1
|
Righi I, Barone I, Rosso L, Morlacchi LC, Rossetti V, Caffarena G, Limanaqi F, Palleschi A, Clerici M, Trabattoni D. Immunopathology of lung transplantation: from infection to rejection and vice versa. Front Immunol 2024; 15:1433469. [PMID: 39286256 PMCID: PMC11402714 DOI: 10.3389/fimmu.2024.1433469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/14/2024] [Indexed: 09/19/2024] Open
Abstract
Lung transplantation offers a lifesaving option for patients with end-stage lung disease, but it is marred by a high risk of post-transplant infections, particularly involving multidrug-resistant bacteria, Cytomegalovirus, and fungal pathogens. This elevated infection rate, the highest among solid organ transplants, poses a significant challenge for clinicians, particularly within the first year post-transplantation, where infections are the leading cause of mortality. The direct exposure of lung allografts to the external environment exacerbates this vulnerability leading to constant immune stimulation and consequently to an elevated risk of triggering alloimmune responses to the lung allograft. The necessity of prolonged immunosuppression to prevent allograft rejection further complicates patient management by increasing susceptibility to infections and neoplasms, and complicating the differentiation between rejection and infection, which require diametrically opposed management strategies. This review explores the intricate balance between preventing allograft rejection and managing the heightened infection risk in lung transplant recipients.
Collapse
Affiliation(s)
- Ilaria Righi
- Thoracic Surgery and Lung Transplant Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Ivan Barone
- Respiratory Unit and Cystic Fibrosis Adult Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Lorenzo Rosso
- Thoracic Surgery and Lung Transplant Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Letizia Corinna Morlacchi
- Respiratory Unit and Cystic Fibrosis Adult Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Valeria Rossetti
- Respiratory Unit and Cystic Fibrosis Adult Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giovanni Caffarena
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Department of Thoracic Surgery, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Fiona Limanaqi
- Department of Biomedical and Clinical Sciences (DIBIC), University of Milan, Milan, Italy
| | - Alessandro Palleschi
- Thoracic Surgery and Lung Transplant Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Mario Clerici
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Fondazione Don C. Gnocchi IRCCS, Milan, Italy
| | - Daria Trabattoni
- Department of Biomedical and Clinical Sciences (DIBIC), University of Milan, Milan, Italy
| |
Collapse
|
2
|
Hanks J, Girard C, Sehgal S. Acute rejection post lung transplant. Curr Opin Pulm Med 2024; 30:391-397. [PMID: 38656281 DOI: 10.1097/mcp.0000000000001078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
PURPOSE OF REVIEW To review what is currently known about the pathogenesis, diagnosis, treatment, and prevention of acute rejection (AR) in lung transplantation. RECENT FINDINGS Epigenomic and transcriptomic methods are gaining traction as tools for earlier detection of AR, which still remains primarily a histopathologic diagnosis. SUMMARY Acute rejection is a common cause of early posttransplant lung graft dysfunction and increases the risk of chronic rejection. Detection and diagnosis of AR is primarily based on histopathology, but noninvasive molecular methods are undergoing investigation. Two subtypes of AR exist: acute cellular rejection (ACR) and antibody-mediated rejection (AMR). Both can have varied clinical presentation, ranging from asymptomatic to fulminant ARDS, and can present simultaneously. Diagnosis of ACR requires transbronchial biopsy; AMR requires the additional measuring of circulating donor-specific antibody (DSA) levels. First-line treatment in ACR is increased immunosuppression (pulse-dose or tapered dose glucocorticoids); refractory cases may need antibody-based lymphodepletion therapy. First line treatment in AMR focuses on circulating DSA removal with B and plasma cell depletion; plasmapheresis, intravenous human immunoglobulin (IVIG), bortezomib, and rituximab are often employed.
Collapse
Affiliation(s)
- Justin Hanks
- Department of Pulmonary Medicine, Integrated Hospital Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | | | | |
Collapse
|
3
|
Mostkowska A, Rousseau G, Raynal NJM. Repurposing of rituximab biosimilars to treat B cell mediated autoimmune diseases. FASEB J 2024; 38:e23536. [PMID: 38470360 DOI: 10.1096/fj.202302259rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/12/2024] [Accepted: 02/21/2024] [Indexed: 03/13/2024]
Abstract
Rituximab, the first monoclonal antibody approved for the treatment of lymphoma, eventually became one of the most popular and versatile drugs ever in terms of clinical application and revenue. Since its patent expiration, and consequently, the loss of exclusivity of the original biologic, its repurposing as an off-label drug has increased dramatically, propelled by the development and commercialization of its many biosimilars. Currently, rituximab is prescribed worldwide to treat a vast range of autoimmune diseases mediated by B cells. Here, we present a comprehensive overview of rituximab repurposing in 115 autoimmune diseases across 17 medical specialties, sourced from over 1530 publications. Our work highlights the extent of its off-label use and clinical benefits, underlining the success of rituximab repurposing for both common and orphan immune-related diseases. We discuss the scientific mechanism associated with its clinical efficacy and provide additional indications for which rituximab could be investigated. Our study presents rituximab as a flagship example of drug repurposing owing to its central role in targeting cluster of differentiate 20 positive (CD20) B cells in 115 autoimmune diseases.
Collapse
Affiliation(s)
- Agata Mostkowska
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Guy Rousseau
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Noël J-M Raynal
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
- Centre de recherche du CHU Sainte-Justine, University of Montreal, Montreal, Quebec, Canada
| |
Collapse
|
4
|
Ehrsam JP, Meier Adamenko O, Pannu M, Markus Schöb O, Inci I. Lung transplantation in children. TURK GOGUS KALP DAMAR CERRAHISI DERGISI 2024; 32:S119-S133. [PMID: 38584780 PMCID: PMC10995684 DOI: 10.5606/tgkdc.dergisi.2024.25806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 12/05/2023] [Indexed: 04/09/2024]
Abstract
Lung transplantation is a well-established treatment for children facing advanced lung disease and pulmonary vascular disorders. However, organ shortage remains highest in children. For fitting the small chest of children, transplantation of downsized adult lungs, lobes, or even segments were successfully established. The worldwide median survival after pediatric lung transplantation is currently 5.7 years, while under consideration of age, underlying disease, and peri- and posttransplant center experience, median survival of more than 10 years is reported. Timing of referral for transplantation, ischemia-reperfusion injury, primary graft dysfunction, and acute and chronic rejection after transplantation remain the main challenges.
Collapse
Affiliation(s)
- Jonas Peter Ehrsam
- School of Medicine, University of Zurich, Zurich, Switzerland
- Department of Thoracic Surgery, Klinik Hirslanden Zurich, Zurich, Switzerland
- Klinik Hirslanden Zurich, Centre for Surgery, Zurich, Switzerland
| | | | | | - Othmar Markus Schöb
- School of Medicine, University of Zurich, Zurich, Switzerland
- Department of Thoracic Surgery, Klinik Hirslanden Zurich, Zurich, Switzerland
- Klinik Hirslanden Zurich, Centre for Surgery, Zurich, Switzerland
| | - Ilhan Inci
- School of Medicine, University of Zurich, Zurich, Switzerland
- Department of Thoracic Surgery, Klinik Hirslanden Zurich, Zurich, Switzerland
- Klinik Hirslanden Zurich, Centre for Surgery, Zurich, Switzerland
- University of Nicosia Medical School, Nicosia, Cyprus
| |
Collapse
|
5
|
Tiwari A, Mukherjee S. Role of Complement-dependent Cytotoxicity Crossmatch and HLA Typing in Solid Organ Transplant. Rev Recent Clin Trials 2024; 19:34-52. [PMID: 38155466 DOI: 10.2174/0115748871266738231218145616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/10/2023] [Accepted: 11/10/2023] [Indexed: 12/30/2023]
Abstract
BACKGROUND Solid organ transplantation is a life-saving medical operation that has progressed greatly because of developments in diagnostic tools and histocompatibility tests. Crossmatching for complement-dependent cytotoxicity (CDC) and human leukocyte antigen (HLA) typing are two important methods for checking graft compatibility and reducing the risk of graft rejection. HLA typing and CDC crossmatching are critical in kidney, heart, lung, liver, pancreas, intestine, and multi-organ transplantation. METHODS A systematic literature search was conducted on the internet, using PubMed, Scopus, and Google Scholar databases, to identify peer-reviewed publications about solid organ transplants, HLA typing, and CDC crossmatching. CONCLUSION Recent advances in HLA typing have allowed for high-resolution evaluation, epitope matching, and personalized therapy methods. Genomic profiling, next-generation sequencing, and artificial intelligence have improved HLA typing precision, resulting in better patient outcomes. Artificial intelligence (AI) driven virtual crossmatching and predictive algorithms have eliminated the requirement for physical crossmatching in the context of CDC crossmatching, boosting organ allocation and transplant efficiency. This review elaborates on the importance of HLA typing and CDC crossmatching in solid organ transplantation.
