1
|
Kaczka DW. Imaging the Lung in ARDS: A Primer. Respir Care 2024; 69:1011-1024. [PMID: 39048146 PMCID: PMC11298232 DOI: 10.4187/respcare.12061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Despite periodic changes in the clinical definition of ARDS, imaging of the lung remains a central component of its diagnostic identification. Several imaging modalities are available to the clinician to establish a diagnosis of the syndrome, monitor its clinical course, or assess the impact of treatment and management strategies. Each imaging modality provides unique insight into ARDS from structural and/or functional perspectives. This review will highlight several methods for lung imaging in ARDS, emphasizing basic operational and physical principles for the respiratory therapist. Advantages and disadvantages of each modality will be discussed in the context of their utility for clinical management and decision-making.
Collapse
Affiliation(s)
- David W Kaczka
- Department of Anesthesia, Department of Radiology, and Roy J Carver Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa
| |
Collapse
|
2
|
Aldhahir AM, Alqarni AA, Madkhali MA, Madkhali HH, Bakri AA, Shawany MA, Alasimi AH, Alsulayyim AS, Alqahtani JS, Alyami MM, Alghamdi SM, Alqarni OA, Hakamy A. Awareness and practice of airway pressure release ventilation mode in acute respiratory distress syndrome patients among nurses in Saudi Arabia. BMC Nurs 2024; 23:79. [PMID: 38291421 PMCID: PMC10826023 DOI: 10.1186/s12912-024-01763-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 01/24/2024] [Indexed: 02/01/2024] Open
Abstract
BACKGROUND This study aimed to assess the knowledge and current practice of using the airway pressure release ventilation (APRV) mode with acute respiratory distress syndrome (ARDS) patients and identify barriers to not using this mode of ventilation among nurses who work in critical areas in Saudi Arabia. METHODS Between December 2022 and April 2023, a cross-sectional online survey was disseminated to nurses working in critical care areas in Saudi Arabia. The characteristics of the respondents were analyzed using descriptive statistics. Percentages and frequencies were used to report categorical variables. RESULTS Overall, 1,002 nurses responded to the online survey, of whom 592 (59.1%) were female. Only 248 (24.7%) nurses had ever used APRV mode, whereas only 229 (22.8%) received training on APRV mode. Moreover, 602 (60.0%) nurses did not know whether APRV was utilized in their hospital. Additionally, 658 (65.6%) nurses did not know whether APRV mode was managed using a standard protocol. Prone positioning was the highest recommended intervention by 444 (43.8%) when a conventional MV failed to improve oxygenation in patients with ARDS. 323 (32.2%) respondents stated that the P-high should be set equal to the plateau pressure on a conventional ventilator, while 400 (39.9%) said that the P-low should match PEEP from a conventional ventilator. Almost half of the respondents (446, 44.5%) stated that the T-high should be set between 4 and 6 s, while 415 (41.4%) said that the T-low should be set at 0.4 to 0.8 s. Over half of the nurses (540, 53.9%) thought that the maximum allowed tidal volume during the release phase should be 4-6 ml/kg. Moreover, 475 (47.4%) believed that the maximum allowed P-high setting should be 35 cm H2O. One-third of the responders (329, 32.8%) stated that when weaning patients with ARDS while in APRV mode, the P-high should be reduced gradually to reach a target of 10 cm H2O. However, 444 (44.3%) thought that the T-high should be gradually increased to reach a target of 10 s. Half of the responders (556, 55.5%) felt that the criteria to switch the patient to continuous positive airway pressure (CPAP) were for the patient to have an FiO2 ≤ 0.4, P-high ≤ 10 cm H2O, and T-high ≥ 10 s. Lack of training was the most common barrier to not using APRV by 615 (61.4%). CONCLUSION The majority of nurses who work in critical care units have not received sufficient training in APRV mode. A significant discrepancy was observed regarding the clinical application and management of APRV parameters. Inadequate training was the most frequently reported barrier to the use of APRV in patients with ARDS.
