the limiting factors for achieving high effective dose rate of the field. The dose rate-time structures were obtained. The amount of the total dose delivered at the FLASH dose rate in single energy layer and volumetric field was also studied. CONCLUSION It is demonstrated that while it is difficult to achieve FLASH dose rate for a large field or in a volume, local FLASH delivery to certain percentage of the total dose is possible. With further understanding of the FLASH radiobiological mechanism, this study could provide guidance to adapt current clinical multi-field proton PBS delivery practice for FLASH proton radiotherapy.
Collapse
Affiliation(s)
- Wei Zou
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, USA.
| | - Eric S Diffenderfer
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, USA
| | - Keith A Cengel
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, USA
| | - Michele M Kim
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, USA
| | - Steve Avery
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, USA
| | - Joshua Konzer
- IBA PT-Inc., PT Engineer-Beam Physics, Louvain-La-Neuve, Belgium
| | - Yongliang Cai
- IBA PT-Inc., PT Engineer-Beam Physics, Louvain-La-Neuve, Belgium
| | - Paul Boisseu
- Pyramid Technical Consultants, Systems Engineering, Boston, USA
| | - Kan Ota
- Pyramid Technical Consultants, Systems Engineering, Boston, USA
| | - Lingshu Yin
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, USA
| | - Rodney Wiersma
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, USA
| | - David J Carlson
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, USA
| | - Yi Fan
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, USA
| | - Theresa M Busch
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, USA
| | - Costas Koumenis
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, USA
| | - Alexander Lin
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, USA
| | - James M Metz
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, USA
| | - BoonKeng K Teo
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, USA
| | - Lei Dong
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, USA
| |
Collapse
|
18
|
Chalise AR, Chi Y, Lai Y, Shao Y, Jin M. Carbon-11 and Carbon-12 beam range verifications through prompt gamma and annihilation gamma measurements: Monte Carlo simulations. Biomed Phys Eng Express 2020; 6:065013. [PMID: 34040798 PMCID: PMC8148632 DOI: 10.1088/2057-1976/abb8b6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Range uncertainty remains a big concern in particle therapy, as it may cause target dose degradation and normal tissue overdosing. Positron emission tomography (PET) and prompt gamma imaging (PGI) are two promising modalities for range verification. However, the relatively long acquisition time of PET and the relatively low yield of PGI pose challenges for real-time range verification. In this paper, we explore using the primary Carbon-11 (C-11) ion beams to enhance the gamma yield compared to the primary C-12 ion beams to improve PET and PGI by using Monte Carlo simulations of water and PMMA phantoms at four incident energies (95, 200, 300, and 430 MeV u-1). Prompt gammas (PGs) and annihilation gammas (AGs) were recorded for post-processing to mimic PGI and PET imaging, respectively. We used both time-of-flight (TOF) and energy selections for PGI, which boosted the ratio of PGs to background neutrons to 2.44, up from 0.87 without the selections. At the lowest incident energy (100 MeVu-1), PG yield from C-11 was 0.82 times of that from C-12, while AG yield from C-11 was 6 ∼ 11 folds higher than from C-12 in PMMA. At higher energies, PG differences between C-11 and C-12 were much smaller, while AG yield from C-11 was 30%∼90% higher than from C-12 using minute-acquisition. With minute-acquisition, the AG depth distribution of C-11 showed a sharp peak coincident with the Bragg peak due to the decay of the primary C-11 ions, but that of C-12 had no such one. The high AG yield and distinct peaks could lead to more precise range verification of C-11 than C-12. These results demonstrate that using C-11 ion beams for potentially combined PGI and PET has great potential to improve online single-spot range verification accuracy and precision.
