1
|
Hao Y, Shi C, Zhang Y, Zou R, Dong S, Yang C, Niu L. The research status and future direction of polyetheretherketone in dental implant -A comprehensive review. Dent Mater J 2024; 43:609-620. [PMID: 39085142 DOI: 10.4012/dmj.2024-076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Currently, dental implants primarily rely on the use of titanium and titanium alloys. However, the extensive utilization of these materials in clinical practice has unveiled various problems including stress shielding, corrosion, allergic reactions, cytotoxicity, and image artifacts. As a result, polyetheretherketone (PEEK) has emerged as a notable alternative due to its favorable mechanical properties, corrosion resistance, wear resistance, biocompatibility, radiation penetrability and MRI compatibility. Meanwhile, the advancement and extensive application of 3D printing technology has expanded the range of medical applications for PEEK, including artificial spines, skulls, ribs, shinbones, hip joints, and temporomandibular joints. In this review, we aim to assess the advantages and disadvantages of PEEK as a dental implant material, summarize the measures taken to address its shortcomings and their effects, and provide insight into the future potential of PEEK in dental implant applications, with the goal of offering guidance and reference for future research endeavors.
Collapse
Affiliation(s)
- Yaqi Hao
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases
| | - Changquan Shi
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University
| | - Yuwei Zhang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases
| | - Rui Zou
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases
| | - Shaojie Dong
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases
- Department of Prosthodontics, College of Stomatology, Xi'an Jiaotong University
| | | | - Lin Niu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases
- Department of Prosthodontics, College of Stomatology, Xi'an Jiaotong University
| |
Collapse
|
2
|
Cheers GM, Weimer LP, Neuerburg C, Arnholdt J, Gilbert F, Thorwächter C, Holzapfel BM, Mayer-Wagner S, Laubach M. Advances in implants and bone graft types for lumbar spinal fusion surgery. Biomater Sci 2024; 12:4875-4902. [PMID: 39190323 DOI: 10.1039/d4bm00848k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
The increasing prevalence of spinal disorders worldwide necessitates advanced treatments, particularly interbody fusion for severe cases that are unresponsive to non-surgical interventions. This procedure, especially 360° lumbar interbody fusion, employs an interbody cage, pedicle screw-and-rod instrumentation, and autologous bone graft (ABG) to enhance spinal stability and promote fusion. Despite significant advancements, a persistent 10% incidence of non-union continues to result in compromised patient outcomes and escalated healthcare costs. Innovations in lumbar stabilisation seek to mimic the properties of natural bone, with evolving implant materials like titanium (Ti) and polyetheretherketone (PEEK) and their composites offering new prospects. Additionally, biomimetic cages featuring precisely engineered porosities and interconnectivity have gained traction, as they enhance osteogenic differentiation, support osteogenesis, and alleviate stress-shielding. However, the limitations of ABG, such as harvesting morbidities and limited fusion capacity, have spurred the exploration of sophisticated solutions involving advanced bone graft substitutes. Currently, demineralised bone matrix and ceramics are in clinical use, forming the basis for future investigations into novel bone graft substitutes. Bioglass, a promising newcomer, is under investigation despite its observed rapid absorption and the potential for foreign body reactions in preclinical studies. Its clinical applicability remains under scrutiny, with ongoing research addressing challenges related to burst release and appropriate dosing. Conversely, the well-documented favourable osteogenic potential of growth factors remains encouraging, with current efforts focused on modulating their release dynamics to minimise complications. In this evidence-based narrative review, we provide a comprehensive overview of the evolving landscape of non-degradable spinal implants and bone graft substitutes, emphasising their applications in lumbar spinal fusion surgery. We highlight the necessity for continued research to improve clinical outcomes and enhance patient well-being.