Collapse
Affiliation(s)
- Abdulelah M Aldhahir
- Respiratory Therapy Department, Faculty of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia.
| | - Abdullah A Alqarni
- Department of Respiratory Therapy, Faculty of Medical Rehabilitation Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Respiratory Therapy Unit, King Abdulaziz University Hospital, Jeddah, Saudi Arabia
| | - Mohammed A Madkhali
- Respiratory Therapy Department, Faculty of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Hussain H Madkhali
- Respiratory Therapy Department, Faculty of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Abdullah A Bakri
- Respiratory Therapy Department, Faculty of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Mohammad A Shawany
- Respiratory Therapy Department, Faculty of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Ahmed H Alasimi
- Department of Respiratory Therapy, Georgia State University, Atlanta, GA, USA
| | - Abdullah S Alsulayyim
- Respiratory Therapy Department, Faculty of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Jaber S Alqahtani
- Department of Respiratory Care, Prince Sultan Military College of Health Sciences, Dammam, Saudi Arabia
| | - Mohammed M Alyami
- Respiratory Therapy Department, Batterjee Medical College, Khamis Mushait, Saudi Arabia
| | - Saeed M Alghamdi
- Clinical Technology Department, Respiratory Care Program, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Omar A Alqarni
- Clinical Technology Department, Respiratory Care Program, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ali Hakamy
- Respiratory Therapy Department, Faculty of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
3
|
Roshdy A, Elsayed AS, Saleh AS. Airway Pressure Release Ventilation for Acute Respiratory Failure Due to Coronavirus Disease 2019: A Systematic Review and Meta-Analysis. J Intensive Care Med 2023; 38:160-168. [PMID: 35733377 DOI: 10.1177/08850666221109779] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Objective: To explore the evidence surrounding the use of Airway Pressure Release Ventilation (APRV) in patients with coronavirus disease 2019 (COVID-19). Methods: A Systematic electronic search of PUBMED, EMBASE, and the WHO COVID-19 database. We also searched the grey literature via Google and preprint servers (medRxive and research square). Eligible studies included randomised controlled trials and observational studies comparing APRV to conventional mechanical ventilation (CMV) in adults with acute hypoxemic respiratory failure due to COVID-19 and reporting at least one of the following outcomes; in-hospital mortality, ventilator free days (VFDs), ICU length of stay (LOS), changes in gas exchange parameters, and barotrauma. Two authors independently screened and selected articles for inclusion and extracted data in a pre-specified form. Results: Of 181 articles screened, seven studies (one randomised controlled trial, two cohort studies, and four before-after studies) were included comprising 354 patients. APRV was initiated at a mean of 1.2-13 days after intubation. APRV wasn't associated with improved mortality compared to CMV (relative risk [RR], 1.20; 95% CI 0.70-2.05; I2, 61%) neither better VFDs (ratio of means [RoM], 0.80; 95% CI, 0.52-1.24; I2, 0%) nor ICU LOS (RoM, 1.10; 95% CI, 0.79-1.51; I2, 57%). Compared to CMV, APRV was associated with a 33% increase in PaO2/FiO2 ratio (RoM, 1.33; 95% CI, 1.21-1.48; I2, 29%) and a 9% decrease in PaCO2 (RoM, 1.09; 95% CI, 1.02-1.15; I2, 0%). There was no significant increased risk of barotrauma compared to CMV (RR, 1.55; 95% CI, 0.60-4.00; I2, 0%). Conclusions: In adult patients with COVID-19 requiring mechanical ventilation, APRV is associated with improved gas exchange but not mortality nor VFDs when compared with CMV. The results were limited by high uncertainty given the low quality of the available studies and limited number of patients. Adequately powered and well-designed clinical trials to define the role of APRV in COVID-19 patients are still needed. Registration: PROSPERO; CRD42021291234.
