1
|
Liang L, Wang X, Chen D, Sethu P, Giridharan GA, Wang Y, Wang Y, Qin KR. Study on the hemodynamic effects of different pulsatile working modes of a rotary blood pump using a microfluidic platform that realizes in vitro cell culture effectively. LAB ON A CHIP 2024; 24:2428-2439. [PMID: 38625094 DOI: 10.1039/d4lc00159a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Rotary blood pumps (RBPs) operating at a constant speed generate non-physiologic blood pressure and flow rate, which can cause endothelial dysfunction, leading to adverse clinical events in peripheral blood vessels and other organs. Notably, pulsatile working modes of the RBP can increase vascular pulsatility to improve arterial endothelial function. However, the laws and related mechanisms of differentially regulating arterial endothelial function under different pulsatile working modes are still unclear. This knowledge gap hinders the optimal selection of the RBP working modes. To address these issues, this study developed a multi-element in vitro endothelial cell culture system (ECCS), which could realize in vitro cell culture effectively and accurately reproduce blood pressure, shear stress, and circumferential strain in the arterial endothelial microenvironment. Performance of this proposed ECCS was validated with numerical simulation and flow experiments. Subsequently, this study investigated the effects of four different pulsation frequency modes that change once every 1-4-fold cardiac cycles (80, 40, 80/3, and 20 cycles per min, respectively) of the RBP on the expression of nitric oxide (NO) and reactive oxygen species (ROS) in endothelial cells. Results indicated that the 2-fold and 3-fold cardiac cycles significantly increased the production of NO and prevented the excessive generation of ROS, potentially minimizing the occurrence of endothelial dysfunction and related adverse events during the RBP support, and were consistent with animal study findings. In general, this study may provide a scientific basis for the optimal selection of the RBP working modes and potential treatment options for heart failure.
Collapse
Affiliation(s)
- Lixue Liang
- Institute of Cardio-Cerebrovascular Medicine, Central Hospital of Dalian University of Technology, Dalian 116024, Liaoning Province, P. R. China
- School of Mechanical Engineering, Dalian University of Technology, Dalian 116024, Liaoning Province, P. R. China
| | - Xueying Wang
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian 116024, Liaoning Province, P. R. China
| | - Dong Chen
- Institute of Cardio-Cerebrovascular Medicine, Central Hospital of Dalian University of Technology, Dalian 116024, Liaoning Province, P. R. China
| | - Palaniappan Sethu
- Division of Cardiovascular Disease, Department of Medicine, School of Medicine and Department of Biomedical Engineering, School of Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Yanxia Wang
- School of Rehabilitation Medicine, Shandong Second Medical University, Weifang 261053, Shandong Province, P. R. China
| | - Yu Wang
- Institute of Cardio-Cerebrovascular Medicine, Central Hospital of Dalian University of Technology, Dalian 116024, Liaoning Province, P. R. China
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian 116024, Liaoning Province, P. R. China.
| | - Kai-Rong Qin
- Institute of Cardio-Cerebrovascular Medicine, Central Hospital of Dalian University of Technology, Dalian 116024, Liaoning Province, P. R. China
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian 116024, Liaoning Province, P. R. China.
| |
Collapse
|
2
|
Kitagaki K, Aoki T, Miura H, Shimada Y, Konishi H, Tsukamoto Y, Noguchi T. Depressive symptoms, right ventricular function, and muscular strength are associated with peak oxygen uptake in patients with implantable left ventricular assist devices. Artif Organs 2024; 48:166-174. [PMID: 37921338 DOI: 10.1111/aor.14672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/12/2023] [Accepted: 10/12/2023] [Indexed: 11/04/2023]
Abstract
BACKGROUND Left ventricular assist device (LVAD) implantation is among the most effective treatment options for patients with severe heart failure. Although previous studies have examined the factors related to peak oxygen uptake (peak VO2 ), they were limited by the few patients involved and their focus on medical and physical functions. Therefore, this study comprehensively examined the factors associated with peak VO2 , which is an important prognostic factor in patients with implantable LVADs. METHODS Eighty-nine patients who underwent initial LVAD implantation and were eligible for cardiopulmonary exercise testing (CPX) between May 2014 and September 2021 were included. The patients' mean age was 48 ± 12 years, and 70% were males. Based on previous studies, the cut-off was set at 12 and 14 mL/kg/min for patients taking β-blocker and those not taking β-blockers, respectively. Furthermore, factors associated with peak VO2 were examined using multivariate logistic regression analysis. RESULTS The mean time from surgery to CPX administration was 73 ± 40 days. The high group had a higher cardiac index, right ventricular stroke work index (RVSWI), and isometric knee extensor muscular strength and lower Patient Health Questionnaire-9 (PHQ-9) and B-type natriuretic peptide values than the low group. Multivariate logistic regression analysis showed that RVSWI and KEMS were positively correlated, whereas PHQ-9 was negatively associated with peak VO2 . CONCLUSION Right ventricular function, depressive symptoms, and lower limb muscular strength were associated with exercise capacity in patients with implantable LVADs.
