1
|
Grando L, Boada M, Faner R, Gómez-Ollés S, Ruiz V, Bohils M, Albiol J, Marrero R, Rosell L, Salinas I, Ruiz D, Ruiz Á, Rodríguez-Villar C, Ureña A, Paredes-Zapata D, Guirao Á, Sánchez-Etayo G, Molins L, Quiroga N, Gómez-Brey A, Michavila X, Sandiumenge A, Agustí À, Ramos R, Bello I. The impact of the EVLP on the lung microbiome and its inflammatory reaction. Transpl Int 2024; 37:12979. [PMID: 39588198 PMCID: PMC11587763 DOI: 10.3389/ti.2024.12979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 10/01/2024] [Indexed: 11/27/2024]
Abstract
The pulmonary microbiome has emerged as a significant factor in respiratory health and diseases. Despite the sterile conditions maintained during ex vivo lung perfusion (EVLP), the use of antibiotics in the perfuse liquid can lead to dynamic changes in the lung microbiome. Here, we present the design of a study that aims to investigate the hypothesis that EVLP alters the lung microbiome and induces tissue inflammation. This pilot, prospective, controlled study will be conducted in two Spanish donor centers and will include seven organ donors after brain death or after controlled cardiac death. After standardized retrieval, the left lung will be preserved in cold storage and the right lung will be perfused with EVLP. Samples from bronchoalveolar lavage, perfusion and preservation solutions, and lung biopsies will be collected from both lungs and changes in lung microbiome and inflammatory response will be compared.
Collapse
Affiliation(s)
- Leandro Grando
- Department of Thoracic Surgery, Respiratory Institute, Hospital Clínic, Barcelona, Spain
| | - Marc Boada
- Department of Thoracic Surgery, Respiratory Institute, Hospital Clínic, Barcelona, Spain
| | - Rosa Faner
- Universitat de Barcelona, Catedra Salut Respiratoria, Barcelona, Catalunya, Spain
- CIBER Enfermedades Respiratorias (CIBERES), Madrid, Spain
- Institut d’Investigacions BIomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Universitat de Barcelona, Biomedicine Department, Barcelona, Catalunya, Spain
| | - Susana Gómez-Ollés
- CIBER Enfermedades Respiratorias (CIBERES), Madrid, Spain
- Department of Pneumology, Vall d’Hebron Institut de Recerca, Barcelona, Spain
| | - Victoria Ruiz
- Department of Pneumology, Vall d’Hebron Institut de Recerca, Barcelona, Spain
| | - Marc Bohils
- Department of Donor and Transplant Coordination, Hospital Clínic, Barcelona, Spain
| | - Joaquim Albiol
- Department of Donor and Transplant Coordination, Hospital Clínic, Barcelona, Spain
| | - Ramses Marrero
- Department of Anaesthesia and Perioperative Care, Hospital Clínic of Barcelona, Barcelona, Spain
| | - Laia Rosell
- Surgical Area, Hospital Clínic, Barcelona, Spain
| | - Ivan Salinas
- Surgical Area, Hospital Clínic, Barcelona, Spain
| | - Daniel Ruiz
- Surgical Area, Hospital Clínic, Barcelona, Spain
| | - Ángel Ruiz
- Department of Donor and Transplant Coordination, Hospital Clínic, Barcelona, Spain
| | | | - Anna Ureña
- Department of Thoracic Surgery, Respiratory Institute, Hospital Clínic, Barcelona, Spain
| | - David Paredes-Zapata
- Department of Donor and Transplant Coordination, Hospital Clínic, Barcelona, Spain
| | - Ángela Guirao
- Department of Thoracic Surgery, Respiratory Institute, Hospital Clínic, Barcelona, Spain