Collapse
Affiliation(s)
- Ananta Raj Chalise
- Department of Physics, University of Texas at Arlington, Arlington, TX 76019, United States of America
| | - Yujie Chi
- Department of Physics, University of Texas at Arlington, Arlington, TX 76019, United States of America
| | - Youfang Lai
- Department of Physics, University of Texas at Arlington, Arlington, TX 76019, United States of America
| | - Yiping Shao
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States of America
| | - Mingwu Jin
- Department of Physics, University of Texas at Arlington, Arlington, TX 76019, United States of America
| |
Collapse
|
19
|
Rana S, Bennouna J, Gutierrez AN, Rosenfeld AB. Impact of magnetic field regulation in conjunction with the volumetric repainting technique on the spot positions and beam range in pencil beam scanning proton therapy. J Appl Clin Med Phys 2020; 21:124-131. [PMID: 33058380 PMCID: PMC7700936 DOI: 10.1002/acm2.13045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/14/2020] [Accepted: 09/08/2020] [Indexed: 12/29/2022] Open
Abstract
Purpose The objective of this study was to evaluate the impact of the magnetic field regulation in conjunction with the volumetric repainting technique on the spot positions and range in pencil beam scanning proton therapy. Methods “Field regulation” — a feature to reduce the switching time between layers by applying a magnetic field setpoint (instead of a current setpoint) has been implemented on the proton beam delivery system at the Miami Cancer Institute. To investigate the impact of field regulation for the volumetric repainting technique, several spot maps were generated with beam delivery sequence in both directions, that is, irradiating from the deepest layer to the most proximal layer (“down” direction) as well as irradiating from the most proximal layer to the deepest layer (“up” direction). Range measurements were performed using a multi‐layer ionization chamber array. Spot positions were measured using two‐dimensional and three‐dimensional scintillation detectors. For range and central‐axis spot position, spot maps were delivered for energies ranging from 70–225 MeV. For off‐axis spot positions, the maps were delivered for high‐, medium, and low‐energies at eight different gantry angles. The results were then compared between the “up” and “down” directions. Results The average difference in range for given energy between “up” and “down” directions was 0.0 ± 0.1 mm. The off‐axis spot position results showed that 846/864 of the spots were within ±1 mm, and all off‐axis spot positions were within ±1.2 mm. For spots (n = 126) at the isocenter, the evaluation between “up” and “down” directions for given energy showed the spot position difference within ±0.25 mm. At the nozzle entrance, the average differences in X and Y positions for given energy were 0.0 ± 0.2 mm and −0.0 ± 0.4 mm, respectively. At the nozzle exit, the average differences in X and Y positions for given energy were 0.0 ± 0.1 mm and −0.1 ± 0.1 mm, respectively. Conclusion The volumetric repainting technique in magnetic field regulation mode resulted in acceptable spot position and range differences for our beam delivery system. The range differences were found to be within ±1 mm (TG224). For the spot positions (TG224: ±1 mm), the central axis measurements were within ±1 mm, whereas for the off‐axis measurements, 97.9% of the spots were within ±1 mm, and all spots were within ±1.2 mm.
Collapse
Affiliation(s)
- Suresh Rana
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL, USA.,Department of Radiation Oncology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA.,Department of Medical Physics, The Oklahoma Proton Center, Oklahoma City, Oklahoma, USA.,Centre for Medical Radiation Physics (CMRP), University of Wollongong, Wollongong, NSW, Australia
| | - Jaafar Bennouna
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL, USA.,Department of Radiation Oncology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Alonso N Gutierrez
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL, USA.,Department of Radiation Oncology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Anatoly B Rosenfeld
- Centre for Medical Radiation Physics (CMRP), University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|
20
|