Collapse
Affiliation(s)
- Kazufumi Kitagaki
- Faculty of Rehabilitation, Shijonawate Gakuen University, Daito, Japan
- Department of Cardiovascular Rehabilitation, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Tatsuo Aoki
- Department of Cardiovascular Rehabilitation, National Cerebral and Cardiovascular Center, Suita, Japan
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Hiroyuki Miura
- Department of Cardiovascular Rehabilitation, National Cerebral and Cardiovascular Center, Suita, Japan
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Yukihiro Shimada
- Department of Cardiovascular Rehabilitation, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Harumi Konishi
- Department of Nursing, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Yasumasa Tsukamoto
- Department of Transplant Medicine, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Teruo Noguchi
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Suita, Japan
| |
Collapse
|
3
|
[Cardiac rehabilitation in LVAD patients : Aspects regarding exercise and rhythm]. Herzschrittmacherther Elektrophysiol 2023; 34:45-51. [PMID: 36580090 DOI: 10.1007/s00399-022-00914-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/05/2022] [Indexed: 12/30/2022]
Abstract
After implantation of a left ventricular assist device (LVAD), it is strongly recommended that patients participate in an inpatient cardiac rehabilitation program (CR). Relevant topics during CR include sports and exercise therapy as well as aspects of cardiac rhythm control. Over time, LVAD patients usually regain a good quality of life and an adequate functional capacity can be observed. However, maximum performance values remain markedly reduced, in part due to the fixed LVAD pump speed and the limited total cardiac output. Therefore, structured long-term exercise training programs (even beyond CR phase II) are of particular importance in order to optimize neuromuscular control and muscle metabolism. Limitations to physical performance values may also be caused by the occurrence of supraventricular and/or ventricular arrhythmias. In both cases, the cause is an increasing hemodynamic impairment of the right heart, which may also lead to a reduced LVAD pump flow. In addition, inadequate setting of other cardiac implantable electronic devices (e.g., implantable cardioverter-defibrillator [ICD] or cardiac resynchronization therapy with defibrillator [CRT-D]) may also have a crucial impact on hemodynamics after LVAD implantation. In this article, we will discuss specific aspects of LVAD therapy related to exercise and rhythm control, particularly in the context of CR programs.
Collapse
|
4
|
In Vivo Evaluation of a Novel Control Algorithm for Left Ventricular Assist Devices Based Upon Ventricular Stroke Work. ASAIO J 2023; 69:86-95. [PMID: 35420555 DOI: 10.1097/mat.0000000000001722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The physical fitness of patients with terminal heart failure and an implanted left ventricular assist device (LVAD) might be improved by load-adaptive control of the LVAD. In this study, three control strategies for LVAD were compared in eight pigs: (1) a constant stroke work (CSW) control strategy that ensures a constant ventricular load using ventricular stroke work as the control variable; (2) a work ratio (WR) controller that maintains a constant ratio of ventricular work to hydraulic pump work; and (3) a controller that maintains the pump pace at a constant speed (CS). Biventricular heart insufficiency was induced by increased isoflurane application, and preload, afterload, and contractility alterations were performed. LVAD speed changes were significantly more pronounced in all load interventions with the CSW control strategy (preload: P < 0.001 vs. CS and P = 0.004 vs. WR; afterload: P < 0.001 vs. CS and P < 0.001 vs. WR; contractility: P < 0.001 vs. CS and P < 0.001 vs. WR). However, a significant difference in systemic flow only became evident in the experiments upon afterload increase ( P < 0.001 vs. CS and P = 0.004 vs. WR). An implementation of an evolved version of the CSW control strategy that dispenses with invasively measured parameters might be feasible for clinical use.