Collapse
Affiliation(s)
- Arpit Tiwari
- Amity Institute of Biotechnology, Amity University Uttar Pradesh Lucknow Campus, Lucknow, Uttar Pradesh, India
| | - Sayali Mukherjee
- Amity Institute of Biotechnology, Amity University Uttar Pradesh Lucknow Campus, Lucknow, Uttar Pradesh, India
| |
Collapse
|
6
|
Kaiho T, Suzuki H, Hata A, Matsumoto H, Tanaka K, Sakairi Y, Motohashi S, Yoshino I. Targeting PD-1/PD-L1 inhibits rejection in a heterotopic tracheal allograft model of lung transplantation. Front Pharmacol 2023; 14:1298085. [PMID: 38026994 PMCID: PMC10657857 DOI: 10.3389/fphar.2023.1298085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Immune checkpoint molecules such as programmed death-1 (PD-1) and programmed death ligand-1 (PD-L1) have revolutionized the field of lung cancer treatment. As part of our study, we examined the role of these proteins in acute rejection in a mouse model of heterotopic tracheal transplantation. Recipient mice were untreated (Allo group) or treated with anti-PD-L1 (aPDL1 group) or PD-L1 Fc recombinant protein (PD-L1 Fc group). A further group of C57BL/6 mice received isografts (Iso group). The occlusion rate was significantly higher in the Allo group than in the Iso group (p = 0.0075), and also higher in the aPD-L1 group (p = 0.0066) and lower in the PD-L1 Fc group (p = 0.030) than in the Allo group. PD-L1 Fc recombinant protein treatment significantly decreased interleukin-6 and interferon-γ levels and reduced the CD4+/CD8+ T cell ratio, without increasing PD-1 and T-cell immunoglobulin mucin 3 expression in CD4+ T cells. These data suggest that PD-L1 Fc recombinant protein decreases the levels of inflammatory cytokines and the proportion of CD4+ T cells without exhaustion. The PD-L1-mediated immune checkpoint mechanism was associated with rejection in the murine tracheal transplant model, suggesting a potential novel target for immunotherapy in lung transplantation.
Collapse
Affiliation(s)
- Taisuke Kaiho
- Department of General Thoracic Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Hidemi Suzuki
- Department of General Thoracic Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Atsushi Hata
- Department of General Thoracic Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Hiroki Matsumoto
- Department of General Thoracic Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Kazuhisa Tanaka
- Department of General Thoracic Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Yuichi Sakairi
- Department of General Thoracic Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Shinichiro Motohashi
- Department of General Thoracic Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
- Department of Medical Immunology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Ichiro Yoshino
- Department of General Thoracic Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| |
Collapse
|
7
|
Ehrsam JP, Chen J, Haberecker M, Arni S, Inci I. Effect of β-Nicotinamide Adenine Dinucleotide on Acute Allograft Rejection After Rat Lung Transplantation. Transplant Direct 2023; 9:e1516. [PMID: 37575952 PMCID: PMC10414733 DOI: 10.1097/txd.0000000000001516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 08/15/2023] Open
Abstract
Acute rejection is still a major limitation for a successful outcome in lung transplantation. Since β-nicotinamide adenine dinucleotide (NAD+) has been shown to have various immunomodulatory properties on the innate and adaptive immune system, we evaluate here a potential protective effect of NAD+ against acute lung rejection. Methods Rat single-lung transplantation was performed in 2 groups (n = 8 per group), using Brown-Norway donors and major histocompatibility complex-mismatched Lewis recipients. Recipients of the NAD+ group received 1000 mg/kg NAD+ intraperitoneally before transplantation and daily thereafter until euthanasia, whereas the control group received saline solution. At autopsy on day 5, blood samples were analyzed and the lung allograft was assessed by bronchioalveolar lavage, histology, and immunochemistry. Results The NAD+ group maintained an intact compliant lung tissue, a strong trend of lower acute cellular rejection (A3 versus A3-A4) and significantly less lymphocytic bronchiolitis (B0-B2R versus B1R-Bx). In addition, a trend of fewer alveolar CD68+ macrophages and significantly fewer interstitial CD163+ macrophages was observed. Bronchoalveolar lavage in the NAD+ group showed significantly fewer proinflammatory cytokines interleukin (IL)-6, IL-13, TNFα, and a protective IL-6/IL-10-ratio. In blood samples, we observed significantly fewer neutrophils, and proinflammatory GRO/KC in the NAD+ group. Conclusions NAD+ might be a promising substance in prevention of acute allograft rejection in lung transplantation.
Collapse
Affiliation(s)
- Jonas P. Ehrsam
- Department of Thoracic Surgery, University Hospital Zurich, Zurich, Switzerland
- Centre for Surgery Zurich, Thoracic surgery, Klinik Hirslanden, Zurich, Switzerland
| | - Jin Chen
- Department of Thoracic Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Martina Haberecker
- Department of Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Stephan Arni
- Department of Thoracic Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Ilhan Inci
- Centre for Surgery Zurich, Thoracic surgery, Klinik Hirslanden, Zurich, Switzerland
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
8
|
Iwańczyk S, Woźniak P, Smukowska-Gorynia A, Araszkiewicz A, Nowak A, Jankowski M, Konwerska A, Urbanowicz T, Lesiak M. Microcirculatory Disease in Patients after Heart Transplantation. J Clin Med 2023; 12:jcm12113838. [PMID: 37298033 DOI: 10.3390/jcm12113838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/25/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023] Open
Abstract
Although the treatment and prognosis of patients after heart transplantation have significantly improved, late graft dysfunction remains a critical problem. Two main subtypes of late graft dysfunction are currently described: acute allograft rejection and cardiac allograft vasculopathy, and microvascular dysfunction appears to be the first stage of both. Studies revealed that coronary microcirculation dysfunction, assessed by invasive methods in the early post-transplant period, correlates with a higher risk of late graft dysfunction and death during long-term follow-up. The index of microcirculatory resistance, measured early after heart transplantation, might identify the patients at higher risk of acute cellular rejection and major adverse cardiovascular events. It may also allow optimization and enhancement of post-transplantation management. Moreover, cardiac allograft vasculopathy is an independent prognostic factor for transplant rejection and survival rate. The studies showed that the index of microcirculatory resistance correlates with anatomic changes and reflects the deteriorating physiology of the epicardial arteries. In conclusion, invasive assessment of the coronary microcirculation, including the measurement of the microcirculatory resistance index, is a promising approach to predict graft dysfunction, especially the acute allograft rejection subtype, during the first year after heart transplantation. However, further advanced studies are needed to fully grasp the importance of microcirculatory dysfunction in patients after heart transplantation.