Collapse
Affiliation(s)
- Ashraf Roshdy
- Critical Care Medicine Department, Faculty of Medicine, 54562Alexandria University, Alexandria, Egypt.,Intensive Care Unit, 156506William Harvey Hospital, East Kent Hospitals University NHS Foundation Trust, Kent, UK
| | - Ahmad Samy Elsayed
- Intensive Care Unit, 37841King Fahd Military Medical Complex, Dhahran, Saudi Arabia
| | | |
Collapse
|
4
|
Tollman J, Ahmed Z. Ventilating the blast lung: Exploring ventilation strategies in primary blast lung injury. TRAUMA-ENGLAND 2022. [DOI: 10.1177/14604086221080020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Introduction Primary blast lung injury (PBLI) is the most common and fatal of all primary blast injuries. The majority of those with PBLI will require early intubation and mechanical ventilation, and thus, ventilation strategy forms a crucial part of any management plan. Methods: A comprehensive, but not systematic, PubMed and Google Scholar database search identified articles that contribute to our current understanding of ventilation strategies in PBLI for a narrative educational review. Results A PBLI ventilation strategy must strive to minimise all four of ventilator-associated lung injury (VALI), volutrauma, barotrauma and biotrauma. The three main ventilation strategies available are conventional low tidal volume (LTV) ventilation, airway pressure release ventilation (APRV) and high frequency oscillatory ventilation (HFOV). Conventional LTV ventilation together with a variable positive end-expiratory pressure (PEEP) and permissive hypercapnia has demonstrated reduced inflammation and mortality with a greater number of ventilator-free days. APRV has the potential to reduce dynamic strain, PaO2/FiO2 ratios, levels of applied mechanical power and extravascular lung water while encouraging spontaneous breathing. HFOV is able to effectively avoid VALI while curbing inflammation and histological lung injury, though not necessarily mortality. Conclusions: Presently, PBLI should largely be managed with conventional LTV ventilation alongside a variable PEEP and permissive hypercapnia with APRV and HFOV reserved as rescue strategies for where conventional LTV ventilation fails. Clinicians should additionally consider supplementing their strategy with adjunctive therapies such as prone positioning, inhaled nitric oxide and extracorporeal membrane oxygenation that may further reduce mortality and combat severe respiratory and/or cardiac failure.
Collapse
Affiliation(s)
- Jaden Tollman
- Institute of Inflammation and Ageing, University of Birmingham, Edgbaston, Birmingham, UK
| | - Zubair Ahmed
- Institute of Inflammation and Ageing, University of Birmingham, Edgbaston, Birmingham, UK
- Centre for Trauma Sciences Research, University of Birmingham, Edgbaston, Birmingham, UK
| |
Collapse
|
5
|
Use of Airway Pressure Release Ventilation in Patients With Acute Respiratory Failure Due to COVID-19: Results of a Single-Center Randomized Controlled Trial. Crit Care Med 2022; 50:586-594. [PMID: 34593706 PMCID: PMC8923279 DOI: 10.1097/ccm.0000000000005312] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
OBJECTIVES Airway pressure release ventilation is a ventilatory mode characterized by a mandatory inverse inspiratory:expiratory ratio with a very short expiratory phase, aimed to avoid derecruitment and allow spontaneous breathing. Recent basic and clinical evidence suggests that this mode could be associated with improved outcomes in patients with acute respiratory distress syndrome. The aim of this study was to compare the outcomes between airway pressure release ventilation and traditional ventilation targeting low tidal volume, in patients with severe coronavirus disease 2019. DESIGN Single-center randomized controlled trial. SETTING ICU of a Mexican referral center dedicated to care of patients with confirmed diagnosis of coronavirus disease 2019. PATIENTS Ninety adult intubated patients with acute respiratory distress syndrome associated with severe coronavirus disease 2019. INTERVENTIONS Within 48 hours after intubation, patients were randomized to either receive ventilatory management with airway pressure release ventilation or continue low tidal volume ventilation. MEASUREMENTS AND MAIN RESULTS Forty-five patients in airway pressure release ventilation group and 45 in the low tidal volume group were included. Ventilator-free days were 3.7 (0-15) and 5.2 (0-19) in the airway pressure release ventilation and low tidal volume groups, respectively (p = 0.28). During the first 7 days, patients in airway pressure release ventilation had a higher Pao2/Fio2 (mean difference, 26 [95%CI, 13-38]; p < 0.001) and static compliance (mean difference, 3.7 mL/cm H2O [95% CI, 0.2-7.2]; p = 0.03), higher mean airway pressure (mean difference, 3.1 cm H2O [95% CI, 2.1-4.1]; p < 0.001), and higher tidal volume (mean difference, 0.76 mL/kg/predicted body weight [95% CI, 0.5-1.0]; p < 0.001). More patients in airway pressure release ventilation had transient severe hypercapnia, defined as an elevation of Pco2 at greater than or equal to 55 along with a pH less than 7.15 (42% vs 15%; p = 0.009); other outcomes were similar. Overall mortality was 69%, with no difference between the groups (78% in airway pressure release ventilation vs 60% in low tidal volume; p = 0.07). CONCLUSIONS In conclusion, when compared with low tidal volume, airway pressure release ventilation was not associated with more ventilator-free days or improvement in other relevant outcomes in patients with severe coronavirus disease 2019.