Collapse
|
5
|
Stapor M, Pilat A, Gackowski A, Misiuda A, Gorkiewicz-Kot I, Kaleta M, Kleczynski P, Zmudka K, Legutko J, Kapelak B, Wierzbicki K. Echo-guided left ventricular assist device speed optimisation for exercise maximisation. Heart 2022; 108:1055-1062. [PMID: 35314453 PMCID: PMC9209671 DOI: 10.1136/heartjnl-2021-320495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/24/2022] [Indexed: 11/29/2022] Open
Abstract
Objective Current generation left ventricular assist devices (LVADs) operate with a fixed rotation speed and no automated speed adjustment function. This study evaluates the concept of physiological pump speed optimisation based on aortic valve opening (AVO) imaging during a cardiopulmonary exercise test (CPET). Methods This prospective crossover study (NCT05063006) enrolled patients with implanted third-generation LVADs with hydrodynamic bearing. After resting speed optimisation, patients were randomised to a fixed-modified speed or modified-fixed speed CPET sequence. Fixed speed CPET maintained baseline pump settings. During the modified speed CPET, the LVAD speed was continuously altered to preserve periodic AVO. Results We included 22 patients, the mean age was 58.4±7 years, 4.5% were women and 54.5% had ischaemic cardiomyopathy. Exertional AVO assessment was feasible in all subjects. Maintaining periodic AVO allowed to safely raise the pump speed from 2900 (IQR 2640–3000) to 3440 revolutions per minute (RPM) (IQR 3100–3700; p<0.001). As a result, peak oxygen consumption increased from 11.1±2.4 to 12.8±2.8 mL/kg/min (p<0.001) and maximum workload from 1.1 (IQR 0.9–1.5) to 1.2 W/kg (IQR 0.9–1.7; p=0.028). The Borg scale exertion level decreased from 15.2±1.5 to 13.5±1.2 (p=0.005). Conclusions Transthoracic AVO imaging is possible during CPETs in patients with LVAD. Dynamic echo-guided pump speed adjustment based on the AVO improves exercise tolerance and augments peak oxygen consumption and maximum workload.
Collapse
Affiliation(s)
- Maciej Stapor
- Department of Interventional Cardiology, John Paul II Hospital, Krakow, Malopolska, Poland
| | - Adam Pilat
- Department of Automatic Control and Robotics, AGH University of Science and Technology, Krakow, Poland
| | - Andrzej Gackowski
- Department of Coronary Disease and Heart Failure, Jagiellonian University Medical College, Faculty of Medicine, Institute of Cardiology, Krakow, Poland
| | - Agnieszka Misiuda
- Noninvasive Cardiovascular Laboratory, John Paul II Hospital, Krakow, Poland
| | - Izabela Gorkiewicz-Kot
- Department of Cardiovascular Surgery and Transplantology, John Paul II Hospital, Krakow, Poland
| | - Michal Kaleta
- Department of Cardiovascular Surgery and Transplantology, John Paul II Hospital, Krakow, Poland
| | - Pawel Kleczynski
- Department of Interventional Cardiology, Jagiellonian University Medical College, Faculty of Medicine, Institute of Cardiology, Krakow, Poland
| | - Krzysztof Zmudka
- Department of Interventional Cardiology, Jagiellonian University Medical College, Faculty of Medicine, Institute of Cardiology, Krakow, Poland
| | - Jacek Legutko
- Department of Interventional Cardiology, Jagiellonian University Medical College, Faculty of Medicine, Institute of Cardiology, Krakow, Poland
| | - Boguslaw Kapelak
- Department of Cardiovascular Surgery and Transplantology, Jagiellonian University Medical College, Faculty of Medicine, Institute of Cardiology, Krakow, Poland
| | - Karol Wierzbicki
- Department of Cardiovascular Surgery and Transplantology, Jagiellonian University Medical College, Faculty of Medicine, Institute of Cardiology, Krakow, Poland
| |
Collapse
|
6
|
Hiraiwa H, Okumura T, Sawamura A, Araki T, Mizutani T, Kazama S, Kimura Y, Shibata N, Oishi H, Kuwayama T, Kondo T, Furusawa K, Morimoto R, Adachi T, Yamada S, Mutsuga M, Usui A, Murohara T. Relationship between spleen size and exercise tolerance in advanced heart failure patients with a left ventricular assist device. BMC Res Notes 2022; 15:40. [PMID: 35144676 PMCID: PMC8832641 DOI: 10.1186/s13104-022-05939-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 01/31/2022] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVE Spleen volume increases in patients with advanced heart failure (HF) after left ventricular assist device (LVAD) implantation. However, the relationship between spleen volume and exercise tolerance (peak oxygen consumption [VO2]) in these patients remains