Collapse
Affiliation(s)
- Sylwia Iwańczyk
- 1st Department of Cardiology, Poznan University of Medical Sciences, 60-701 Poznań, Poland
| | - Patrycja Woźniak
- 1st Department of Cardiology, Poznan University of Medical Sciences, 60-701 Poznań, Poland
| | - Anna Smukowska-Gorynia
- 1st Department of Cardiology, Poznan University of Medical Sciences, 60-701 Poznań, Poland
| | | | - Alicja Nowak
- 1st Department of Cardiology, Poznan University of Medical Sciences, 60-701 Poznań, Poland
| | - Maurycy Jankowski
- Department of Computer Science and Statistics, Poznan University of Medical Sciences, 60-701 Poznań, Poland
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-701 Poznań, Poland
| | - Aneta Konwerska
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-701 Poznań, Poland
| | - Tomasz Urbanowicz
- Cardiac Surgery and Transplantology Department, Poznan University of Medical Sciences, 60-701 Poznań, Poland
| | - Maciej Lesiak
- 1st Department of Cardiology, Poznan University of Medical Sciences, 60-701 Poznań, Poland
| |
Collapse
|
9
|
Development and Evaluation of a Novel Radiotracer 125I-rIL-27 to Monitor Allotransplant Rejection by Specifically Targeting IL-27Rα. Mol Imaging 2023. [DOI: 10.1155/2023/4200142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Abstract
Noninvasive monitoring of allograft rejection is beneficial for the prognosis of patients with organ transplantation. Recently, IL-27/IL-27Rα was proved in close relation with inflammatory diseases, and 125I-anti-IL-27Rα mAb our group developed demonstrated high accumulation in the rejection of the allograft. However, antibody imaging has limitations in the imaging background due to its large molecular weight. Therefore, we developed a novel radiotracer (iodine-125-labeled recombinant IL-27) to evaluate the advantage in the targeting and imaging of allograft rejection. In vitro specific binding of 125I-rIL-27 was determined by saturation and competitive assay. Blood clearance, biodistribution, phosphor autoradioimaging, and IL-27Rα expression were studied on day 10 after transplantation (top period of allorejection). Our results indicated that 125I-rIL-27 could bind with IL-27Rα specifically and selectively in vitro. The blood clearance assay demonstrated fast blood clearance with 13.20 μl/h of 125I-rIL-27 staying in the blood after 24 h. The whole-body phosphor autoradiography and biodistribution assay indicated a higher specific uptake of 125I-rIL-27 and a clear radioimage in allograft than in syngraft at 24 h, while a similar result was obtained at 48 h in the group of 125I-anti-IL-27Rα mAb injection. Meanwhile, a higher expression of IL-27Rα was found in the allograft by Western blot. The accumulation of radioactivity of 125I-rIL-27 was highly correlated with the expression of IL-27Rα in the allograft. In conclusion, 125I-rIL-27 could be a promising probe for acutely monitoring allograft rejection with high specific binding towards IL-27Rα on allograft and low imaging background.
Collapse
|
10
|
Bos S, Milross L, Filby AJ, Vos R, Fisher AJ. Immune processes in the pathogenesis of chronic lung allograft dysfunction: identifying the missing pieces of the puzzle. Eur Respir Rev 2022; 31:31/165/220060. [PMID: 35896274 DOI: 10.1183/16000617.0060-2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/19/2022] [Indexed: 11/05/2022] Open
Abstract
Lung transplantation is the optimal treatment for selected patients with end-stage chronic lung diseases. However, chronic lung allograft dysfunction remains the leading obstacle to improved long-term outcomes. Traditionally, lung allograft rejection has been considered primarily as a manifestation of cellular immune responses. However, in reality, an array of complex, interacting and multifactorial mechanisms contribute to its emergence. Alloimmune-dependent mechanisms, including T-cell-mediated rejection and antibody-mediated rejection, as well as non-alloimmune injuries, have been implicated. Moreover, a role has emerged for autoimmune responses to lung self-antigens in the development of chronic graft injury. The aim of this review is to summarise the immune processes involved in the pathogenesis of chronic lung allograft dysfunction, with advanced insights into the role of innate immune pathways and crosstalk between innate and adaptive immunity, and to identify gaps in current knowledge.
Collapse
Affiliation(s)
- Saskia Bos
- Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, UK.,Institute of Transplantation, Newcastle upon Tyne Hospitals NHS Trust, Newcastle upon Tyne, UK
| | - Luke Milross
- Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, UK
| | - Andrew J Filby
- Flow Cytometry Core and Innovation, Methodology and Application Research Theme, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Robin Vos
- Dept of CHROMETA, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium.,University Hospitals Leuven, Dept of Respiratory Diseases, Leuven, Belgium
| | - Andrew J Fisher
- Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, UK .,Institute of Transplantation, Newcastle upon Tyne Hospitals NHS Trust, Newcastle upon Tyne, UK
| |
Collapse
|
11
|
Surviving White-out: How to Manage Severe Noninfectious Acute Lung Allograft Dysfunction of Unknown Etiology. Transplant Direct 2022; 8:e1371. [PMID: 36204187 PMCID: PMC9529053 DOI: 10.1097/txd.0000000000001371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/11/2022] [Accepted: 07/14/2022] [Indexed: 11/26/2022] Open
|
12
|
Santos J, Calabrese DR, Greenland JR. Lymphocytic Airway Inflammation in Lung Allografts. Front Immunol 2022; 13:908693. [PMID: 35911676 PMCID: PMC9335886 DOI: 10.3389/fimmu.2022.908693] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/16/2022] [Indexed: 11/16/2022] Open
Abstract
Lung transplant remains a key therapeutic option for patients with end stage lung disease but short- and long-term survival lag other solid organ transplants. Early ischemia-reperfusion injury in the form of primary graft dysfunction (PGD) and acute cellular rejection are risk factors for chronic lung allograft dysfunction (CLAD), a syndrome of airway and parenchymal fibrosis that is the major barrier to long term survival. An increasing body of research suggests lymphocytic airway inflammation plays a significant role in these important clinical syndromes. Cytotoxic T cells are observed in airway rejection, and transcriptional analysis of airways reveal common cytotoxic gene patterns across solid organ transplant rejection. Natural killer (NK) cells have also been implicated in the early allograft damage response to PGD, acute rejection, cytomegalovirus, and CLAD. This review will examine the roles of lymphocytic airway inflammation across the lifespan of the allograft, including: 1) The contribution of innate lymphocytes to PGD and the impact of PGD on the adaptive immune response. 2) Acute cellular rejection pathologies and the limitations in identifying airway inflammation by transbronchial biopsy. 3) Potentiators of airway inflammation and heterologous immunity, such as respiratory infections, aspiration, and the airway microbiome. 4) Airway contributions to CLAD pathogenesis, including epithelial to mesenchymal transition (EMT), club cell loss, and the evolution from constrictive bronchiolitis to parenchymal fibrosis. 5) Protective mechanisms of fibrosis involving regulatory T cells. In summary, this review will examine our current understanding of the complex interplay between the transplanted airway epithelium, lymphocytic airway infiltration, and rejection pathologies.
Collapse
Affiliation(s)
- Jesse Santos
- Department of Medicine University of California, San Francisco, San Francisco, CA, United States
| | - Daniel R. Calabrese
- Department of Medicine University of California, San Francisco, San Francisco, CA, United States
- Medical Service, Veterans Affairs Health Care System, San Francisco, CA, United States
| | - John R. Greenland
- Department of Medicine University of California, San Francisco, San Francisco, CA, United States
- Medical Service, Veterans Affairs Health Care System, San Francisco, CA, United States
| |
Collapse
|
13
|
Subramani MV, Pandit S, Gadre SK. Acute rejection and post lung transplant surveillance. Indian J Thorac Cardiovasc Surg 2022; 38:271-279. [PMID: 35340687 PMCID: PMC8938213 DOI: 10.1007/s12055-021-01320-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 12/09/2021] [Accepted: 12/16/2021] [Indexed: 12/05/2022] Open
Abstract
Purpose The purpose of this review is to summarize the current evidence on the evaluation and treatment of acute rejection after lung transplantation. Results Despite significant progress in the field of transplant immunology, acute rejection remains a frequent complication after transplantation. Almost 30% of lung transplant recipients experience at least one episode of acute cellular rejection (ACR) during the first year after transplant. Acute cellular rejection, lymphocytic bronchiolitis, and antibody-mediated rejection (AMR) are all risk factors for the subsequent development of chronic lung allograft dysfunction (CLAD). Acute cellular rejection and lymphocytic bronchiolitis have well-defined histopathologic diagnostic criteria and grading. The diagnosis of antibody-mediated rejection after lung transplantation requires a multidisciplinary approach. Antibody-mediated rejection may cause acute allograft failure. Conclusions Acute rejection is a risk factor for development of chronic rejection. Further investigations are required to better define risk factors, surveillance strategies, and optimal management strategies for acute allograft rejection.