| | - Gerard Sánchez-Etayo
- Department of Donor and Transplant Coordination, Hospital Clínic, Barcelona, Spain
| | - Laureano Molins
- Department of Thoracic Surgery, Respiratory Institute, Hospital Clínic, Barcelona, Spain
| | - Néstor Quiroga
- Department of Thoracic Surgery, Respiratory Institute, Hospital Clínic, Barcelona, Spain
| | - Aroa Gómez-Brey
- Department of Donor and Transplant Coordination, Vall d’Hebron University Hospital, Barcelona, Spain
| | - Xavier Michavila
- Department of Thoracic Surgery, Respiratory Institute, Hospital Clínic, Barcelona, Spain
| | - Alberto Sandiumenge
- Department of Donor and Transplant Coordination, Vall d’Hebron University Hospital, Barcelona, Spain
| | - Àlvar Agustí
- Universitat de Barcelona, Catedra Salut Respiratoria, Barcelona, Catalunya, Spain
- CIBER Enfermedades Respiratorias (CIBERES), Madrid, Spain
- Department of Pneumology, Respiratory Institute, Hospital Clínic, Barcelona, Spain
| | - Ricard Ramos
- Department of Thoracic Surgery, Respiratory Institute, Hospital Clínic, Barcelona, Spain
- Institut d’Investigacions BIomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Irene Bello
- Department of Thoracic Surgery, Respiratory Institute, Hospital Clínic, Barcelona, Spain
- Institut d’Investigacions BIomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| |
Collapse
|
2
|
Katsirntaki K, Hagner S, Werlein C, Braubach P, Jonigk D, Adam D, Hidaji H, Kühn C, Falk CS, Ruhparwar A, Wiegmann B. Low-Volume Ex Situ Lung Perfusion System for Single Lung Application in a Small Animal Model Enables Optimal Compliance With " Reduction" in 3R Principles of Animal Research. Transpl Int 2024; 37:13189. [PMID: 39314923 PMCID: PMC11418019 DOI: 10.3389/ti.2024.13189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/27/2024] [Indexed: 09/25/2024]
Abstract
Ex situ lung perfusion (ESLP) is used for organ reconditioning, repair, and re-evaluation prior to transplantation. Since valid preclinical animal models are required for translationally relevant studies, we developed a 17 mL low-volume ESLP for double- and single-lung application that enables cost-effective optimal compliance "reduction" of the 3R principles of animal research. In single-lung mode, ten Fischer344 and Lewis rat lungs were subjected to ESLP and static cold storage using STEEN or PerfadexPlus. Key perfusion parameters, thermal lung imaging, blood gas analysis (BGA), colloid oncotic pressure (COP), lung weight gain, histological work-up, and cytokine analysis were performed. Significant differences between perfusion solutions but not between the rat strains were detected. Most relevant perfusion parameters confirmed valid ESLP with homogeneous lung perfusion, evidenced by uniform lung surface temperature. BGA showed temperature-dependent metabolic activities with differences depending on perfusion solution composition. COP is not decisive for pulmonary oedema and associated weight gain, but possibly rather observed chemokine profile and dextran sensitivity of rats. Histological examination confirmed intact lung architecture without infarcts or hemorrhages due to optimal organ procurement and single-lung application protocol using our in-house-designed ESLP system.