Collapse
|
6
|
Evidence-Based Mechanical Ventilatory Strategies in ARDS. J Clin Med 2022; 11:jcm11020319. [PMID: 35054013 PMCID: PMC8780427 DOI: 10.3390/jcm11020319] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 02/01/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) remains one of the leading causes of morbidity and mortality in critically ill patients despite advancements in the field. Mechanical ventilatory strategies are a vital component of ARDS management to prevent secondary lung injury and improve patient outcomes. Multiple strategies including utilization of low tidal volumes, targeting low plateau pressures to minimize barotrauma, using low FiO2 (fraction of inspired oxygen) to prevent injury related to oxygen free radicals, optimization of positive end expiratory pressure (PEEP) to maintain or improve lung recruitment, and utilization of prone ventilation have been shown to decrease morbidity and mortality. The role of other mechanical ventilatory strategies like non-invasive ventilation, recruitment maneuvers, esophageal pressure monitoring, determination of optimal PEEP, and appropriate patient selection for extracorporeal support is not clear. In this article, we review evidence-based mechanical ventilatory strategies and ventilatory adjuncts for ARDS.
Collapse
|
7
|
Nagaraju YH, Sapare A. A comprehensive review on the management of ARDS among pediatric patients. INDIAN JOURNAL OF RESPIRATORY CARE 2022. [DOI: 10.4103/ijrc.ijrc_158_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
8
|
González-Castro A, Escudero Acha P, Rodríguez Borregán JC, Peñasco Y, Blanco Huelga C, Cuenca Fito E. Combination of airway pressure release ventilation with inverted inspiration-exhalation ratio and low-flow CO 2 removal devices with renal replacement therapy in refractory hypoxemia. Med Intensiva 2021; 45:376-379. [PMID: 34053911 PMCID: PMC8160289 DOI: 10.1016/j.medine.2021.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 11/27/2019] [Indexed: 11/03/2022]
Affiliation(s)
- A González-Castro
- Servicio de Medicina Intensiva, Hospital Universitario Marqués de Valdecilla, Santander, Spain.
| | - P Escudero Acha
- Servicio de Medicina Intensiva, Hospital Universitario Marqués de Valdecilla, Santander, Spain
| | - J C Rodríguez Borregán
- Servicio de Medicina Intensiva, Hospital Universitario Marqués de Valdecilla, Santander, Spain
| | - Y Peñasco
- Servicio de Medicina Intensiva, Hospital Universitario Marqués de Valdecilla, Santander, Spain
| | - C Blanco Huelga
- Servicio de Medicina Intensiva, Hospital Universitario Marqués de Valdecilla, Santander, Spain
| | - E Cuenca Fito
- Servicio de Medicina Intensiva, Hospital Universitario Marqués de Valdecilla, Santander, Spain
| |
Collapse
|
9
|
Janssen M, Meeder JHJ, Seghers L, den Uil CA. Time controlled adaptive ventilation™ as conservative treatment of destroyed lung: an alternative to lung transplantation. BMC Pulm Med 2021; 21:176. [PMID: 34022829 PMCID: PMC8140588 DOI: 10.1186/s12890-021-01545-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/16/2021] [Indexed: 02/06/2023] Open
Abstract
Background Acute respiratory distress syndrome (ARDS) often requires controlled ventilation, yielding high mechanical power and possibly further injury. Veno-venous extracorporeal membrane oxygenation (VV-ECMO) can be used as a bridge to recovery, however, if this fails the end result is destroyed lung parenchyma. This condition is fatal and the only remaining alternative is lung transplantation. In the case study presented in this paper, lung transplantation was not an option given the critically ill state and the presence of HLA antibodies. Airway pressure release ventilation (APRV) may be valuable in ARDS, but APRV settings recommended in various patient and clinical studies are inconsistent. The Time Controlled Adaptive Ventilation (TCAV™) method is the most studied technique to set and adjust the APRV mode and uses an extended continuous positive airway pressure (CPAP) Phase in combination with a very brief Release Phase. In addition, the TCAV™ method settings are personalized and adaptive based on changes in lung pathophysiology. We used the TCAV™ method in a case of severe ARDS, which enabled us to open, stabilize and slowly heal the severely damaged lung parenchyma. Case presentation A 43-year-old woman presented with Staphylococcus Aureus necrotizing pneumonia. Progressive respiratory failure necessitated invasive mechanical ventilation and VV-ECMO. Mechanical ventilation (MV) was ultimately discontinued because lung protective settings resulted in trivial tidal volumes. She was referred to our academic transplant center for bilateral lung transplantation after the remaining infection had been cleared. We initiated the TCAV™ method in order to stabilize the lung parenchyma and to promote tissue recovery. This strategy was challenged by the presence of a large bronchopleural fistula, however, APRV enabled weaning from VV-ECMO and mechanical ventilation. After two months, following nearly complete surgical closure of the remaining bronchopleural fistulas, the patient was readmitted to ICU where she had early postoperative complications. Since other ventilation modes resulted in significant atelectasis and hypercapnia, APRV was restarted. The patient was then again weaned from MV. Conclusions The TCAV™ method can be useful to wean challenging patients with severe ARDS and might contribute to lung recovery. In this particular case, a lung transplantation was circumvented.