Collapse
Affiliation(s)
| | - Sumir Pandit
- Department of Pulmonary and Critical Care Medicine, Respiratory Institute, Cleveland Clinic, 9500 Euclid Avenue A-90, Cleveland, OH 44195 USA
| | - Shruti Kumar Gadre
- Department of Pulmonary and Critical Care Medicine, Respiratory Institute, Cleveland Clinic, 9500 Euclid Avenue A-90, Cleveland, OH 44195 USA
| |
Collapse
|
14
|
Turkey ovarian tissue transplantation: effects of surgical technique on graft attachment and immunological status of the grafts, 6 days post-surgery. Poult Sci 2022; 101:101648. [PMID: 35093770 PMCID: PMC8808259 DOI: 10.1016/j.psj.2021.101648] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/22/2021] [Indexed: 11/20/2022] Open
Abstract
Biobanked poultry ovaries can be revived via transplantation into a recipient female, which upon maturity will produce donor-derived progeny. Previously, a large portion of these recipients also produced recipient-derived progeny, making them gonadal chimeras. These were potentially created when portions of the recipient's ovary were inadvertently left behind. Completely removing the recipient ovary would solve this problem; however, leaving a portion of the recipient's ovary may have inadvertently increased the transplant attachment rate by providing a damaged area for attachment. To test this hypothesis in the turkey, we removed various portions (33–100%) of recipient ovarian tissue and determined the transplant attachment rate. Furthermore, the use of the abdominal air sac membrane as an additional anchoring point was tested. The overall attachment rate of transplants was 91% (27/30), while the average size of the transplants was 4.2 ± 0.6 mm2, 6 d postsurgery. There was no difference (P > 0.05) in the attachment rates, or transplant size between groups with varying amounts of recipent tissue removed, or by using the abdominal air sac membrane as an anchor. Finally, the immunological status of the grafts were evaluated by analyzing the presences of CD3 and MUM-1 (T and B cell markers). This showed that all transplants were infiltrated by large numbers of T and B cells. Shown by a high (P ≤ 0.001) percentage of CD3-positive immunostained cytoplasmic area (49.78 ± 3.90%) in transplants compared to remnant recipient tissue (0.30 ± 0.10%), as well as a high (P ≤ 0.001) percentage of MUM-1-positive immunostained nuclear area (9.85 ± 1.95%) in transplants over remnant recipient tissues (0.39 ± 0.12%). From this study we would recommend removing the entire recipient ovary, and not covering the transplants with the abdominal air sac membrane, to prevent gonadal chimeras. The high levels of lymphocytes within the grafts indicate possible tissue rejection, which could be overcome via immunosuppression with or without histocompatibility matching between donors and recipients.
Collapse
|
15
|
Chen Y, Wang H, Mou Y, Zheng Z. Peri-operative echocardiography for lung transplantation in a critical patient with COVID-19. Cardiovasc J Afr 2021; 32:343-345. [PMID: 33496722 PMCID: PMC8756017 DOI: 10.5830/cvja-2020-064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 12/23/2020] [Indexed: 11/06/2022] Open
Abstract
Critical patients with coronavirus disease 2019 (COVID-19) suffer from severe illness and have a high mortality rate. Lung transplantation may be the final option for a subset of these patients. Herein we report the important role of peri-operative echocardiography in a COVID-19 patient who underwent bilateral lung transplantation because of severe respiratory failure. The precise evaluation provided by echocardiography enabled the prevention of anastomotic complications and the successful management of haemodynamic instability. Echocardiographers should be familiar with the complications of lung transplantation and the haemodynamics under extracorporeal membrane oxygenation support to achieve a more accurate interpretation of cardiac parameters.
Collapse
Affiliation(s)
- Yan Chen
- Echocardiography and Vascular Ultrasound Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hongxia Wang
- Echocardiography and Vascular Ultrasound Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yun Mou
- Echocardiography and Vascular Ultrasound Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhelan Zheng
- Echocardiography and Vascular Ultrasound Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
16
|
Siren EMJ, Luo HD, Tam F, Montgomery A, Enns W, Moon H, Sim L, Rey K, Guan Q, Wang JJ, Wardell CM, Monajemi M, Mojibian M, Levings MK, Zhang ZJ, Du C, Withers SG, Choy JC, Kizhakkedathu JN. Prevention of vascular-allograft rejection by protecting the endothelial glycocalyx with immunosuppressive polymers. Nat Biomed Eng 2021; 5:1202-1216. [PMID: 34373602 DOI: 10.1038/s41551-021-00777-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/30/2021] [Indexed: 02/07/2023]
Abstract
Systemic immunosuppression for the mitigation of immune rejection after organ transplantation causes adverse side effects and constrains the long-term benefits of the transplanted graft. Here we show that protecting the endothelial glycocalyx in vascular allografts via the enzymatic ligation of immunosuppressive glycopolymers under cold-storage conditions attenuates the acute and chronic rejection of the grafts after transplantation in the absence of systemic immunosuppression. In syngeneic and allogeneic mice that received kidney transplants, the steric and immunosuppressive properties of the ligated polymers largely protected the transplanted grafts from ischaemic reperfusion injury, and from immune-cell adhesion and thereby immunocytotoxicity. Polymer-mediated shielding of the endothelial glycocalyx following organ procurement should be compatible with clinical procedures for transplant preservation and perfusion, and may reduce the damage and rejection of transplanted organs after surgery.
Collapse
Affiliation(s)
- Erika M J Siren
- Centre for Blood Research, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada.,Department of Chemistry, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Haiming D Luo
- Centre for Blood Research, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada.,Department of Chemistry, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Franklin Tam
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Ashani Montgomery
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Winnie Enns
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Haisle Moon
- Centre for Blood Research, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada.,Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Lyann Sim
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Kevin Rey
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Qiunong Guan
- Department of Urologic Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Jiao-Jing Wang
- Comprehensive Transplant Center, Northwestern University, Chicago, IL, USA
| | - Christine M Wardell
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada.,Department of Surgery, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Mahdis Monajemi
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada.,Department of Surgery, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Majid Mojibian
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada.,Department of Surgery, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Megan K Levings
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada.,Department of Surgery, The University of British Columbia, Vancouver, British Columbia, Canada.,School of Biomedical Engineering, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Zheng J Zhang
- Comprehensive Transplant Center, Northwestern University, Chicago, IL, USA
| | - Caigan Du
- Department of Urologic Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Stephen G Withers
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Jonathan C Choy
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada.
| | - Jayachandran N Kizhakkedathu
- Centre for Blood Research, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada. .,Department of Chemistry, The University of British Columbia, Vancouver, British Columbia, Canada. .,Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, British Columbia, Canada. .,School of Biomedical Engineering, The University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
17
|
Tokavanich N, Sinphurmsukskul S, Kongruttanachok N, Thammanatsakul K, Sritangsirikul S, Ariyachaipanich A, Ongcharit P, Siwamogsatham S, Boonyaratavej S, Puwanant S. Circulating growth differentiation factor-15 as a novel biomarker in heart transplant. ESC Heart Fail 2021; 8:3279-3285. [PMID: 34110100 PMCID: PMC8318448 DOI: 10.1002/ehf2.13471] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 05/20/2021] [Accepted: 06/01/2021] [Indexed: 12/19/2022] Open
Abstract
Aims This study aimed to examine (i) whether circulating growth differentiation factor‐15 (GDF‐15) is associated with acute cellular cardiac allograft rejection (ACR); (ii) a longitudinal trend of GDF‐15 after heart transplantation; and (iii) the prognostic value of GDF‐15 in predicting a composite outcome of severe primary graft dysfunction (PGD) and 30 day mortality post‐transplant. Methods and results Serum samples were collected before heart transplantation and at every endomyocardial biopsy (EMB) post‐heart transplantation in de novo transplant patients. A total of 60 post‐transplant serum samples were matched to the corresponding EMBs. Seven (12%) were considered International Society for Heart Lung Transplantation Grade 1R ACR, and one (2%) was identified as Grade 2R ACR. GDF‐15 levels in patients with ACR were not different from those in the non‐rejection group (6230 vs. 6125 pg/mL, P = 0.27). GDF‐15 concentration gradually decreased from 8757 pg/mL pre‐transplant to 5203 pg/mL at 4 weeks post‐transplant. The composite adverse outcome of PGD and 30 day mortality was significantly associated with increased post‐operative GDF‐15 (odds ratio: 40; 95% confidence interval: 2.01–794.27; P = 0.005) and high inotrope score post‐transplant (odds ratio: 18; 95% confidence interval: 1.22–250.35; P = 0.01). Conclusions Circulating GDF‐15 concentration was markedly elevated in patients with end‐stage heart failure and decreased after heart transplantation. GDF‐15 was significantly associated with post‐transplant PGD and mortality. A lack of association between ACR and GDF‐15 did not support routine use of GDF‐15 as a biomarker to detect ACR. However, GDF‐15 may be potentially useful to determine heart transplant recipients at high risk for adverse post‐transplant outcomes. We suggest that GDF‐15 levels in recipient serum can provide risk stratification for severe PGD including death during post‐operative period. This novel biomarker may serve to inform and guide timely interventions against severe PGD and adverse outcomes during the first 4 weeks after transplantation. Further studies to support the utility of GDF‐15 in heart transplantation are required.