Collapse
Affiliation(s)
- K. Katsirntaki
- Department for Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
| | - S. Hagner
- Department for Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
| | - C. Werlein
- Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - P. Braubach
- Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - D. Jonigk
- Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany
- Institute of Pathology, RWTH Aachen Medical University, Aachen, Germany
| | - D. Adam
- Department for Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
| | - H. Hidaji
- Department for Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
| | - C. Kühn
- Department for Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
| | - C. S. Falk
- Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany
- Institute of Transplant Immunology, Hannover Medical School, Hannover, Germany
| | - A. Ruhparwar
- Department for Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
- Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany
| | - B. Wiegmann
- Department for Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
- Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany
| |
Collapse
|
3
|
Quiring L, Caponi L, Schwan D, Rech A, Rauen U. Recovery from cold-induced mitochondrial fission in endothelial cells requires reconditioning temperatures of ≥ 25◦C. FRONTIERS IN TRANSPLANTATION 2022; 1:1044551. [PMID: 38994396 PMCID: PMC11235264 DOI: 10.3389/frtra.2022.1044551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/19/2022] [Indexed: 07/13/2024]
Abstract
Mitochondrial integrity and function constitute a prerequisite for cellular function and repair processes. We have previously shown that mitochondria of different cell types exhibit pronounced fragmentation under hypothermic conditions. This fission, accompanied by a decline of cellular ATP content, showed reversibility at 37◦C. However, it is unclear whether other temperatures as currently discussed for reconditioning of organs allow this reconstitution of mitochondria. Therefore, we here study in a model of cultured porcine aortic endothelial cells how different rewarming temperatures affect mitochondrial re-fusion and function. After 48 h cold incubation of endothelial cells in Krebs-Henseleit buffer with glucose (5 mM) and deferoxamine (1 mM) at 4◦C pronounced mitochondrial fission was observed. Following 2 h rewarming in cell culture medium, marked fission was still present after rewarming at 10◦ or 15◦C. At 21◦C some re-fusion was visible, which became more marked at 25◦C. Networks of tubular mitochondria similar to control cells only re-appeared at 37◦C. ATP content decreased at 4◦C from 3.6 ± 0.4 to 1.6 ± 0.4 nmol/106 cells and decreased even further when rewarming cells to 10◦ and 15◦C. Values after rewarming at 21◦C were similar to the values before rewarming while ATP gradually increased at higher rewarming temperatures. Metabolic activity dropped to 5 ± 11% of control values during 4◦C incubation and recovered with increasing temperatures to 36 ± 10% at 25◦C and 78 ± 17% at 37◦C. Integrity of monolayers, largely disturbed at 4◦C (large gaps between endothelial cells; cell injury ≤ 1%), showed partial recovery from 15◦C upwards, complete recovery at 37◦C. Endothelial repair processes (scratch assay) at 25◦C were clearly inferior to those at 37◦C. These data suggest that reconditioning temperatures below 21◦C are not optimal with regard to reconstitution of mitochondrial integrity and function. For this goal, temperatures of at least 25◦C appear required, with 30◦C being superior and 37◦C yielding the best results.
Collapse
Affiliation(s)
- Leonard Quiring
- Klinische Forschergruppe 117, Universitätsklinikum Essen, Essen, Germany
| | - Luisa Caponi
- Institut für Physiologische Chemie, Universitätsklinikum Essen, Essen, Germany
| | - Dhanusha Schwan
- Klinische Forschergruppe 117, Universitätsklinikum Essen, Essen, Germany
| | - Anja Rech
- Klinische Forschergruppe 117, Universitätsklinikum Essen, Essen, Germany
| | - Ursula Rauen
- Klinische Forschergruppe 117, Universitätsklinikum Essen, Essen, Germany
- Institut für Physiologische Chemie, Universitätsklinikum Essen, Essen, Germany
| |
Collapse
|
4
|
Bery A, Marklin G, Itoh A, Kreisel D, Takahashi T, Meyers BF, Nava R, Kozower BD, Shepherd H, Patterson GA, Puri V. Specialized Donor Care Facility Model and Advances in Management of Thoracic Organ Donors. Ann Thorac Surg 2022; 113:1778-1786. [PMID: 33421385 PMCID: PMC8257761 DOI: 10.1016/j.athoracsur.2020.12.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 12/13/2020] [Accepted: 12/15/2020] [Indexed: 12/26/2022]
Abstract
BACKGROUND Donor hearts and lungs are more susceptible to the inflammatory physiologic changes that occur after brain death. Prior investigations have shown that protocolized management of potential organ donors can rehabilitate donor organs that are initially deemed unacceptable. In this review we discuss advances in donor management models with particular attention to the specialized donor care facility model. In addition we review specific strategies to optimize donor thoracic organs and improve organ yield in thoracic transplantation. METHODS We performed a literature review by searching the PubMed database for medical subject heading terms associated with organ donor management models. We also communicated with our local organ procurement organization to gather published and unpublished information first-hand. RESULTS The specialized donor care facility model has been shown to improve the efficiency of organ donor management and procurement while reducing costs and minimizing travel and its associated risks. Lung protective ventilation, recruitment of atelectatic lung, and hormone therapy (eg, glucocorticoids and triiodothyronine/thyroxine) are associated with improved lung utilization rates. Stroke volume-based resuscitation is associated with improved heart utilization rates, whereas studies evaluating hormone therapy (eg, glucocorticoids and triiodothyronine/thyroxine) have shown variable results. CONCLUSIONS Lack of high-quality prospective evidence results in conflicting practices across organ procurement organizations, and best practices remain controversial. Future studies should focus on prospective, randomized investigations to evaluate donor management strategies. The specialized donor care facility model fosters a collaborative environment that encourages academic inquiry and is an ideal setting for these investigations.