Raturi VP, Hojo H, Hotta K, Baba H, Takahashi R, Rachi T, Nakamura N, Zenda S, Motegi A, Tachibana H, Ariji T, Motegi K, Nakamura M, Okumura M, Hirano Y, Akimoto T. Radiobiological model-based approach to determine the potential of dose-escalated robust intensity-modulated proton radiotherapy in reducing gastrointestinal toxicity in the treatment of locally advanced unresectable pancreatic cancer of the head. Radiat Oncol 2020; 15:157. [PMID: 32571379 PMCID: PMC7310413 DOI: 10.1186/s13014-020-01592-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/03/2020] [Indexed: 12/31/2022] Open
Abstract
Background The purpose of this study was to determine the potential of escalated dose radiation (EDR) robust intensity-modulated proton radiotherapy (ro-IMPT) in reducing GI toxicity risk in locally advanced unresectable pancreatic cancer (LAUPC) of the head in term of normal tissue complication probability (NTCP) predictive model. Methods For 9 patients, intensity-modulated radiotherapy (IMRT) was compared with ro-IMPT. For all plans, the prescription dose was 59.4GyE (Gray equivalent) in 33 fractions with an equivalent organ at risk (OAR) constraints. Physical dose distribution was evaluated. GI toxicity risk for different endpoints was estimated using published NTCP Lyman Kutcher Burman (LKB) models for stomach, duodenum, small bowel, and combine stomach and duodenum (Stoduo). A Wilcoxon signed-rank test was used for dosimetry parameters and NTCP values comparison. Result The dosimetric results have shown that, with similar target coverage, ro-IMPT achieves a significant dose-volume reduction in the stomach, small bowel, and stoduo in low to high dose range in comparison to IMRT. NTCP evaluation for the endpoint gastric bleeding of stomach (10.55% vs. 13.97%, P = 0.007), duodenum (1.87% vs. 5.02%, P = 0.004), and stoduo (5.67% vs. 7.81%, P = 0.008) suggest reduced toxicity by ro-IMPT compared to IMRT. ∆NTCP IMRT – ro-IMPT (using parameter from Pan et al. for gastric bleed) of ≥5 to < 10% was seen in 3 patients (33%) for stomach and 2 patients (22%) for stoduo. An overall GI toxicity relative risk (NTCPro-IMPT/NTCPIMRT) reduction was noted (0.16–0.81) for all GI-OARs except for duodenum (> 1) with endpoint grade ≥ 3 GI toxicity (using parameters from Holyoake et al.). Conclusion With similar target coverage and better conformity, ro-IMPT has the potential to substantially reduce the risk of GI toxicity compared to IMRT in EDR of LAUPC of the head. This result needs to be further evaluated in future clinical studies.
Collapse
Affiliation(s)
- Vijay P Raturi
- Division of Radiation Oncology and Particle therapy, National Cancer Center Hospital East, 6-5-1 chome, Kashiwanoha, Kashiwa-shi, Chiba-ken, 277-8577, Japan.,Course of Advanced Clinical Research of Cancer, Graduate school of Medicine, Juntendo University, Tokyo, Japan
| | - Hidehiro Hojo
- Division of Radiation Oncology and Particle therapy, National Cancer Center Hospital East, 6-5-1 chome, Kashiwanoha, Kashiwa-shi, Chiba-ken, 277-8577, Japan
| | - Kenji Hotta
- Division of Radiation Oncology and Particle therapy, National Cancer Center Hospital East, 6-5-1 chome, Kashiwanoha, Kashiwa-shi, Chiba-ken, 277-8577, Japan
| | - Hiromi Baba
- Division of Radiation Oncology and Particle therapy, National Cancer Center Hospital East, 6-5-1 chome, Kashiwanoha, Kashiwa-shi, Chiba-ken, 277-8577, Japan
| | - Ryo Takahashi
- Division of Radiation Oncology and Particle therapy, National Cancer Center Hospital East, 6-5-1 chome, Kashiwanoha, Kashiwa-shi, Chiba-ken, 277-8577, Japan
| | - Toshiya Rachi
- Division of Radiation Oncology and Particle therapy, National Cancer Center Hospital East, 6-5-1 chome, Kashiwanoha, Kashiwa-shi, Chiba-ken, 277-8577, Japan
| | - Naoki Nakamura
- Division of Radiation Oncology and Particle therapy, National Cancer Center Hospital East, 6-5-1 chome, Kashiwanoha, Kashiwa-shi, Chiba-ken, 277-8577, Japan
| | - Sadamoto Zenda
- Division of Radiation Oncology and Particle therapy, National Cancer Center Hospital East, 6-5-1 chome, Kashiwanoha, Kashiwa-shi, Chiba-ken, 277-8577, Japan
| | - Atsushi Motegi
- Division of Radiation Oncology and Particle therapy, National Cancer Center Hospital East, 6-5-1 chome, Kashiwanoha, Kashiwa-shi, Chiba-ken, 277-8577, Japan
| | - Hidenobu Tachibana
- Division of Radiation Oncology and Particle therapy, National Cancer Center Hospital East, 6-5-1 chome, Kashiwanoha, Kashiwa-shi, Chiba-ken, 277-8577, Japan
| | - Takaki Ariji
- Division of Radiation Oncology and Particle therapy, National Cancer Center Hospital East, 6-5-1 chome, Kashiwanoha, Kashiwa-shi, Chiba-ken, 277-8577, Japan