Collapse
Affiliation(s)
- Nithi Tokavanich
- Division of Cardiovascular Medicine, Department of Medicine, Faculty of Medicine, Chulalongkorn University, 1873 Rama IV Rd, Pathumwan, Bangkok, 10330, Thailand
| | - Supanee Sinphurmsukskul
- Excellent Center for Organ Transplantation, King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok, Thailand
| | - Narisorn Kongruttanachok
- Department of Laboratory Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Kanokwan Thammanatsakul
- Excellent Center for Organ Transplantation, King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok, Thailand
| | - Supaporn Sritangsirikul
- Excellent Center for Organ Transplantation, King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok, Thailand
| | - Aekarach Ariyachaipanich
- Division of Cardiovascular Medicine, Department of Medicine, Faculty of Medicine, Chulalongkorn University, 1873 Rama IV Rd, Pathumwan, Bangkok, 10330, Thailand.,Excellent Center for Organ Transplantation, King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok, Thailand
| | - Pat Ongcharit
- Cardiac Center, King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok, Thailand.,Division of Cardiothoracic Surgery, Department of Surgery, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Sarawut Siwamogsatham
- Division of Cardiovascular Medicine, Department of Medicine, Faculty of Medicine, Chulalongkorn University, 1873 Rama IV Rd, Pathumwan, Bangkok, 10330, Thailand.,Chula Clinical Research Center, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Smonporn Boonyaratavej
- Division of Cardiovascular Medicine, Department of Medicine, Faculty of Medicine, Chulalongkorn University, 1873 Rama IV Rd, Pathumwan, Bangkok, 10330, Thailand.,Cardiac Center, King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok, Thailand
| | - Sarinya Puwanant
- Division of Cardiovascular Medicine, Department of Medicine, Faculty of Medicine, Chulalongkorn University, 1873 Rama IV Rd, Pathumwan, Bangkok, 10330, Thailand.,Excellent Center for Organ Transplantation, King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok, Thailand.,Cardiac Center, King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok, Thailand
| |
Collapse
|
18
|
Eichenlaub M, Ruettner B, Seiler A, Jenewein J, Boehler A, Benden C, Wutzler U, Goetzmann L. The Actualization of the Transplantation Complex on the Axis of Psychosomatic Totality-Results of a Qualitative Study. Healthcare (Basel) 2021; 9:healthcare9040455. [PMID: 33921523 PMCID: PMC8069072 DOI: 10.3390/healthcare9040455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/31/2021] [Accepted: 04/09/2021] [Indexed: 11/16/2022] Open
Abstract
Although transplantation medicine is not new, there is a clinically justified gap in the existing literature with respect to the psychological processing of lung transplants. The present study aims to examine whether lung transplantation leads to an actualization of psychological, e.g., oral-sadistic fantasies. Following a qualitative approach, 38 lung transplant patients were interviewed three times within the first six months after transplantation. Data analysis focused on identifying unconscious and conscious material. The inter-rater reliability for all codes was calculated using Krippendorff’s Alpha (c-α-binary = 0.94). Direct and implicit evidence of a so-called transplantation complex was detected e.g., regarding the “incorporation” of the dead donor and his lungs. These processes occur predominantly at an imaginary level and are related to the body. Our findings emphasize that such psychological aspects should be borne in mind in the psychological treatment of lung-transplant patients in order to improve the processing of lung transplants, and that this might have a positive effect on patient adherence.
Collapse
Affiliation(s)
- Marie Eichenlaub
- Department of Psychology, Medical School Hamburg MSH, 20457 Hamburg, Germany;
- Correspondence:
| | - Barbara Ruettner
- Department of Psychology, Medical School Hamburg MSH, 20457 Hamburg, Germany;
| | - Annina Seiler
- Department of Radiation Oncology and Competence Center for Palliative Care and Department of Consultation-Liaison Psychiatry and Psychosomatic Medicine, University Hospital Zurich and University of Zurich, 8091 Zurich, Switzerland;
| | - Josef Jenewein
- Department of Medical Psychology and Psychotherapy, University Hospital of Graz, 8036 Graz, Austria;
| | | | - Christian Benden
- Faculty of Medicine, University of Zurich, 8006 Zurich, Switzerland;
| | - Uwe Wutzler
- Clinic for Psychosomatic Medicine and Psychotherapy, Asklepios Fachklinikum Stadtroda, 07646 Stadtroda, Germany;
| | - Lutz Goetzmann
- Institute of Philosophy, Psychoanalysis and Cultural Studies (IPPK), 12047 Berlin, Germany;
| |
Collapse
|
19
|
Werlein C, Ackermann M, Hoffmann TL, Laenger F, Jonigk D. [Fibrotic remodeling of the lung following lung and stem-cell transplantation]. DER PATHOLOGE 2021; 42:17-24. [PMID: 33416936 DOI: 10.1007/s00292-020-00898-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/16/2020] [Indexed: 10/22/2022]
Abstract
Transplantation of solid organs and hematopoietic stem cells represents an important therapeutic option for a variety of end-stage pulmonary diseases, aggressive hematopoietic neoplasms, or severe immunodeficiencies. Although the overall survival following transplantation has generally improved over recent decades, long-time survival of lung and stem-cell transplant recipients is still alarmingly low with an average 5‑year survival rate of only 50-60%. Chronic allo-immunoreactions in general and pulmonary allo-immunoreactions with subsequent fibrosis in particular are major reasons for this poor outcome. Comparable patterns of fibrotic lung remodeling are observed following both lung and hematopoietic stem-cell transplantation. Besides the meanwhile well-established obliterative and functionally obstructive remodeling of the small airways - obliterative bronchiolitis - a specific restrictive subform of fibrosis, namely alveolar fibroelastosis, has been identified. Despite their crucial impact on patient outcome, both entities can be very challenging to detect by conventional histopathological analysis. Their underlying mechanisms are considered overreaching aberrant repair attempts to acute lung injuries with overactivation of (myo-) fibroblasts and excessive and irreversible deposition of extracellular matrix. Of note, the underlying molecular mechanisms are widely divergent between these two morphological entities and are independent of the underlying clinical setting.Further comprehensive investigations of these fibrotic alterations are key to the development of much-needed predictive diagnostics and curative concepts, considering the high mortality of pulmonary fibrosis following transplantation.
Collapse
Affiliation(s)
- Christopher Werlein
- Institut für Pathologie, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, OE 5110, 30625, Hannover, Deutschland
| | - Max Ackermann
- Institut für Pathologie und Molekularpathologie, Helios Universitätsklinikum Wuppertal, Universität Witten-Herdecke, Wuppertal, Deutschland.,Institut für Funktionelle und Klinische Anatomie, Universitätsmedizin, Johannes Gutenberg-Universität Mainz, Mainz, Deutschland
| | - Thia Leandra Hoffmann
- Institut für Pathologie, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, OE 5110, 30625, Hannover, Deutschland
| | - Florian Laenger
- Institut für Pathologie, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, OE 5110, 30625, Hannover, Deutschland.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Standort Hannover, Deutsches Zentrum für Lungenforschung (DZL), Hannover, Deutschland
| | - Danny Jonigk
- Institut für Pathologie, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, OE 5110, 30625, Hannover, Deutschland. .,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Standort Hannover, Deutsches Zentrum für Lungenforschung (DZL), Hannover, Deutschland.
| |
Collapse
|
20
|
Werlein C, Seidel A, Warnecke G, Gottlieb J, Laenger F, Jonigk D. Lung Transplant Pathology: An Overview on Current Entities and Procedures. Surg Pathol Clin 2020; 13:119-140. [PMID: 32005428 DOI: 10.1016/j.path.2019.11.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Alloimmune reactions are, besides various infections, the major cause for impaired lung allograft function following transplant. Acute cellular rejection is not only a major trigger of acute allograft failure but also contributes to development of chronic lung allograft dysfunction. Analogous to other solid organ transplants, acute antibody-mediated rejection has become a recognized entity in lung transplant pathology. Adequate sensitivity and specificity in the diagnosis of alloimmune reactions in the lung can only be achieved by synoptic analysis of histopathologic, clinical, and radiological findings together with serologic and microbiologic findings.