Collapse
Affiliation(s)
- Amit Bery
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St Louis, Missouri.
| | | | - Akinobu Itoh
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, St Louis, Missouri
| | - Daniel Kreisel
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, St Louis, Missouri
| | - Tsuyoshi Takahashi
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, St Louis, Missouri
| | - Bryan F Meyers
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, St Louis, Missouri
| | - Ruben Nava
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, St Louis, Missouri
| | - Benjamin D Kozower
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, St Louis, Missouri
| | - Hailey Shepherd
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, St Louis, Missouri
| | - G Alexander Patterson
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, St Louis, Missouri
| | - Varun Puri
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, St Louis, Missouri
| |
Collapse
|
5
|
Ascorbic acid in solid organ transplantation: a literature review. Clin Nutr 2022; 41:1244-1255. [DOI: 10.1016/j.clnu.2022.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 11/19/2022]
|
6
|
Miceli V, Bertani A. Mesenchymal Stromal/Stem Cells and Their Products as a Therapeutic Tool to Advance Lung Transplantation. Cells 2022; 11:cells11050826. [PMID: 35269448 PMCID: PMC8909054 DOI: 10.3390/cells11050826] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/18/2022] [Accepted: 02/25/2022] [Indexed: 02/07/2023] Open
Abstract
Lung transplantation (LTx) has become the gold standard treatment for end-stage respiratory failure. Recently, extended lung donor criteria have been applied to decrease the mortality rate of patients on the waiting list. Moreover, ex vivo lung perfusion (EVLP) has been used to improve the number/quality of previously unacceptable lungs. Despite the above-mentioned progress, the morbidity/mortality of LTx remains high compared to other solid organ transplants. Lungs are particularly susceptible to ischemia-reperfusion injury, which can lead to graft dysfunction. Therefore, the success of LTx is related to the quality/function of the graft, and EVLP represents an opportunity to protect/regenerate the lungs before transplantation. Increasing evidence supports the use of mesenchymal stromal/stem cells (MSCs) as a therapeutic strategy to improve EVLP. The therapeutic properties of MSC are partially mediated by secreted factors. Hence, the strategy of lung perfusion with MSCs and/or their products pave the way for a new innovative approach that further increases the potential for the use of EVLP. This article provides an overview of experimental, preclinical and clinical studies supporting the application of MSCs to improve EVLP, the ultimate goal being efficient organ reconditioning in order to expand the donor lung pool and to improve transplant outcomes.
Collapse
Affiliation(s)
- Vitale Miceli
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione), 90127 Palermo, Italy
- Correspondence: (V.M.); (A.B.); Tel.: +39-091-21-92-430 (V.M.); +39-091-21-92-111 (A.B.)
| | - Alessandro Bertani
- Thoracic Surgery and Lung Transplantation Unit, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy
- Correspondence: (V.M.); (A.B.); Tel.: +39-091-21-92-430 (V.M.); +39-091-21-92-111 (A.B.)