Collapse
Affiliation(s)
- Malou Janssen
- Department of Intensive Care Medicine, Erasmus MC, University Medical Center, Dr Molewaterplein 40, Room Rg 626, 3015 GD, Rotterdam, The Netherlands.
| | - J Han J Meeder
- Department of Intensive Care Medicine, Erasmus MC, University Medical Center, Dr Molewaterplein 40, Room Rg 626, 3015 GD, Rotterdam, The Netherlands
| | - Leonard Seghers
- Department of Pulmonary Medicine, Transplant Center, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Corstiaan A den Uil
- Department of Intensive Care Medicine, Erasmus MC, University Medical Center, Dr Molewaterplein 40, Room Rg 626, 3015 GD, Rotterdam, The Netherlands.,Department of Cardiology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.,Department of Intensive Care Medicine, Maasstad Hospital, Rotterdam, The Netherlands
| |
Collapse
|
10
|
Garg R. Lung Protective Ventilation in Brain-Injured Patients: Low Tidal Volumes or Airway Pressure Release Ventilation? JOURNAL OF NEUROANAESTHESIOLOGY AND CRITICAL CARE 2020. [DOI: 10.1055/s-0040-1716800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
AbstractThe optimal mode of mechanical ventilation for lung protection is unknown in brain-injured patients as this population is excluded from large studies of lung protective mechanical ventilation. Survey results suggest that low tidal volume (LTV) ventilation is the favored mode likely due to the success of LTV in other patient populations. Airway pressure release ventilation (APRV) is an alternative mode of mechanical ventilation that may offer several benefits over LTV in this patient population. APRV is an inverse-ratio, pressure-controlled mode of mechanical ventilation that utilizes a higher mean airway pressure compared with LTV. This narrative review compares both modes of mechanical ventilation and their consequences in brain-injured patients. Fears that APRV may raise intracranial pressure by virtue of a higher mean airway pressure are not substantiated by the available evidence. Primarily by virtue of spontaneous breathing, APRV often results in improvement in systemic hemodynamics and thereby improvement in cerebral perfusion pressure. Compared with LTV, sedation requirements are lessened by APRV allowing for more accurate neuromonitoring. APRV also uses an open loop system supporting clearance of secretions throughout the respiratory cycle. Additionally, APRV avoids hypercapnic acidosis and oxygen toxicity that may be especially deleterious to the injured brain. Although high-level evidence is lacking that one mode of mechanical ventilation is superior to another in brain-injured patients, several aspects of APRV make it an appealing mode for select brain-injured patients.
Collapse
Affiliation(s)
- Ravi Garg
- Division of Neurocritical Care, Department of Neurology, Loyola University Medical Center, Maywood, Illinois, United States
| |
Collapse
|
11
|
Lee SJ, Lee Y, Kong A, Ng SY. Airway Pressure Release Ventilation Combined With Prone Positioning in Acute Respiratory Distress Syndrome: Old Tricks New Synergy: A Case Series. A A Pract 2020; 14:e01231. [PMID: 32496425 DOI: 10.1213/xaa.0000000000001231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Airway pressure release ventilation (APRV) shares several overlapping mechanisms with prone positioning in improving ventilation-perfusion mismatch in patients with acute respiratory distress syndrome (ARDS). However, the combination of APRV and prone positioning is seldom performed because assist/controlled ventilation remains the mainstay ventilatory mode. We describe 5 cases of severe ARDS where APRV and prone positioning were applied. All patients' partial pressure of arterial oxygen (PaO2):inspired oxygen concentration (FiO2) ratios improved after treatment, and 3 patients were extubated within 72 hours of turning supine. In our experience, APRV can be safely used in the prone position in a select subgroup of ARDS patients with resulting significant oxygenation improvement.