unknown. In this exploratory study, we enrolled 27 patients with HF using a LVAD (median age: 46 years). Patients underwent blood testing, echocardiography, right heart catheterization, computed tomography (CT), and cardiopulmonary exercise testing. Spleen size was measured using CT volumetry, and the correlations/causal relationships of factors affecting peak VO2 were identified using structural equation modeling. RESULTS The median spleen volume was 190.0 mL, and peak VO2 was 13.2 mL/kg/min. The factors affecting peak VO2 were peak heart rate (HR; β = 0.402, P = .015), pulmonary capillary wedge pressure (PCWP; β = - 0.698, P = .014), right ventricular stroke work index (β = 0.533, P = .001), blood hemoglobin concentration (β = 0.359, P = .007), and spleen volume (β = 0.215, P = .041). Spleen volume correlated with peak HR, PCWP, and hemoglobin concentration, reflecting sympathetic activity, cardiac preload, and oxygen-carrying capacity, respectively, and was thus related to peak VO2. These results suggest an association between spleen volume and exercise tolerance in advanced HF.
Collapse
Affiliation(s)
- Hiroaki Hiraiwa
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan.
| | - Takahiro Okumura
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan.
| | - Akinori Sawamura
- Department of Cardiology, Ichinomiya Municipal Hospital, 2-2-22 Bunkyo, Ichinomiya, 491-8558, Japan
| | - Takashi Araki
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Takashi Mizutani
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Shingo Kazama
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Yuki Kimura
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Naoki Shibata
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Hideo Oishi
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Tasuku Kuwayama
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Toru Kondo
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Kenji Furusawa
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Ryota Morimoto
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Takuji Adachi
- Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, 1-1-20 Daiko-minami, Higashi-ku, Nagoya, 461-8673, Japan
| | - Sumio Yamada
- Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, 1-1-20 Daiko-minami, Higashi-ku, Nagoya, 461-8673, Japan
| | - Masato Mutsuga
- Department of Cardiac Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Akihiko Usui
- Department of Cardiac Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Toyoaki Murohara
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| |
Collapse
|
7
|
Jiang M, Sakota D, Kosaka R, Hijikata W. Analysis of Plasma Skimming within a Hydrodynamic Bearing Gap for Designing Spiral Groove Bearings in Rotary Blood Pumps. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:1213-1217. [PMID: 34891505 DOI: 10.1109/embc46164.2021.9629535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The blood damage problem inside the narrow hydrodynamic bearing is potentially considered to be solved by applying plasma skimming. However, the consideration of improving plasma skimming has not been included in the design of hydrodynamic bearings. The absence of experimental investigation on revealing the relationship between blood flow and plasma skimming in the bearing gap impedes the design of groove shape for plasma skimming. Thus, the present study was undertaken to evaluate how the blood flow direction and the groove shape affect plasma skimming in the bearing gap. To this end, blood tests using porcine blood were repeated three times with a hematocrit of 0.8%. The bearing gap during the tests was adjusted to 25 µm and the rotational speed was adjusted from 50 rpm to 2500 rpm. The blood flow and plasma skimming effect was evaluated based on image analysis utilizing a high-speed microscope. Results of three tests indicated that the flow direction of RBCs was dominated by the rotating surface in the bearing gap when the rotational speed increased over 1200 rpm. The best plasma skimming effect was observed when the angle between the flow direction of RBCs and the tangent line of the groove was within -10 degrees to 10 degrees. The future study will be conducted with including the consideration of plasma skimming in the bearing shape design. The findings in this study aid the future design and development of hydrodynamic bearing for use in rotary blood pumps.