| |
Collapse
|
7
|
Kalka K, Keldenich Z, Carstens H, Walter B, Rauen U, Ruhparwar A, Weymann A, Kamler M, Reiner G, Koch A. Custodiol-MP for ex vivo lung perfusion - A comparison in a porcine model of donation after circulatory determination of death. Int J Artif Organs 2022; 45:162-173. [PMID: 33530837 PMCID: PMC8777315 DOI: 10.1177/0391398821990663] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/07/2021] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Ex vivo lung perfusion (EVLP) is an established technique to evaluate and eventually recondition lungs prior to transplantation. Custodiol-MP (C-MP) solution is a new solution, designed for clinical machine perfusion, that has been used for kidneys. The aim of this study was to compare the effects of EVLP with Custodiol-MP on lung functional outcomes to the gold standard of EVLP with Steen Solution™. MATERIAL AND METHODS In a porcine EVLP model of DCDD (Donation after Circulatory Determination of Death), lungs were perfused with Steen Solution™ (SS, n = 7) or Custodiol-MP solution supplemented with 55 g/l albumin (C-MP, n = 8). Lungs were stored cold for 4 h in low potassium dextran solution and subsequently perfused ex vivo for 4 h. During EVLP pulmonary gas exchange, activities of lactate dehydrogenase (LDH) and alkaline phosphatase (AP) as well as levels of lactate in the perfusate were recorded hourly. RESULTS Oxygenation capacity differed significantly between groups (averaged over 4 h: SS 274 ± 178 mmHg; C-MP 284 ± 151 mmHg p = 0.025). Lactate dehydrogenase activities and lactate concentrations were significantly lower in Custodiol-MP perfused lungs.In a porcine model of DCDD with 4 h of EVLP the use of modified Custodiol-MP as perfusion solution was feasible. The use of C-MP showed at least comparable lung functional outcomes to the use of Steen SolutionTM. Furthermore C-MP perfusion resulted in significantly lower lactate dehydrogenase activity and lactate levels in the perfusate and higher oxygenation capacity.
Collapse
Affiliation(s)
- Katharina Kalka
- Department of Thoracic and
Cardiovascular Surgery, Division of Thoracic Transplantation, West German Heart
Center, University Hospital Essen, Essen, Germany
| | - Zoe Keldenich
- Department of Thoracic and
Cardiovascular Surgery, Division of Thoracic Transplantation, West German Heart
Center, University Hospital Essen, Essen, Germany
| | - Henning Carstens
- Department of Cardiothoracic Surgery,
Center of Cardiology, University Hospital Cologne, Cologne, Nordrhein-Westfalen,
Germany
| | - Björn Walter
- Institut für Physiologische Chemie,
Universitätsklinikum Essen, Essen, Nordrhein-Westfalen, Germany
| | - Ursula Rauen
- Institut für Physiologische Chemie,
Universitätsklinikum Essen, Essen, Nordrhein-Westfalen, Germany
| | - Arjang Ruhparwar
- Department of Thoracic and
Cardiovascular Surgery, Division of Thoracic Transplantation, West German Heart
Center, University Hospital Essen, Essen, Germany
| | - Alexander Weymann
- Department of Thoracic and
Cardiovascular Surgery, Division of Thoracic Transplantation, West German Heart
Center, University Hospital Essen, Essen, Germany
| | - Markus Kamler
- Department of Thoracic and
Cardiovascular Surgery, Division of Thoracic Transplantation, West German Heart
Center, University Hospital Essen, Essen, Germany
| | - Gerald Reiner
- Department of Veterinary Clinical
Sciences, Swine Clinic, Justus-Liebig-University, Giessen, Hessen, Germany
| | - Achim Koch
- Department of Thoracic and
Cardiovascular Surgery, Division of Thoracic Transplantation, West German Heart
Center, University Hospital Essen, Essen, Germany
| |
Collapse
|
8
|
Ischemia-Reperfusion Injury in Lung Transplantation. Cells 2021; 10:cells10061333. [PMID: 34071255 PMCID: PMC8228304 DOI: 10.3390/cells10061333] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 02/08/2023] Open
Abstract
Lung transplantation has been established worldwide as the last treatment for end-stage respiratory failure. However, ischemia–reperfusion injury (IRI) inevitably occurs after lung transplantation. The most severe form of IRI leads to primary graft failure, which is an important cause of morbidity and mortality after lung transplantation. IRI may also induce rejection, which is the main cause of mortality in recipients. Despite advances in donor management and graft preservation, most donor grafts are still unsuitable for transplantation. Although the pulmonary endothelium is the primary target site of IRI, the pathophysiology of lung IRI remains incompletely understood. It is essential to understand the mechanism of pulmonary IRI to improve the outcomes of lung transplantation. Therefore, we reviewed the state-of-the-art in the management of pulmonary IRI after lung transplantation. Recently, the ex vivo lung perfusion (EVLP) system has been clinically introduced worldwide. Various promising therapeutic strategies for the protection of the endothelium against IRI, including EVLP, inhalation therapy with therapeutic gases and substances, fibrinolytic treatment, and mesenchymal stromal cell therapy, are awaiting clinical application. We herein review the latest advances in the field of pulmonary IRI in lung transplantation.