Collapse
Affiliation(s)
- Si Jia Lee
- From Department of Surgical Intensive Care, SingHealth, Singapore
| | | | | | | |
Collapse
|
12
|
Fredericks AS, Bunker MP, Gliga LA, Ebeling CG, Ringqvist JR, Heravi H, Manley J, Valladares J, Romito BT. Airway Pressure Release Ventilation: A Review of the Evidence, Theoretical Benefits, and Alternative Titration Strategies. CLINICAL MEDICINE INSIGHTS-CIRCULATORY RESPIRATORY AND PULMONARY MEDICINE 2020; 14:1179548420903297. [PMID: 32076372 PMCID: PMC7003159 DOI: 10.1177/1179548420903297] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 01/08/2020] [Indexed: 11/15/2022]
Abstract
Objective: To review the theoretical benefits of airway pressure release ventilation (APRV), summarize the evidence for its use in clinical practice, and discuss different titration strategies. Data Source: Published randomized controlled trials in humans, observational human studies, animal studies, review articles, ventilator textbooks, and editorials. Data Summary: Airway pressure release ventilation optimizes alveolar recruitment, reduces airway pressures, allows for spontaneous breathing, and offers many hemodynamic benefits. Despite these physiologic advantages, there are inconsistent data to support the use of APRV over other modes of ventilation. There is considerable heterogeneity in the application of APRV among providers and a shortage of information describing initiation and titration strategies. To date, no direct comparison studies of APRV strategies have been performed. This review describes 2 common management approaches that bedside providers can use to optimally tailor APRV to their patients. Conclusion: Airway pressure release ventilation remains a form of mechanical ventilation primarily used for refractory hypoxemia. It offers unique physiological advantages over other ventilatory modes, and providers must be familiar with different titration methods. Given its inconsistent outcome data and heterogeneous use in practice, future trials should directly compare APRV strategies to determine the optimal management approach.
Collapse
Affiliation(s)
- Andrew S Fredericks
- Department of Anesthesiology and Pain Management, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Matthew P Bunker
- Department of Anesthesiology and Pain Management, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Louise A Gliga
- Department of Anesthesiology and Pain Management, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Callie G Ebeling
- Department of Anesthesiology and Pain Management, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jenny Rb Ringqvist
- Department of Anesthesiology and Pain Management, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Hooman Heravi
- Department of Anesthesiology and Pain Management, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - James Manley
- Department of Respiratory Care, Parkland Memorial Hospital, Dallas, TX, USA.,The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jason Valladares
- Department of Anesthesiology and Pain Management, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Bryan T Romito
- Department of Anesthesiology and Pain Management, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW In patients with acute respiratory distress syndrome (ARDS), airway pressure release ventilation (APRV) has been purported to have several physiological benefits. This review synthesizes recent research evaluating APRV mode and provides perspectives on the utility of this mode in children with ARDS. RECENT FINDINGS Two single-center clinical trials on APRV, one adult and one pediatric, have been published this year. These two trials have not only elicited editorials and letters that highlight some of their strengths and weaknesses but also rekindled debate on several aspects of APRV. Despite their contradicting results, both trials provide significant insights into APRV strategies that work and those that may not. This review places the newer evidence in the context of existing literature and provides a comprehensive analysis of APRV use in children. SUMMARY There have been significant recent advancements in our understanding of the clinical utility of APRV in children with ARDS. The recent trial highlights the urgent need to evolve a consensus on definition of APRV and identify strategies that work. Pending further research, clinicians should avoid the use of a zero-PLOW Personalized-APRV strategy as a primary ventilation modality in children with moderate-severe ARDS.
Collapse
|
14
|
|
15
|
González-Castro A, Escudero Acha P, Rodríguez Borregán JC, Peñasco Y, Blanco Huelga C, Cuenca Fito E. Combination of airway pressure release ventilation with inverted inspiration-exhalation ratio and low-flow CO 2 removal devices with renal replacement therapy in refractory hypoxemia. Med Intensiva 2020. [PMID: 31948837 DOI: 10.1016/j.medin.2019.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- A González-Castro
- Servicio de Medicina Intensiva, Hospital Universitario Marqués de Valdecilla, Santander, España.