Collapse
Affiliation(s)
- Giles Michael Cheers
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
| | - Lucas Philipp Weimer
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
| | - Carl Neuerburg
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
| | - Jörg Arnholdt
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
| | - Fabian Gilbert
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
| | - Christoph Thorwächter
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
| | - Boris Michael Holzapfel
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
| | - Susanne Mayer-Wagner
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
| | - Markus Laubach
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
- Australian Research Council (ARC) Training Centre for Multiscale 3D Imaging, Modelling and Manufacturing (M3D Innovation), Queensland University of Technology, Brisbane, QLD 4000, Australia
| |
Collapse
|
3
|
Inglis JE, Goodwin AM, Divi SN, Hsu WK. Advances in Synthetic Grafts in Spinal Fusion Surgery. Int J Spine Surg 2023; 17:S18-S27. [PMID: 37748919 PMCID: PMC10753330 DOI: 10.14444/8557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023] Open
Abstract
Degenerative spine disease is increasing in prevalence as the global population ages, indicating a need for targeted therapies and continued innovations. While autograft and allograft have historically demonstrated robust results in spine fusion surgery, they have significant limitations and associated complications such as infection, donor site morbidity and pain, and neurovascular injury. Synthetic grafts may provide similar success while mitigating negative outcomes. A narrative literature review was performed to review available synthetic materials that aim to optimize spinal fusion. The authors specifically address the evolution of synthetics and comment on future trends. Novel synthetic materials currently in use include ceramics, synthetic polymers and peptides, bioactive glasses, and peptide amphiphiles, and the authors focus on their success in both human and animal models, physical properties, advantages, and disadvantages. Advantages include properties of osteoinduction, osteoconduction, and osteogenesis, whereas disadvantages encompass a lack of these properties or growth factor-induced complications. Typically, the use of synthetic materials results in fewer complications and lower costs. While the development and tuning of synthetic materials are ongoing, there are many beneficial alternatives to autografts and allografts with promising fusion results.
Collapse
Affiliation(s)
- Jacqueline E Inglis
- Department of Orthopedic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Alyssa M Goodwin
- Department of Orthopedic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Srikanth N Divi
- Department of Orthopedic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Wellington K Hsu
- Department of Orthopedic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
4
|
Heimann RB. Silicon Nitride Ceramics: Structure, Synthesis, Properties, and Biomedical Applications. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5142. [PMID: 37512416 PMCID: PMC10383158 DOI: 10.3390/ma16145142] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023]
Abstract
Silicon nitride ceramics excel by superior mechanical, thermal, and chemical properties that render the material suitable for applications in several technologically challenging fields. In addition to high temperature, high stress applications have been implemented in aerospace gas turbines and internal combustion engines as well as in tools for metal manufacturing, forming, and machining. During the past few decades, extensive research has been performed to make silicon nitride suitable for use in a variety of biomedical applications. This contribution discusses the structure-property-application relations of silicon nitride. A comparison with traditional oxide-based ceramics confirms that the advantageous mechanical and biomedical properties of silicon nitride are based on a high proportion of covalent bonds. The present biomedical applications are reviewed here, which include intervertebral spacers, orthopedic and dental implants, antibacterial and antiviral applications, and photonic parts for medical diagnostics.
Collapse
|
5
|
Zou R, Bi L, Huang Y, Wang Y, Wang Y, Li L, Liu J, Feng L, Jiang X, Deng B. A biocompatible silicon nitride dental implant material prepared by digital light processing technology. J Mech Behav Biomed Mater 2023; 141:105756. [PMID: 36898355 DOI: 10.1016/j.jmbbm.2023.105756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/27/2023] [Accepted: 03/03/2023] [Indexed: 03/06/2023]
Abstract
For decades, titanium has been the preferred material for dental implant fabrication. However, metallic ions and particles can cause hypersensitivity and aseptic loosening. The growing demand for metal-free dental restorations has also promoted the development of ceramic-based dental implants, such as silicon nitride. In this study, silicon nitride (Si3N4) dental implants were fabricated for biological engineering by photosensitive resin based digital light processing (DLP) technology, comparable to conventionally produced Si3N4 ceramics. The flexural strength was (770 ± 35) MPa by the three-point bending method, and the fracture toughness was (13.3 ± 1.1) MPa · m1/2 by the unilateral pre-cracked beam method. The elastic modulus measured by the bending method was (236 ± 10) GPa. To confirm whether the prepared Si3N4 ceramics possessed good biocompatibility, in vitro biological experiments were performed with the fibroblast cell line L-929, and preferable cell proliferation and apoptosis were observed at the initial stages. Hemolysis test, oral mucous membrane irritation test, and acute systemic toxicity test (oral route) further confirmed that the Si3N4 ceramics did not exhibit hemolysis reaction, oral mucosal stimulation, or systemic toxicity. The findings indicate that Si3N4 dental implant restorations with personalized structures prepared by DLP technology have good mechanical properties and biocompatibility, which has great application potential in the future.