Collapse
Affiliation(s)
- Christopher Werlein
- Institute for Pathology, OE 5110, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover 30625, Germany.
| | - Allison Seidel
- Institute for Pathology, OE 5110, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover 30625, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH)
| | - Gregor Warnecke
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH); Department of Cardiac, Thoracic, Transplantation and Vascular Surgery, OE6210, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover 30625, Germany
| | - Jens Gottlieb
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH); Department of Pneumology, OE6210, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover 30625, Germany
| | - Florian Laenger
- Institute for Pathology, OE 5110, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover 30625, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH)
| | - Danny Jonigk
- Institute for Pathology, OE 5110, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover 30625, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH)
| |
Collapse
|
21
|
Galectin-9 is required for endometrial regenerative cells to induce long-term cardiac allograft survival in mice. Stem Cell Res Ther 2020; 11:471. [PMID: 33153471 PMCID: PMC7643467 DOI: 10.1186/s13287-020-01985-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 10/20/2020] [Indexed: 12/25/2022] Open
Abstract
Background Endometrial regenerative cells (ERCs), a novel type of mesenchymal-like stem cells, were identified as an attractive candidate for immunoregulation and induction of cardiac allograft tolerance. However, the underlying mechanisms of ERCs in immune regulation still remain largely unclear. The present study is designed to determine whether the expression of Galectin-9 (Gal-9), a soluble tandem-repeat member of the galectin family, is crucial for ERC-based immunomodulation. Methods In this study, we measured Gal-9 expression on ERCs and then co-cultured Gal-9-ERCs, ERCs, and ERCs+lactose (Gal-9 blocker) with activated C57BL/6-derived splenocytes. Furthermore, we performed mouse heart transplantation between BALB/c (H-2d) donor and C57BL/6 (H-2b) recipient. ERCs were administrated 24 h after the surgery, either alone or in combination with rapamycin. Results Our data demonstrate that ERCs express Gal-9, and this expression is increased by IFN-γ stimulation in a dose-dependent manner. Moreover, both in vitro and in vivo results show that Gal-9-ERC-mediated therapy significantly suppressed Th1 and Th17 cell response, inhibited CD8+ T cell proliferation, abrogated B cell activation, decreased donor-specific antibody production, and enhanced the Treg population. The therapeutic effect of ERCs was further verified by their roles in prolonging cardiac allograft survival and alleviating graft pathological changes. Conclusions Taken together, these data indicate that Gal-9 is required for ERC-mediated immunomodulation and prevention of allograft rejection.
Collapse
|
22
|
Lolita L, Zheng M, Zhang X, Han Z, Tao J, Fei S, Wang Z, Guo M, Yang H, Ju X, Tan R, Wei JF, Gu M. The Genetic Polymorphism of CYP3A4 rs 2242480 is Associated with Sirolimus Trough Concentrations Among Adult Renal Transplant Recipients. Curr Drug Metab 2020; 21:1052-1059. [PMID: 33115392 DOI: 10.2174/1389200221999201027203401] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 09/02/2020] [Accepted: 09/16/2020] [Indexed: 12/28/2022]
Abstract
BACKGROUND The large interindividual variability in the genetic polymorphisms of sirolimus (SIR)- metabolizing enzymes, transporters, and receptors can lead to qualitatively and quantitatively distinct therapeutic responses. OBJECTIVE We examined the impact of numerous candidate single-nucleotide polymorphisms (SNPs) involved in the trough concentration of SIR-based immunosuppressant regimen. METHODS This is a retrospective, long-term cohort study involving 69 renal allograft recipients. Total DNA was isolated from recipient blood samples and trough SIR concentrations were measured by microparticle enzyme immunoassay. Genome sequence reading was targeted based on next-generation sequencing. The association of tagger SNPs to SIR trough concentrations with non-genetic covariate adjusting was analyzed using logistic regression. RESULTS A total of 300 SNPs were genotyped in the recipient DNA samples using target sequencing analysis. Only the SNP of CYP3A4 (Ch7: 99361466 C>T, rs2242480) had a significantly higher association with SIR trough concentration as compared to the other 36 tagger SNPs. The mean trough SIR concentration of patients in the CYP3A4 rs2242480-CC group was more significant compared to that of the CYP3A4 rs2242480-TC and TT group, respectively 533.3; 157.4 and 142.5 (ng/ml)/mg/kg, P<0.0001. After adjusting the SNPs, there was no significant association between clinical factors such as age, follow-up period, the incidence of delayed graft function, immunosuppression protocol, and sex with SIR trough concentration. CONCLUSION These findings indicated a significant association of polymorphism in the CYP3A4 (Ch7: 99361466 C>T, rs2242480) with SIR trough concentration after 1-year administration in patients who have undergone kidney transplantation.
Collapse
Affiliation(s)
- Lolita Lolita
- Research Division of Clinical Pharmacology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ming Zheng
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiang Zhang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhijian Han
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jun Tao
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shuang Fei
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zijie Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Miao Guo
- Research Division of Clinical Pharmacology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Haiwei Yang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaobing Ju
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ruoyun Tan
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ji-Fu Wei
- Research Division of Clinical Pharmacology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Min Gu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
23
|
Greer M, Werlein C, Jonigk D. Surveillance for acute cellular rejection after lung transplantation. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:410. [PMID: 32355854 PMCID: PMC7186718 DOI: 10.21037/atm.2020.02.127] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Acute cellular rejection (ACR) is a common complication following lung transplantation (LTx), affecting almost a third of recipients in the first year. Established, comprehensive diagnostic criteria exist but they necessitate allograft biopsies which in turn increases clinical risk and can pose certain logistical and economic problems in service delivery. Undermining these challenges further, are known problems with inter-observer interpretation of biopsies and uncertainty as to the long-term implications of milder or indeed asymptomatic episodes. Increased risk of chronic lung allograft dysfunction (CLAD) has long been considered the most significant consequence of ACR. Consensus is lacking as to whether this applies to mild ACR, with contradictory evidence available. Given these issues, research into alternative, minimal or non-invasive biomarkers represents the main focus of research in ACR. A number of potential markers have been proposed, but none to date have demonstrated adequate sensitivity and specificity to allow translation from bench to bedside.
Collapse
Affiliation(s)
- Mark Greer
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany.,Biomedical Research in End-Stage and Obstructive Lung Disease (BREATH), German Centre for Lung Research (DZL), Hannover, Germany
| | | | - Danny Jonigk
- Biomedical Research in End-Stage and Obstructive Lung Disease (BREATH), German Centre for Lung Research (DZL), Hannover, Germany.,Institute for Pathology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
24
|
IL-27Rα: A Novel Molecular Imaging Marker for Allograft Rejection. Int J Mol Sci 2020; 21:ijms21041315. [PMID: 32075272 PMCID: PMC7072931 DOI: 10.3390/ijms21041315] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 02/07/2023] Open
Abstract
Non-invasively monitoring allogeneic graft rejection with a specific marker is of great importance for prognosis of patients. Recently, data revealed that IL-27Rα was up-regulated in alloreactive CD4+ T cells and participated in inflammatory diseases. Here, we evaluated whether IL-27Rα could be used in monitoring allogeneic graft rejection both in vitro and in vivo. Allogeneic (C57BL/6 donor to BALB/c recipient) and syngeneic (BALB/c both as donor and recipient) skin grafted mouse models were established. The expression of IL-27Rα in grafts was detected. The radio-probe, 125I-anti-IL-27Rα mAb, was prepared. Dynamic whole-body phosphor-autoradiography, ex vivo biodistribution and immunofluorescence staining were performed. The results showed that the highest expression of IL-27Rα was detected in allogeneic grafts on day 10 post transplantation (top period of allorejection). 125I-anti-IL-27Rα mAb was successfully prepared with higher specificity and affinity. Whole-body phosphor-autoradiography showed higher radioactivity accumulation in allogeneic grafts than syngeneic grafts on day 10. The uptake of 125I-anti-IL-27Rα mAb in allogeneic grafts could be almost totally blocked by pre-injection with excess unlabeled anti-IL-27Rα mAb. Interestingly, we found that 125I-anti-IL-27Rα mAb accumulated in allogeneic grafts, along with weaker inflammation earlier on day 6. The high uptake of 125I-anti-IL-27Rα mAb was correlated with the higher infiltrated IL-27Rα positive cells (CD3+/CD68+) in allogeneic grafts. In conclusion, IL-27Rα may be a novel molecular imaging marker to predict allorejection.