| | - P Escudero Acha
- Servicio de Medicina Intensiva, Hospital Universitario Marqués de Valdecilla, Santander, España
| | - J C Rodríguez Borregán
- Servicio de Medicina Intensiva, Hospital Universitario Marqués de Valdecilla, Santander, España
| | - Y Peñasco
- Servicio de Medicina Intensiva, Hospital Universitario Marqués de Valdecilla, Santander, España
| | - C Blanco Huelga
- Servicio de Medicina Intensiva, Hospital Universitario Marqués de Valdecilla, Santander, España
| | - E Cuenca Fito
- Servicio de Medicina Intensiva, Hospital Universitario Marqués de Valdecilla, Santander, España
| |
Collapse
|
16
|
|
17
|
Dong M, Cheng J, Wang B, Zhou Y, Kang Y. Airway Pressure Release Ventilation: Is It Really Different in Adults and Children? Am J Respir Crit Care Med 2019; 200:788-789. [PMID: 31112394 PMCID: PMC6775888 DOI: 10.1164/rccm.201901-0179le] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- MeiLing Dong
- West China Hospital of Sichuan UniversityChengdu, Sichuan, China
| | - JiangLi Cheng
- West China Hospital of Sichuan UniversityChengdu, Sichuan, China
| | - Bo Wang
- West China Hospital of Sichuan UniversityChengdu, Sichuan, China
| | - YongFang Zhou
- West China Hospital of Sichuan UniversityChengdu, Sichuan, China
| | - Yan Kang
- West China Hospital of Sichuan UniversityChengdu, Sichuan, China
| |
Collapse
|
18
|
Lalgudi Ganesan S, Jayashree M. Reply to Dong et al.: Airway Pressure Release Ventilation: Is It Really Different in Adults and Children? Am J Respir Crit Care Med 2019; 200:789-790. [PMID: 31112387 PMCID: PMC6775886 DOI: 10.1164/rccm.201903-0616le] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- Saptharishi Lalgudi Ganesan
- Hospital for Sick Children (SickKids) Toronto, Canadaand
- Postgraduate Institute of Medical Education and ResearchChandigarh, India
| | | |
Collapse
|
19
|
Sklar MC, Patel BK, Beitler JR, Piraino T, Goligher EC. Optimal Ventilator Strategies in Acute Respiratory Distress Syndrome. Semin Respir Crit Care Med 2019; 40:81-93. [PMID: 31060090 PMCID: PMC7117088 DOI: 10.1055/s-0039-1683896] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mechanical ventilation practices in patients with acute respiratory distress syndrome (ARDS) have progressed with a growing understanding of the disease pathophysiology. Paramount to the care of affected patients is the delivery of lung-protective mechanical ventilation which prioritizes tidal volume and plateau pressure limitation. Lung protection can probably be further enhanced by scaling target tidal volumes to the specific respiratory mechanics of individual patients. The best procedure for selecting optimal positive end-expiratory pressure (PEEP) in ARDS remains uncertain; several relevant issues must be considered when selecting PEEP, particularly lung recruitability. Noninvasive ventilation must be used with caution in ARDS as excessively high respiratory drive can further exacerbate lung injury; newer modes of delivery offer promising approaches in hypoxemic respiratory failure. Airway pressure release ventilation offers an alternative approach to maximize lung recruitment and oxygenation, but clinical trials have not demonstrated a survival benefit of this mode over conventional ventilation strategies. Rescue therapy with high-frequency oscillatory ventilation is an important option in refractory hypoxemia. Despite a disappointing lack of benefit (and possible harm) in patients with moderate or severe ARDS, possibly due to lung hyperdistention and right ventricular dysfunction, high-frequency oscillation may improve outcome in patients with very severe hypoxemia.
Collapse
Affiliation(s)
- Michael C Sklar
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Bhakti K Patel
- Section of Pulmonary and Critical Care, Department of Medicine, University of Chicago, Chicago, Illinois
| | - Jeremy R Beitler
- Center for Acute Respiratory Failure and Division of Pulmonary, Allergy, and Critical Care Medicine, Columbia University, New York, New York
| | - Thomas Piraino
- Keenan Centre for Biomedical Research, St. Michael's Hospital, Toronto, Ontario, Canada.,Division of Critical Care, Department of Anesthesia, McMaster University, Hamilton, Ontario, Canada.,Department of Respiratory Therapy, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Ewan C Goligher
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada.,Toronto General Hospital Research Institute, Toronto, Ontario, Canada.,Department of Medicine, Division of Respirology, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|