Collapse
Affiliation(s)
- Rongfang Zou
- Chinese PLA Medical School, Beijing, 100853, China; Department of Stomatology, the First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Lunan Bi
- Shandong Industrial Ceramic Research and Design Institute Co. Ltd., Zibo, 255000, Shandong, China
| | - Yang Huang
- Department of Stomatology, the First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Yadi Wang
- Chinese PLA Medical School, Beijing, 100853, China
| | - Yan Wang
- Beijing Institute of Basic Medical Science, Beijing, 100850, China
| | - Lin Li
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, PR China
| | - Jiayin Liu
- Chinese PLA Medical School, Beijing, 100853, China
| | - Lu Feng
- Chinese PLA Medical School, Beijing, 100853, China
| | - Xiaoxia Jiang
- Beijing Institute of Basic Medical Science, Beijing, 100850, China.
| | - Bin Deng
- Department of Stomatology, the First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
6
|
Ament JD, Vokshoor A, Yee R, Johnson JP. A Systematic Review and Meta-Analysis of Silicon Nitride and Biomaterial Modulus as it Relates to Subsidence Risk in Spinal Fusion Surgery. NORTH AMERICAN SPINE SOCIETY JOURNAL (NASSJ) 2022; 12:100168. [PMID: 36147584 PMCID: PMC9486012 DOI: 10.1016/j.xnsj.2022.100168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 11/18/2022]
Abstract
Introduction For decades, researchers and surgeons have sought to determine the optimal biomaterial for spinal fusion implants. Successful fusion is associated with improved quality of life while failures are often associated with costly and complex revisions. One common failure is subsidence. Biomaterials with higher modulus are thought to be related to subsidence risk but this has not been thoroughly investigated. The aim of this systematic review and meta-analysis is to assess silicon nitride and biomaterial modulus as they relate to subsidence risk in spinal fusions. Methods A systematic review was conducted using the Preferred Reporting Items for Systematic Review and Meta-Analyses guidelines. Databases searched included PubMed-Medline, Google Scholar, Embase, EBSCO, and Cochrane Library. Study quality was assessed according to the Newcastle-Ottawa Scale. A network meta-analysis was chosen, allowing for direct and indirect comparisons for multiple treatments using a Bayesian hierarchical framework with Markov chain Monte Carlo methods. Outcomes were reported as odds ratios with 95% confidence intervals. Heterogeneity between studies was evaluated using the I2 test. A pairwise meta-analysis was also produced to compare the results of network analysis for consistency. Publication bias was assessed using a funnel plot, Egger test, and Begg test. All analyses were conducted using R (Project for Statistical Computing, ver. 4.0.4). Results The initial search yielded a total of 821 articles. After removal of duplicates and screening based on inclusion and exclusion criteria, 64 articles were available for review and 13 were selected for meta-analysis. Biomaterial implant types in the final studies included: silicon nitride (Si3N4), polyetheretherketone (PEEK), titanium (Ti), and two composites, nano-hydroxyapatite/polyamide 66 (n-HA/PA66) and a carbon fiber reinforced polymer (CFRP). A total of 1,192 patients were included in this analysis – 419 with titanium implants, 460 with PEEK, 96 with Si3N4, 332 with n-HA/PA66, and 35 with CFRP. Titanium had the highest rate of subsidence compared to other biomaterials. Pairwise analysis was consistent with these results. Both the Egger test (p = 0.28) and Begg test (p = 0.37) were found to be non-significant for publication bias. Conclusions Spinal fusion implants derived from Si3N4, compared to PEEK and titanium, do not appear to be correlated with increased subsidence risk.