Collapse
|
9
|
Santini A, Fumagalli J, Merrino A, Protti I, Paleari MC, Montoli M, Dondossola D, Gori F, Righi I, Rosso L, Gatti S, Pesenti A, Grasselli G, Zanella A. Evidence of Air Trapping During Ex Vivo Lung Perfusion: A Swine Experimental Lung Imaging and Mechanics Study. Transplant Proc 2020; 53:457-465. [PMID: 33339649 DOI: 10.1016/j.transproceed.2020.10.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/21/2020] [Accepted: 10/19/2020] [Indexed: 11/17/2022]
Abstract
Ex vivo lung perfusion (EVLP) allows the ventilation and perfusion of lungs to evaluate their viability for transplantation. The aim of this study is to compare the mechanical, morphologic and functional properties of lungs during EVLP with values obtained in vivo to guide a safe mechanical ventilation strategy. Lungs from 5 healthy pigs were studied in vivo and during 4 hours of EVLP. Lung compliance, airway resistance, gas exchange, and hemodynamic parameters were collected at positive end-expiratory pressure (PEEP) of 5 cm H2O. Computed tomography was performed at PEEP 0, PEEP 5, and total lung capacity (TLC). Lung pressure-volume (PV) curves were performed from PEEP 0 to TLC. Lung compliance decreased during EVLP (53 ± 5 mL/cm H2O vs 29 ± 7 mL/cm H2O, P < .05), and the PV curve showed a lower inflection point. Gas content (528 ± 118 mL vs 892 ± 402 mL at PEEP 0) and airway resistance (25 ± 5 vs 44 ± 9 cmH2O/L∗s-1, P < .05) were higher during EVLP. Alveolar dead space (5% ± 2% vs 17% ± 6%, P < .05) and intrapulmonary shunt (9% ± 2% vs 28% ± 13%, P < .05) increased ex vivo compared to in vivo, while the partial pressure of oxygen to inspired oxygen fraction ratio (PO2/FiO2) did not differ (468 ± 52 mm Hg vs 536 ± 14 mm Hg). In conclusion, during EVLP lungs show signs of air trapping and bronchoconstriction, resulting in low compliance and increased alveolar dead space. Intrapulmonary shunt is high despite oxygenation levels acceptable for transplantation.