Collapse
|
8
|
Fresiello L, Gross C, Jacobs S. Exercise physiology in left ventricular assist device patients: insights from hemodynamic simulations. Ann Cardiothorac Surg 2021; 10:339-352. [PMID: 34159115 DOI: 10.21037/acs-2020-cfmcs-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Left ventricular assist devices (LVADs) assure longer survival to patients, but exercise capacity is limited compared to normal values. Overall, LVAD patients show high wedge pressure and low cardiac output during maximal exercise, a phenomenon hinting at the need for increased LVAD support. Clinical studies investigating the hemodynamic benefits of an LVAD speed increase during exercise, ended in inhomogeneous and sometimes contradictory results. The native ventricle-LVAD interaction changes between rest and exercise, and this evolution is complex, multifactorial and patient-specific. The aim of this paper is to provide a comprehensive overview on the patient-LVAD interaction during exercise and to delineate possible therapeutic strategies for the future. A computational cardiorespiratory model was used to simulate the hemodynamics of peak bicycle exercise in LVAD patients. The simulator included the main cardiovascular and respiratory impairments commonly observed in LVAD patients, so as to represent an average hemodynamic response to exercise. In addition, other exercise responses were simulated, by tuning the chronotropic, inotropic and vascular functions, and implementing aortic regurgitation and stenosis in the simulator. These profiles were tested under different LVAD speeds and LVAD pressure-flow characteristics. Simulations output showed consistency with clinical data from the literature. The simulator allowed the working condition of the assisted ventricle at exercise to be investigated, clarifying the reasons behind the high wedge pressure and poor cardiac output observed in the clinics. Patients with poorer inotropic, chronotropic and vascular functions, are likely to benefit more from an LVAD speed increase during exercise. Similarly, for these patients, a flatter LVAD pressure-flow characteristic can assure better hemodynamic support under physical exertion. Overall, the study evidenced the need for a patient-specific approach on supporting exercise hemodynamics. In this frame, a complex simulator can constitute a valuable tool to define and test personalized speed control algorithms and strategies.
Collapse
Affiliation(s)
- Libera Fresiello
- Department of Cardiovascular Sciences, Cardiac Surgery, Katholieke Universiteit Leuven, Leuven, Belgium.,Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - Christoph Gross
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Steven Jacobs
- Department of Cardiovascular Sciences, Cardiac Surgery, Katholieke Universiteit Leuven, Leuven, Belgium
| |
Collapse
|
9
|
Felix SEA, Oerlemans MIF, Ramjankhan FZ, Muller SA, Kirkels HH, van Laake LW, Suyker WJL, Asselbergs FW, de Jonge N. One year improvement of exercise capacity in patients with mechanical circulatory support as bridge to transplantation. ESC Heart Fail 2021; 8:1796-1805. [PMID: 33710786 PMCID: PMC8120393 DOI: 10.1002/ehf2.13234] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 10/01/2020] [Accepted: 01/19/2021] [Indexed: 12/21/2022] Open
Abstract
AIMS Mechanical circulatory support (MCS) results in substantial improvement of prognosis and functional capacity. Currently, duration of MCS as a bridge to transplantation (BTT) is often prolonged due to shortage of donor hearts. Because long-term results of exercise capacity after MCS are largely unknown, we studied serial cardiopulmonary exercise tests (CPETs) during the first year after MCS implantation. METHODS AND RESULTS Cardiopulmonary exercise tests at 6 and 12 months after MCS implantation in BTT patients were retrospectively analysed, including clinical factors related to exercise capacity. A total of 105 MCS patients (67% male, 50 ± 12 years) underwent serial CPET at 6 and 12 months after implantation. Power (105 ± 35 to 114 ± 40 W; P ≤ 0.001) and peak VO2 per kilogram (pVO2/kg) improved significantly (16.5 ± 5.0 to 17.2 ± 5.5 mL/kg/min (P = 0.008)). Improvement in pVO2 between 6 and 12 months after LVAD implantation was not related to heart failure aetiology or haemodynamic severity prior to MCS. We identified maximal heart rate at exercise as an important factor for pVO2. Younger age and lower BMI were related to further improvement. At 12 months, 25 (24%) patients had a normal exercise capacity (Weber classification A, pVO2 > 20 mL/kg/min). CONCLUSIONS Exercise capacity (power and pVO2) increased significantly between 6 and 12 months after MCS independent of Interagency Registry for Mechanically Assisted Circulatory Support (INTERMACS) profile or heart failure aetiology. Heart rate at exercise importantly relates to exercise capacity. This long-term improvement in exercise capacity is important information for the growing group of long-term MCS patients as this is critical for the quality of life of patients.