| | - Kana Motegi
- Division of Radiation Oncology and Particle therapy, National Cancer Center Hospital East, 6-5-1 chome, Kashiwanoha, Kashiwa-shi, Chiba-ken, 277-8577, Japan
| | - Masaki Nakamura
- Division of Radiation Oncology and Particle therapy, National Cancer Center Hospital East, 6-5-1 chome, Kashiwanoha, Kashiwa-shi, Chiba-ken, 277-8577, Japan
| | - Masayuki Okumura
- Division of Radiation Oncology and Particle therapy, National Cancer Center Hospital East, 6-5-1 chome, Kashiwanoha, Kashiwa-shi, Chiba-ken, 277-8577, Japan
| | - Yasuhiro Hirano
- Division of Radiation Oncology and Particle therapy, National Cancer Center Hospital East, 6-5-1 chome, Kashiwanoha, Kashiwa-shi, Chiba-ken, 277-8577, Japan
| | - Tetsuo Akimoto
- Division of Radiation Oncology and Particle therapy, National Cancer Center Hospital East, 6-5-1 chome, Kashiwanoha, Kashiwa-shi, Chiba-ken, 277-8577, Japan. .,Course of Advanced Clinical Research of Cancer, Graduate school of Medicine, Juntendo University, Tokyo, Japan.
| |
Collapse
|
21
|
Rutenberg MS, Nichols RC. Proton beam radiotherapy for pancreas cancer. J Gastrointest Oncol 2020; 11:166-175. [PMID: 32175120 PMCID: PMC7052755 DOI: 10.21037/jgo.2019.03.02] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 03/07/2019] [Indexed: 12/17/2022] Open
Abstract
Pancreatic carcinoma is a challenging malignancy to manage with a very poor prognosis. Despite continued difficulties in its management, there have been incremental improvements in outcomes over the past several decades. Achieving the best oncologic outcomes requires a multimodality approach including surgery, chemotherapy, and radiotherapy. Proton radiotherapy enables the delivery of high-dose radiotherapy to the tumor or resection bed while sparing nearby critical organs. Due to their unique physical properties, protons can deliver radiotherapy dose distributions that are not achievable with photons (X-rays) even with advanced photon delivery techniques (e.g., intensity-modulated radiotherapy). Improved dose distributions can lead to reduced treatment toxicity and enable treatment intensification. As better chemotherapy regimens lead to better systemic disease control, it will become increasingly important that local-regional control is achieved. This will in part be accomplished by combining better radiotherapy with more active chemotherapies. Proton radiotherapy provides an excellent means for achieving this.
Collapse
Affiliation(s)
- Michael S Rutenberg
- Department of Radiation Oncology, University of Florida College of Medicine, Jacksonville, FL, USA
| | - Romaine C Nichols
- Department of Radiation Oncology, University of Florida College of Medicine, Jacksonville, FL, USA
| |
Collapse
|
22
|
Dell’Oro M, Short M, Wilson P, Bezak E. Clinical Limitations of Photon, Proton and Carbon Ion Therapy for Pancreatic Cancer. Cancers (Basel) 2020; 12:cancers12010163. [PMID: 31936565 PMCID: PMC7017270 DOI: 10.3390/cancers12010163] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/03/2020] [Accepted: 01/06/2020] [Indexed: 02/08/2023] Open
Abstract
Introduction: Despite improvements in radiation therapy, chemotherapy and surgical procedures over the last 30 years, pancreatic cancer 5-year survival rate remains at 9%. Reduced stroma permeability and heterogeneous blood supply to the tumour prevent chemoradiation from making a meaningful impact on overall survival. Hypoxia-activated prodrugs are the latest strategy to reintroduce oxygenation to radioresistant cells harbouring in pancreatic cancer. This paper reviews the current status of photon and particle radiation therapy for pancreatic cancer in combination with systemic therapies and hypoxia activators. Methods: The current effectiveness of management of pancreatic cancer was systematically evaluated from MEDLINE® database search in April 2019. Results: Limited published data suggest pancreatic cancer patients undergoing carbon ion therapy and proton therapy achieve a comparable median survival time (25.1 months and 25.6 months, respectively) and 1-year overall survival rate (84% and 77.8%). Inconsistencies in methodology, recording parameters and protocols have prevented the safety and technical aspects of particle therapy to be fully defined yet. Conclusion: There is an increasing requirement to tackle unmet clinical demands of pancreatic cancer, particularly the lack of synergistic therapies in the advancing space of radiation oncology.