Collapse
Affiliation(s)
- A Santini
- Dipartimento di Anestesia, Rianimazione ed Emergenza, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Dipartimento di Anestesia e Terapie Intensive, Humanitas Clinical and Research Center, IRCCS, Rozzano, Milan, Italy
| | - J Fumagalli
- Dipartimento di Anestesia, Rianimazione ed Emergenza, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - A Merrino
- Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Università degli Studi di Milano, Milan, Italy
| | - I Protti
- Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Università degli Studi di Milano, Milan, Italy
| | - M C Paleari
- Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Università degli Studi di Milano, Milan, Italy
| | - M Montoli
- Dipartimento di Chirurgia Toracica, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - D Dondossola
- Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Università degli Studi di Milano, Milan, Italy; Dipartimento di Chirurgia Generale e dei Trapianti di Fegato, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - F Gori
- Dipartimento di Anestesia, Rianimazione ed Emergenza, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - I Righi
- Dipartimento di Chirurgia Toracica, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - L Rosso
- Dipartimento di Chirurgia Toracica, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - S Gatti
- Centro di Ricerche Precliniche, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - A Pesenti
- Dipartimento di Anestesia, Rianimazione ed Emergenza, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Università degli Studi di Milano, Milan, Italy
| | - G Grasselli
- Dipartimento di Anestesia, Rianimazione ed Emergenza, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Università degli Studi di Milano, Milan, Italy
| | - A Zanella
- Dipartimento di Anestesia, Rianimazione ed Emergenza, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
10
|
Okahara S, Levvey B, McDonald M, D'Costa R, Opdam H, Pilcher DV, Snell GI. Common Criteria for Ex Vivo Lung Perfusion Have No Significant Impact on Posttransplant Outcomes. Ann Thorac Surg 2020; 111:1156-1163. [PMID: 32890490 DOI: 10.1016/j.athoracsur.2020.06.081] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/11/2020] [Accepted: 06/23/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND Although it is intense in health care resources, by facilitating assessment and reconditioning, ex vivo lung perfusion (EVLP) has the potential to expand the donor pool and improve lung transplant outcomes. However, inclusion criteria used in EVLP trials have not been validated. METHODS This retrospective study from 2014 to 2018 reviewed our local state-based donation organization donor records as well as subsequent recipient outcomes to explore the relation between EVLP indications used in clinical trials and recipient outcomes. The primary outcome was primary graft dysfunction grade 3 at 24 hours, with 30-day mortality and posttransplant survival time as secondary outcomes, compared with univariate and multivariate analysis. RESULTS From 705 lung donor referrals, 304 lung transplantations were performed (use rate of 42%); 212 of recipients (70%) met at least 1 of the commonly cited EVLP initiation criteria. There was no significant difference in primary graft dysfunction grade 3 or 30-day mortality between recipients with or without an EVLP indication (10.2% versus 7.8%, P = .51; and 2.4% versus 0%, P = .14, respectively). Multivariate analyses showed no significant relationship between commonly cited EVLP criteria and primary graft dysfunction grade 3 or survival time. Recipient outcomes were significantly associated with recipient diagnosis. CONCLUSIONS At least 1 commonly cited criterion for EVLP initiation was present in 70% of the transplanted donors, and yet it did not predict clinical results; acceptable outcomes were seen in both subgroups. To discover the true utility of EVLP beyond good clinical management and focus EVLP on otherwise unacceptable lungs, a reconsideration of EVLP inclusion criteria is required.
Collapse
Affiliation(s)
- Shuji Okahara
- Australian and New Zealand Intensive Care Research Centre, Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Australia; Lung Transplant Service, Alfred Hospital, Melbourne, Australia.
| | - Bronwyn Levvey
- Lung Transplant Service, Alfred Hospital, Melbourne, Australia
| | | | | | - Helen Opdam
- Organ and Tissue Authority, Canberra, Australia
| | - David V Pilcher
- Australian and New Zealand Intensive Care Research Centre, Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Australia
| | - Gregory I Snell
- Lung Transplant Service, Alfred Hospital, Melbourne, Australia
| |
Collapse
|
11
|
Behnke J, Kremer S, Shahzad T, Chao CM, Böttcher-Friebertshäuser E, Morty RE, Bellusci S, Ehrhardt H. MSC Based Therapies-New Perspectives for the Injured Lung. J Clin Med 2020; 9:jcm9030682. [PMID: 32138309 PMCID: PMC7141210 DOI: 10.3390/jcm9030682] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 02/25/2020] [Accepted: 02/28/2020] [Indexed: 12/11/2022] Open
Abstract
Chronic lung diseases pose a tremendous global burden. At least one in four people suffer from severe pulmonary sequelae over the course of a lifetime. Despite substantial improvements in therapeutic interventions, persistent alleviation of clinical symptoms cannot be offered to most patients affected to date. Despite broad discrepancies in origins and pathomechanisms, the important disease entities all have in common the pulmonary inflammatory response which is central to lung injury and structural abnormalities. Mesenchymal stem cells (MSC) attract particular attention due to their broadly acting anti-inflammatory and regenerative properties. Plenty of preclinical studies provided congruent and convincing evidence that MSC have the therapeutic potential to alleviate lung injuries across ages. These include the disease entities bronchopulmonary dysplasia, asthma and the different forms of acute lung injury and chronic pulmonary diseases in adulthood. While clinical trials are so far restricted to pioneering trials on safety and feasibility, preclinical results point out possibilities to boost the therapeutic efficacy of MSC application and to take advantage of the MSC secretome. The presented review summarizes the most recent advances and highlights joint mechanisms of MSC action across disease entities which provide the basis to timely tackle this global disease burden.