Collapse
Affiliation(s)
- Susanne E A Felix
- Department of Cardiology, University Medical Center of Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, The Netherlands
| | - Martinus I F Oerlemans
- Department of Cardiology, University Medical Center of Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, The Netherlands
| | - Faiz Z Ramjankhan
- Department of Cardiothoracic Surgery, University Medical Center of Utrecht, Utrecht, The Netherlands
| | - Steven A Muller
- Department of Cardiology, University Medical Center of Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, The Netherlands
| | | | - Linda W van Laake
- Department of Cardiology, University Medical Center of Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, The Netherlands
| | - Willem J L Suyker
- Department of Cardiothoracic Surgery, University Medical Center of Utrecht, Utrecht, The Netherlands
| | - Folkert W Asselbergs
- Department of Cardiology, University Medical Center of Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, The Netherlands.,Institute of Health Informatics and Institute of Cardiovascular Science, Faculty of Population Health Sciences, University College London, London, UK
| | - Nicolaas de Jonge
- Department of Cardiology, University Medical Center of Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, The Netherlands
| |
Collapse
|
10
|
Dridi NP, Vishram-Nielsen JKK, Gustafsson F. Exercise Tolerance in Patients Treated With a Durable Left Ventricular Assist Device: Importance of Myocardial Recovery. J Card Fail 2020; 27:486-493. [PMID: 33347995 DOI: 10.1016/j.cardfail.2020.12.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 11/30/2020] [Accepted: 12/08/2020] [Indexed: 12/27/2022]
Abstract
The number of patients supported with left ventricular assist devices (LVADs) is growing and support times are increasing. This has led to a greater focus on functional capacity of these patients. LVADs greatly improve heart failure symptoms, but surprisingly, improvement in peak oxygen uptake (pVO2) is small and remains decreased at approximately 50% of normal values. Inadequate increase in cardiac output during exercise is the main responsible factor for the low pVO2 in LVAD recipients. Some patients experience LV recovery during mechanical unloading and these patients have a higher pVO2. Here we review the various components determining exercise cardiac output in LVAD recipients and discuss the potential impact of cardiac recovery on these components. LV recovery may affect several components, leading to improved hemodynamics during exercise and, in turn, physical capacity in patients with advanced heart failure undergoing LVAD implantation.