Collapse
|
25
|
Rafiroiu S, Hassouna H, Ahmad U, Koval C, McCurry KR, Pettersson GB, Ibrahim M, Johnston DR, Budev M, Murthy SC, Toth AJ, Blackstone EH, Tong MZ. Consequences of Delayed Chest Closure During Lung Transplantation. Ann Thorac Surg 2020; 109:277-284. [DOI: 10.1016/j.athoracsur.2019.08.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 07/25/2019] [Accepted: 08/08/2019] [Indexed: 10/26/2022]
|
26
|
Katsis J, Garrity E. The Use of Gene Expression Profiling in Lung Transplantation. CURRENT TRANSPLANTATION REPORTS 2019. [DOI: 10.1007/s40472-019-00253-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
27
|
Abstract
Lung transplantation is an accepted therapeutic option for end-stage lung diseases. Its history starts in the 1940s, initially hampered by early deaths due to perioperative problems and acute rejection. Improvement of surgical techniques and the introduction of immunosuppressive drugs resulted in longer survival. Chronic lung allograft dysfunction (CLAD), a new complication appeared and remains the most serious complication today. CLAD, the main reason why survival after lung transplantation is impaired compared to other solid-organ transplantations is characterized by a gradually increasing shortness of breath, reflected in a deterioration of pulmonary function status, respiratory insufficiency and possibly death.
Collapse
|
28
|
Speck NE, Probst-Müller E, Haile SR, Benden C, Kohler M, Huber LC, Robinson CA. Bronchoalveolar lavage cytokines are of minor value to diagnose complications following lung transplantation. Cytokine 2019; 125:154794. [PMID: 31400641 PMCID: PMC7128992 DOI: 10.1016/j.cyto.2019.154794] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 12/18/2022]
Abstract
Early diagnosis and treatment of acute cellular rejection (ACR) may improve long-term outcome for lung transplant recipients (LTRs). Cytokines have become valuable diagnostic tools in many medical fields. The role of bronchoalveolar lavage (BAL) cytokines is of unknown value to diagnose ACR and distinguish rejection from infection. We hypothesized that distinct cytokine patterns obtained by surveillance bronchoscopies during the first year after transplantation are associated with ACR and microbiologic findings. We retrospectively analyzed data from 319 patients undergoing lung transplantation at University Hospital Zurich from 1998 to 2016. We compared levels of IL-6, IL-8, IFN-γ and TNF-α in 747 BAL samples with transbronchial biopsies (TBB) and microbiologic results from surveillance bronchoscopies. We aimed to define reference values that would allow distinction between four specific groups “ACR”, “infection”, “combined ACR and infection” and “no pathologic process”. No definitive pattern was identified. Given the overlap between groups, these four cytokines are not suitable diagnostic markers for ACR or infection after lung transplantation.
Collapse
Affiliation(s)
- Nicole E Speck
- Division of Pulmonology, University Hospital Zurich, Rämistrasse 100, CH-8091 Zurich, Switzerland.
| | - Elisabeth Probst-Müller
- Clinic of Immunology, University Hospital Zurich, Gloriastrasse 23, CH-8091 Zurich, Switzerland.
| | - Sarah R Haile
- Epidemiology, Biostatistics and Prevention Institute, Department of Epidemiology, University of Zurich, Hirschengraben 84, CH-8001 Zurich, Switzerland.
| | - Christian Benden
- Division of Pulmonology, University Hospital Zurich, Rämistrasse 100, CH-8091 Zurich, Switzerland.
| | - Malcolm Kohler
- Division of Pulmonology, University Hospital Zurich, Rämistrasse 100, CH-8091 Zurich, Switzerland.
| | - Lars C Huber
- Department of Internal Medicine, City Hospital Triemli, Birmensdorferstrasse 497, CH-8063 Zurich, Switzerland.
| | - Cécile A Robinson
- Division of Pulmonology, University Hospital Zurich, Rämistrasse 100, CH-8091 Zurich, Switzerland.
| |
Collapse
|
29
|
Acute cellular rejection in lung transplantation. Afr J Thorac Crit Care Med 2019; 25. [PMID: 34286249 PMCID: PMC8278989 DOI: 10.7196/ajtccm.2019.v25i2.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2019] [Indexed: 11/08/2022] Open
Abstract
Lung transplantation is an important therapy for end-stage respiratory failure in patients who have exhausted other therapeutic options. The lung is unique among solid-organ transplants in that it is exposed to the outside environment, and undergoes continuous stimulation from infectious and non-infectious agents, which may play a part in upregulating the immune response to the allograft. Despite induction immunosuppression and the use of aggressive maintenance regimens, acute allograft rejection is still a major problem, especially in the first year after transplant, with important diagnostic and therapeutic challenges. As well as being responsible for early graft failure and death, acute rejection also initiates alloimmune responses that predispose patients to chronic lung allograft dysfunction, in particular bronchiolitis obliterans syndrome. Cellular responses to human leukocyte antigens (HLAs) on the allograft have traditionally been considered the main mechanism of acute rejection, although the influence of humoral immunity is increasingly recognised. Here, we present two cases of acute cellular rejection (ACR) in the early post-transplant period and review the pathophysiology, diagnosis, clinical presentation and treatment of ACR.
Collapse
|
30
|
Wohlschlaeger J, Laenger F, Gottlieb J, Hager T, Seidel A, Jonigk D. Lungentransplantation. DER PATHOLOGE 2019; 40:281-291. [DOI: 10.1007/s00292-019-0598-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
31
|
Greenland JR, Wang P, Brotman JJ, Ahuja R, Chong TA, Kleinhenz ME, Leard LE, Golden JA, Hays SR, Kukreja J, Singer JP, Rajalingam R, Jones K, Laszik ZG, Trivedi NN, Greenland NY, Blanc PD. Gene signatures common to allograft rejection are associated with lymphocytic bronchitis. Clin Transplant 2019; 33:e13515. [PMID: 30849195 DOI: 10.1111/ctr.13515] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/04/2019] [Accepted: 02/14/2019] [Indexed: 12/28/2022]
Abstract
Lymphocytic bronchitis (LB) precedes chronic lung allograft dysfunction. The relationships of LB (classified here as Endobronchial or E-grade rejection) to small airway (A- and B-grade) pathologies are unclear. We hypothesized that gene signatures common to allograft rejection would be present in LB. We studied LB in two partially overlapping lung transplant recipient cohorts: Cohort 1 included large airway brushes (6 LB cases and 18 post-transplant referents). Differential expression using DESeq2 was used for pathway analysis and to define an LB-associated metagene. In Cohort 2, eight biopsies for each pathology subtype were matched with pathology-free biopsies from the same subject (totaling 48 samples from 24 subjects). These biopsies were analyzed by multiplexed digital counting of immune transcripts. Metagene score differences were compared by paired t tests. Compared to referents in Cohort 1, LB demonstrated upregulation of allograft rejection pathways, and upregulated genes in these cases characterized an LB-associated metagene. We observed statistically increased expression in Cohort 2 for this LB-associated metagene and four other established allograft rejection metagenes in rejection vs paired non-rejection biopsies for both E-grade and A-grade subtypes, but not B-grade pathology. Gene expression-based categorization of allograft rejection may prove useful in monitoring lung allograft health.