Collapse
Affiliation(s)
- Jared D. Ament
- Neurosurgery & Spine Group, Los Angeles CA
- Institute for NeuroInnovation, Los Angeles, CA
- Neuronomics, Los Angeles, CA
- Cedars Sinai Medical Center, Los Angeles, CA
- Corresponding author: Neurosurgery & Spine Group, 7320 Woodlake Ave., Suite 215, West Hills, CA 91307. 800-899-0101
| | - Amir Vokshoor
- Neurosurgery & Spine Group, Los Angeles CA
- Institute for NeuroInnovation, Los Angeles, CA
| | | | | |
Collapse
|
7
|
Gray MT, Davis KP, McEntire BJ, Bal BS, Smith MW. Transforaminal lumbar interbody fusion with a silicon nitride cage demonstrates early radiographic fusion. JOURNAL OF SPINE SURGERY (HONG KONG) 2022; 8:29-43. [PMID: 35441113 PMCID: PMC8990392 DOI: 10.21037/jss-21-115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Degeneration of the lumbar spine is common in aging adults and reflects a significant morbidity burden in this population. In selected patients that prove unresponsive to non-surgical treatment, posterior lumbar fusion (PLF) surgery, with or without adjunctive transforaminal lumbar interbody fusion (TLIF) can relieve pain and improve function. We describe here the radiographic fusion rates for PLF versus TLIF, using an intervertebral spinal cage made of silicon nitride ceramic (chemical formula Si3N4). METHODS This retrospective cohort analysis enrolled 99 patients from August 2013 to January 2017; 17 had undergone PLF at 24 levels, while 82 had undergone TLIF at 104 levels. All operations were performed by a single surgeon at one institution. Radiographic and clinical outcomes were compared between PLF and TLIF at 2 and 6 weeks and then at 3, 6, 12, and 24 months. RESULTS TLIF patients fused at higher rates compared to PLF at the 3-month (38.5% vs. 8.3%, P=0.006), 6-month (78.7% vs. 35.0%, P<0.001) and 12-month time periods (97.9% vs. 81.3%, P=0.018), with no difference at 24 months (100% vs. 94.4%, P=0.102). Index level segmental motion was significantly less and intervertebral disc height was improved in TLIF over PLF at all follow up intervals. Foraminal height was only greater in early follow up periods (2 weeks, 6 weeks and 3 months). TLIF patients experienced lover rates of PI-LL mismatch which was maintained across long term follow-up. Pelvic tilt was lower following TLIF compared to PLF, with no differences in complication rates between study groups. CONCLUSIONS Our retrospective series demonstrated that TLIF performed with silicon nitride interbody cages led to earlier radiographic fusion, greater restoration of disc and foraminal height, increased segmental rigidity and improved sagittal alignment when compared to PLF alone.
Collapse
Affiliation(s)
| | - Kyle P. Davis
- Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - B. Sonny Bal
- SINTX Technologies Corporation, Salt Lake City, UT, USA
| | | |
Collapse
|
8
|
Sona Filho CR, Machado de Souza Carvalho F, Chaves Guedes-Silva C. Mechanical properties and in vitro bioactivity of silicon nitride ceramics with SiO 2 , CaO, and MgO additions. J Biomed Mater Res B Appl Biomater 2021; 110:507-516. [PMID: 34480786 DOI: 10.1002/jbm.b.34930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 08/04/2021] [Accepted: 08/22/2021] [Indexed: 11/05/2022]
Abstract
Silicon nitride ceramics with SiO2 , CaO, and MgO as sintering aids were investigated in view of biomedical applications. In the current study, samples with four different compositions were pressureless sintered at 1750°C for 1 h under a nitrogen atmosphere. The samples were evaluated concerning densification, microstructure, mechanical properties, and in vitro bioactivity. Microstructures with elongated β-Si3 N4 grains dispersed in an intergranular phase and with densities from 78.77 to 97.14% of the theoretical density were obtained. Higher contents of SiO2 resulted in the best densification and mechanical properties. Besides, replacements of CaO by MgO in the initial compositions affected Young's modulus and in vitro bioactivity. Considering the samples with relative density higher than 94.14%, those with lower values of Young's modulus had lower SiO2 /MgO ratios. After immersion in SBF (Simulated Body Fluid), the samples with high porosity and/or partial replacements of CaO by MgO had their surfaces coated with a layer rich in calcium and phosphorus, morphologically similar to hydroxyapatite. Hence, producing silicon nitride ceramics with the potential to be used as orthopedic implants must consider ideal amounts of additives. In this article, the best combination of mechanical properties and mineralization capability was reached by the composition with low content of MgO, and high content of SiO2 and CaO.