Collapse
Affiliation(s)
- Nadia Paarup Dridi
- Department of Cardiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | | | - Finn Gustafsson
- Department of Cardiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
11
|
Fresiello L, Jacobs S, Timmermans P, Buys R, Hornikx M, Goetschalckx K, Droogne W, Meyns B. Limiting factors of peak and submaximal exercise capacity in LVAD patients. PLoS One 2020; 15:e0235684. [PMID: 32645710 PMCID: PMC7347393 DOI: 10.1371/journal.pone.0235684] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 06/20/2020] [Indexed: 12/15/2022] Open
Abstract
AIMS Although patients supported with a Continuous-Flow Left Ventricular Assist Device (CF-LVAD) are hemodynamically stable, their exercise capacity is limited. Hence, the aim of this work was to investigate the underlying factors that lead to peak and submaximal exercise intolerance of CF-LVAD supported patients. METHODS Seven months after CF-LVAD implantation, eighty three patients performed a maximal cardiopulmonary exercise test and a six minute walk test. Peak oxygen uptake and the distance walked were measured and expressed as a percentage of the predicted value (%VO2p and %6MWD, respectively). Preoperative conditions, echocardiography, laboratory results and pharmacological therapy data were collected and a correlation analysis against %VO2p and %6MWD was performed. RESULTS CF-LVAD patients showed a relatively higher submaximal exercise capacity (%6MWD = 64±16%) compared to their peak exertion (%VO2p = 51±14%). The variables that correlated with %VO2p were CF-LVAD parameters, chronotropic response, opening of the aortic valve at rest, tricuspid insufficiency, NT-proBNP and the presence of a cardiac implantable electronic device. On the other hand, the variables that correlated with %6MWD were diabetes, creatinine, urea, ventilation efficiency and CF-LVAD pulsatility index. Additionally, both %6MWD and %VO2p were influenced by the CF-LVAD implantation timing, calculated from the occurrence of the cardiac disease. CONCLUSION Overall, both %6MWD and %VO2p depend on the duration of heart failure prior to CF-LVAD implantation. %6MWD is primarily determined by parameters underlying the patient's general condition, while %VO2p mostly relies on the residual function and chronotropic response of the heart. Moreover, since %VO2p was relatively lower compared to %6MWD, we might infer that CF-LVAD can support submaximal exercise but is not sufficient during peak exertion. Hence concluding that the contribution of the ventricle is crucial in sustaining hemodynamics at peak exercise.
Collapse
Affiliation(s)
- Libera Fresiello
- Department of Cardiovascular Sciences, Cardiac Surgery, Katholieke Universiteit Leuven, Leuven, Belgium
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
- * E-mail:
| | - Steven Jacobs
- Department of Cardiovascular Sciences, Cardiac Surgery, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Philippe Timmermans
- Department of Cardiovascular Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Roselien Buys
- Department of Rehabilitation Sciences, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Miek Hornikx
- Department of Rehabilitation Sciences, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Kaatje Goetschalckx
- Department of Cardiovascular Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Walter Droogne
- Department of Cardiovascular Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Bart Meyns
- Department of Cardiovascular Sciences, Cardiac Surgery, Katholieke Universiteit Leuven, Leuven, Belgium
| |
Collapse
|
12
|
Laoutaris ID. Restoring pulsatility and peakVO 2 in the era of continuous flow, fixed pump speed, left ventricular assist devices: 'A hypothesis of pump's or patient's speed?'. Eur J Prev Cardiol 2019; 26:1806-1815. [PMID: 31180758 DOI: 10.1177/2047487319856448] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Despite significant improvement in survival and functional capacity after continuous flow left ventricular assist device implantation, the patient's quality of life may remain limited by complications such as aortic valve insufficiency, thromboembolic episodes and gastrointestinal bleeding attributed to high shear stress continuous flow with attenuated or absence of pulsatile flow and by a reduced peak oxygen consumption (peakVO2) primarily associated with a fixed pump speed operation. Revision of current evidence suggests that high technology pump speed algorithms, a 'hypothesis of decreasing pump's speed' to promote pulsatile flow and a 'hypothesis of increasing pump's speed' to increase peakVO2, may only partially reverse these barriers. A 'hypothesis of increasing patient's speed' is introduced, suggesting that exercise training may further contribute to the patient's recovery, enhancing peakVO2 and pulsatile flow by improving skeletal muscle oxidative capacity and strength, peripheral vasodilatory and ventilatory responses, favour changes in preload/afterload and facilitate native flow, formulating the rationale for further studies in the field.
Collapse
|
13
|
Laoutaris ID, Dritsas A, Louca LL, Adamopoulos S. Contribution of aerobic/resistance/inspiratory muscle training to cardiopulmonary recovery in a recipient of a ventricular assist device: Off-pump evaluation. Eur J Prev Cardiol 2018; 26:1335-1337. [DOI: 10.1177/2047487318815303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|