Collapse
Affiliation(s)
- John R Greenland
- Medical Service, Veterans Affairs Health Care System, San Francisco, California.,Department of Medicine, University of California, San Francisco, California
| | - Ping Wang
- Department of Medicine, University of California, San Francisco, California
| | - Joshua J Brotman
- Department of Medicine, University of California, San Francisco, California
| | - Rahul Ahuja
- Medical Service, Veterans Affairs Health Care System, San Francisco, California
| | - Tiffany A Chong
- Department of Medicine, University of California, San Francisco, California
| | | | - Lorriana E Leard
- Department of Medicine, University of California, San Francisco, California
| | - Jeffrey A Golden
- Department of Medicine, University of California, San Francisco, California
| | - Steven R Hays
- Department of Medicine, University of California, San Francisco, California
| | - Jasleen Kukreja
- Department of Surgery, University of California, San Francisco, California
| | - Jonathan P Singer
- Department of Medicine, University of California, San Francisco, California
| | - Raja Rajalingam
- Department of Surgery, University of California, San Francisco, California
| | - Kirk Jones
- Department of Pathology, University of California, San Francisco, California
| | - Zoltan G Laszik
- Department of Pathology, University of California, San Francisco, California
| | - Neil N Trivedi
- Medical Service, Veterans Affairs Health Care System, San Francisco, California.,Department of Medicine, University of California, San Francisco, California
| | - Nancy Y Greenland
- Department of Pathology, University of California, San Francisco, California
| | - Paul D Blanc
- Medical Service, Veterans Affairs Health Care System, San Francisco, California.,Department of Medicine, University of California, San Francisco, California
| |
Collapse
|
32
|
Yang JYC, Verleden SE, Zarinsefat A, Vanaudenaerde BM, Vos R, Verleden GM, Sarwal RD, Sigdel TK, Liberto JM, Damm I, Watson D, Sarwal MM. Cell-Free DNA and CXCL10 Derived from Bronchoalveolar Lavage Predict Lung Transplant Survival. J Clin Med 2019; 8:jcm8020241. [PMID: 30781765 PMCID: PMC6406976 DOI: 10.3390/jcm8020241] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/05/2019] [Accepted: 02/08/2019] [Indexed: 12/22/2022] Open
Abstract
Standard methods for detecting chronic lung allograft dysfunction (CLAD) and rejection have poor sensitivity and specificity and have conventionally required bronchoscopies and biopsies. Plasma cell-free DNA (cfDNA) has been shown to be increased in various types of allograft injury in transplant recipients and CXCL10 has been reported to be increased in the lung tissue of patients undergoing CLAD. This study used a novel cfDNA and CXCL10 assay to evaluate the noninvasive assessment of CLAD phenotype and prediction of survival from bronchoalveolar lavage (BAL) fluid. A total of 60 BAL samples (20 with bronchiolitis obliterans (BOS), 20 with restrictive allograft syndrome (RAS), and 20 with stable allografts (STA)) were collected from 60 unique lung transplant patients; cfDNA and CXCL10 were measured by the ELISA-based KIT assay. Median cfDNA was significantly higher in BOS patients (6739 genomic equivalents (GE)/mL) versus STA (2920 GE/mL) and RAS (4174 GE/mL) (p < 0.01 all comparisons). Likelihood ratio tests revealed a significant association of overall survival with cfDNA (p = 0.0083), CXCL10 (p = 0.0146), and the interaction of cfDNA and CXCL10 (p = 0.023) based on multivariate Cox proportional hazards regression. Dichotomizing patients based on the median cfDNA level controlled for the mean level of CXCL10 revealed an over two-fold longer median overall survival time in patients with low levels of cfDNA. The KIT assay could predict allograft survival with superior performance compared with traditional biomarkers. These data support the pursuit of larger prospective studies to evaluate the predictive performance of cfDNA and CXCL10 prior to lung allograft failure.
Collapse
Affiliation(s)
- Joshua Y C Yang
- Department of Surgery, University of California San Francisco, San Francisco, CA 94143, USA.
- KIT Bio, 2000 University Avenue, Palo Alto, CA 94303, USA.
| | - Stijn E Verleden
- Leuven Lung Transplant Unit, Department of Chronic Diseases, Metabolism, and Ageing (CHROMETA), KU Leuven, 3000 Leuven, Belgium.
| | - Arya Zarinsefat
- Department of Surgery, University of California San Francisco, San Francisco, CA 94143, USA.
| | - Bart M Vanaudenaerde
- Leuven Lung Transplant Unit, Department of Chronic Diseases, Metabolism, and Ageing (CHROMETA), KU Leuven, 3000 Leuven, Belgium.
| | - Robin Vos
- Leuven Lung Transplant Unit, Department of Chronic Diseases, Metabolism, and Ageing (CHROMETA), KU Leuven, 3000 Leuven, Belgium.
| | - Geert M Verleden
- Leuven Lung Transplant Unit, Department of Chronic Diseases, Metabolism, and Ageing (CHROMETA), KU Leuven, 3000 Leuven, Belgium.
| | - Reuben D Sarwal
- Department of Surgery, University of California San Francisco, San Francisco, CA 94143, USA.
| | - Tara K Sigdel
- Department of Surgery, University of California San Francisco, San Francisco, CA 94143, USA.
| | - Juliane M Liberto
- Department of Surgery, University of California San Francisco, San Francisco, CA 94143, USA.
| | - Izabella Damm
- Department of Surgery, University of California San Francisco, San Francisco, CA 94143, USA.
| | - Drew Watson
- KIT Bio, 2000 University Avenue, Palo Alto, CA 94303, USA.
| | - Minnie M Sarwal
- Department of Surgery, University of California San Francisco, San Francisco, CA 94143, USA.
- KIT Bio, 2000 University Avenue, Palo Alto, CA 94303, USA.
| |
Collapse
|
33
|
Jiang Q, Ru Y, Yu Y, Li K, Jing Y, Wang J, Li G. iTRAQ-based quantitative proteomic analysis reveals potential early diagnostic markers in serum of acute cellular rejection after liver transplantation. Transpl Immunol 2018; 53:7-12. [PMID: 30472391 DOI: 10.1016/j.trim.2018.11.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 10/23/2018] [Accepted: 11/21/2018] [Indexed: 01/23/2023]
Abstract
Liver transplantation (LT) is the most effective treatment method for advanced stage liver disease but acute cellular rejection (ACR) seriously affects the prognosis of LT. To discover novel diagnostic biomarkers of ACR after LT, Isobaric Tags for Relative and Absolute Quantitation (iTRAQ)-based mass spectrometry was performed to characterize alterations of serum proteins among patients validated to be pathologically ACR or pathologically no-ACR after LT and healthy controls. As a result, 10 differentially expressed proteins were found out between the ACR group and the No-ACR group; 88 differentially expressed proteins were found out between the ACR group and the Healthy Control group; 39 differentially expressed proteins were found out between No-ACR group and Healthy Control group. After analysis and ELISA validation, the results showed that CFHR1, CFHR5 and CFH could be candidate protein biomarkers for the early diagnosis of ACR after LT.
Collapse
Affiliation(s)
- Qi Jiang
- Department of Basic Medicine, Tianjin Medical College, Tianjin, China; School of Basic Medical Science, Tianjin Medical University, Tianjin, China
| | - Yawei Ru
- School of Basic Medical Science, Tianjin Medical University, Tianjin, China
| | - Yang Yu
- School of Medical Laboratory, Tianjin Medical University, Tianjin, China
| | - Keqiu Li
- School of Basic Medical Science, Tianjin Medical University, Tianjin, China
| | - Yaqing Jing
- School of Basic Medical Science, Tianjin Medical University, Tianjin, China
| | - Jianhai Wang
- School of Basic Medical Science, Tianjin Medical University, Tianjin, China
| | - Guang Li
- School of Basic Medical Science, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
34
|
Lung transplantation in South Africa: Indications, outcomes and disease-specific referral guidelines. Afr J Thorac Crit Care Med 2018; 24. [PMID: 34541511 PMCID: PMC8424851 DOI: 10.7196/sarj.2018.v24i3.217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2018] [Indexed: 12/02/2022] Open
Abstract
Lung transplantation (LT) is a robust therapy for advanced lung disease, which offers recipients extended and good-quality survival. In
South Africa (SA), patients have historically had limited access to this therapy, particularly if unfunded. LT has been used as a successful
therapeutic intervention for a wide variety of end-stage pulmonary parenchymal and vascular diseases, but the most common diseases
that lead to LT are chronic obstructive pulmonary disease, interstitial lung disease, cystic fibrosis, alpha-1-antitrypsin deficiency and
pulmonary arterial hypertension. Timing of referral for LT can be challenging and is disease specific, influenced by the rate of progression
of the disease, the development of associated comorbidities, and access and response to advanced therapies. Advances in recipient and
donor selection, surgical technique and postoperative management have improved early survival, but mortality remains higher than
for other solid organ transplants. Rejection and infection remain major causes of early posttransplant death, while chronic rejection is
the major cause of death after the first year. Survival is heavily influenced by the underlying lung disease. In this review, we summarise
the indications and contraindications for LT, remind pulmonologists of the availability of this therapy in SA and offer guidelines for the
timely referral of suitable candidates.
Collapse
|