Collapse
|
9
|
Fiani B, Jarrah R, Shields J, Sekhon M. Enhanced biomaterials: systematic review of alternatives to supplement spine fusion including silicon nitride, bioactive glass, amino peptide bone graft, and tantalum. Neurosurg Focus 2021; 50:E10. [PMID: 34062502 DOI: 10.3171/2021.3.focus201044] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 03/22/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Spinal fusions are among the most common and effective spinal surgical practices; however, the current model presents some cost and safety concerns within the patient population. Therefore, enhanced biomaterials have been presented to be an innovative yet underutilized tool to supplement the success of spinal fusion surgery. Herein, the authors discuss these biomaterials, their compositions, clinical outcomes, and cost analysis through a systematic review of the literature to date. METHODS This systematic review was conducted using the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) criteria and guidelines. Article selection was performed using the PubMed electronic bibliographic databases. The search yielded 1168 articles that were assessed and filtered for relevance by the four authors. Following the screening of titles and abstracts, 62 articles were deemed significant enough for final selection. RESULTS To date, silicon nitride, bioactive glass, amino peptide bone grafts, and tantalum are all biomaterials that could have significant roles in supporting spinal fusion. Their unique compositions allow them to be biocompatible in the spine, and their mechanisms of action stimulate osteoblast formation and support fusion success. Moreover, these biomaterials also present positive clinical and cost outcomes that support their application in spinal procedures. However, further studies with longer follow-ups are necessary to fully understand these biomaterials prior to their incorporation in mainstream spinal practice. CONCLUSIONS The combination of their positive clinical outcomes, biocompatibility, and cost-effectiveness makes these biomaterials valuable, innovative, and effective treatment modalities that could revolutionize the current model of spinal fusion.
Collapse
Affiliation(s)
- Brian Fiani
- 1Department of Neurosurgery, Desert Regional Medical Center, Palm Springs, California
| | - Ryan Jarrah
- 2College of Arts and Sciences, University of Michigan-Flint
| | - Jennifer Shields
- 3College of Human Medicine, Michigan State University, East Lansing; and
| | - Manraj Sekhon
- 4William Beaumont School of Medicine, Oakland University, Rochester, Michigan
| |
Collapse
|
10
|
Pezzotti G, Fujita Y, Boschetto F, Zhu W, Marin E, Vandelle E, McEntire BJ, Bal SB, Giarola M, Makimura K, Polverari A. Activity and Mechanism of Action of the Bioceramic Silicon Nitride as an Environmentally Friendly Alternative for the Control of the Grapevine Downy Mildew Pathogen Plasmopara viticola. Front Microbiol 2020; 11:610211. [PMID: 33381101 PMCID: PMC7767917 DOI: 10.3389/fmicb.2020.610211] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 11/11/2020] [Indexed: 02/03/2023] Open
Abstract
Downy mildew of grapevine, caused by Plasmopara viticola (Berk. and Curt.) Berl. and de Toni, is one of the most devastating diseases of grapevine, severely affecting grape and wine production and quality worldwide. Infections are usually controlled by the intensive application of synthetic fungicides or by copper-based products in organic farming, rising problems for soil contamination and adverse impacts on environment and human health. While strict regulations attempt to minimize their harmful consequences, the situation calls for the development of alternative fungicidal strategies. This study presents the unprecedented case of a bioceramic, silicon nitride, with antimicrobial properties against P. viticola, but without adverse effects on human cells and environment, opening the way to the possible extension of silicon nitride applications in agriculture. Raman spectroscopic assessments of treated sporangia in conjunction with microscopic observations mechanistically showed that the nitrogen-chemistry of the bioceramic surface affects pathogen's biochemical components and cell viability, thus presenting a high potential for host protection from P. viticola infections.
Collapse
Affiliation(s)
- Giuseppe Pezzotti
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Kyoto, Japan
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Department of Orthopedic Surgery, Tokyo Medical University, Tokyo, Japan
- The Center for Advanced Medical Engineering and Informatics, Osaka University, Osaka, Japan
| | - Yuki Fujita
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Kyoto, Japan
| | - Francesco Boschetto
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Kyoto, Japan
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Wenliang Zhu
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Kyoto, Japan
| | - Elia Marin
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Kyoto, Japan
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Elodie Vandelle
- Laboratory of Phytopathology, Department of Biotechnology, University of Verona, Verona, Italy
| | | | - Sonny B. Bal
- SINTX Technologies Corporation, Salt Lake City, UT, United States
| | - Marco Giarola
- Raman Laboratory, Centro Piattaforme Tecnologiche, University of Verona, Verona, Italy
| | - Koichi Makimura
- Medical Mycology, Graduate School of Medicine, Teikyo University, Tokyo, Japan
| | - Annalisa Polverari
- Laboratory of Phytopathology, Department of Biotechnology, University of Verona, Verona, Italy
| |
Collapse
|