Collapse
Affiliation(s)
- Mikaela Dell’Oro
- Cancer Research Institute and School of Health Sciences, University of South Australia, Adelaide SA 5001, Australia; (M.S.); (E.B.)
- Department of Radiation Oncology, Royal Adelaide Hospital, Adelaide SA 5000, Australia;
- Correspondence: ; Tel.: +61-435214264
| | - Michala Short
- Cancer Research Institute and School of Health Sciences, University of South Australia, Adelaide SA 5001, Australia; (M.S.); (E.B.)
| | - Puthenparampil Wilson
- Department of Radiation Oncology, Royal Adelaide Hospital, Adelaide SA 5000, Australia;
- School of Engineering, University of South Australia, Adelaide SA 5001, Australia
| | - Eva Bezak
- Cancer Research Institute and School of Health Sciences, University of South Australia, Adelaide SA 5001, Australia; (M.S.); (E.B.)
- Department of Physics, University of Adelaide, Adelaide SA 5005, Australia
| |
Collapse
|
23
|
Chen M, Yepes P, Hojo Y, Poenisch F, Li Y, Chen J, Xu C, He X, Gunn GB, Frank SJ, Sahoo N, Li H, Zhu XR, Zhang X. Transitioning from measurement-based to combined patient-specific quality assurance for intensity-modulated proton therapy. Br J Radiol 2019; 93:20190669. [PMID: 31799859 DOI: 10.1259/bjr.20190669] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE This study is part of ongoing efforts aiming to transit from measurement-based to combined patient-specific quality assurance (PSQA) in intensity-modulated proton therapy (IMPT). A Monte Carlo (MC) dose-calculation algorithm is used to improve the independent dose calculation and to reveal the beam modeling deficiency of the analytical pencil beam (PB) algorithm. METHODS A set of representative clinical IMPT plans with suboptimal PSQA results were reviewed. Verification plans were recalculated using an MC algorithm developed in-house. Agreements of PB and MC calculations with measurements that quantified by the γ passing rate were compared. RESULTS The percentage of dose planes that met the clinical criteria for PSQA (>90% γ passing rate using 3%/3 mm criteria) increased from 71.40% in the original PB calculation to 95.14% in the MC recalculation. For fields without beam modifiers, nearly 100% of the dose planes exceeded the 95% γ passing rate threshold using the MC algorithm. The model deficiencies of the PB algorithm were found in the proximal and distal regions of the SOBP, where MC recalculation improved the γ passing rate by 11.27% (p < 0.001) and 16.80% (p < 0.001), respectively. CONCLUSIONS The MC algorithm substantially improved the γ passing rate for IMPT PSQA. Improved modeling of beam modifiers would enable the use of the MC algorithm for independent dose calculation, completely replacing additional depth measurements in IMPT PSQA program. For current users of the PB algorithm, further improving the long-tail modeling or using MC simulation to generate the dose correction factor is necessary. ADVANCES IN KNOWLEDGE We justified a change in clinical practice to achieve efficient combined PSQA in IMPT by using the MC algorithm that was experimentally validated in almost all the clinical scenarios in our center. Deficiencies in beam modeling of the current PB algorithm were identified and solutions to improve its dose-calculation accuracy were provided.
Collapse
Affiliation(s)
- Mei Chen
- Department of Radiation Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Pablo Yepes
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Physics and Astronomy Department, Rice University, Houston, Texas, USA
| | - Yoshifumi Hojo
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Falk Poenisch
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yupeng Li
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jiayi Chen
- Department of Radiation Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cheng Xu
- Department of Radiation Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaodong He
- Department of Radiation Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - G Brandon Gunn
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Steven J Frank
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Narayan Sahoo
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Heng Li
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Xiaorong Ronald Zhu
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Xiaodong Zhang
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|