Collapse
Affiliation(s)
- Judith Behnke
- Department of General Pediatrics and Neonatology, Justus-Liebig-University, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Feulgenstrasse 12, 35392 Gießen, Germany; (J.B.); (S.K.); (T.S.); (C.-M.C.)
| | - Sarah Kremer
- Department of General Pediatrics and Neonatology, Justus-Liebig-University, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Feulgenstrasse 12, 35392 Gießen, Germany; (J.B.); (S.K.); (T.S.); (C.-M.C.)
| | - Tayyab Shahzad
- Department of General Pediatrics and Neonatology, Justus-Liebig-University, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Feulgenstrasse 12, 35392 Gießen, Germany; (J.B.); (S.K.); (T.S.); (C.-M.C.)
| | - Cho-Ming Chao
- Department of General Pediatrics and Neonatology, Justus-Liebig-University, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Feulgenstrasse 12, 35392 Gießen, Germany; (J.B.); (S.K.); (T.S.); (C.-M.C.)
- Department of Internal Medicine II, Universities of Giessen and Marburg Lung Center (UGMLC), Cardiopulmonary Institute (CPI), German Center for Lung Research (DZL), Aulweg 130, 35392 Giessen, Germany;
| | | | - Rory E. Morty
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, German Center for Lung Research (DZL), Ludwigstrasse 43, 61231 Bad Nauheim, Germany;
| | - Saverio Bellusci
- Department of Internal Medicine II, Universities of Giessen and Marburg Lung Center (UGMLC), Cardiopulmonary Institute (CPI), German Center for Lung Research (DZL), Aulweg 130, 35392 Giessen, Germany;
| | - Harald Ehrhardt
- Department of General Pediatrics and Neonatology, Justus-Liebig-University, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Feulgenstrasse 12, 35392 Gießen, Germany; (J.B.); (S.K.); (T.S.); (C.-M.C.)
- Correspondence: ; Tel.: +49-985-43400; Fax: +49-985-43419
| |
Collapse
|
12
|
Barilani M, Peli V, Cherubini A, Dossena M, Dolo V, Lazzari L. NG2 as an Identity and Quality Marker of Mesenchymal Stem Cell Extracellular Vesicles. Cells 2019; 8:cells8121524. [PMID: 31783568 PMCID: PMC6953102 DOI: 10.3390/cells8121524] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/22/2019] [Accepted: 11/25/2019] [Indexed: 02/06/2023] Open
Abstract
The therapeutic potential of mesenchymal stem cell (MSC) extracellular vesicles (EV) is currently under investigation in many pathological contexts. Both adult and perinatal MSC are being considered as sources of EV. Herein, we address antigen expression of cord blood and bone marrow MSC and released EV to define an identity and quality parameter of MSC EV as a medicinal product in the context of clinical applications. The research focuses on EV-shuttled neural/glial antigen 2 (NG2), which has previously been detected as a promising surface marker to distinguish perinatal versus adult MSC. Indeed, NG2 was significantly more abundant in cord blood than bone marrow MSC and MSC EV. Ultracentrifuge-isolated EV were then challenged for their pro-angiogenic properties on an xCELLigence system as quality control. NG2+ cord blood MSC EV, but not bone marrow MSC EV, promote bFGF and PDGF-AA proliferative effect on endothelial cells. Likewise, they successfully rescue angiostatin-induced endothelial cell growth arrest. In both cases, the effects are NG2-dependent. These results point at NG2 as an identity and quality parameter for cord blood MSC EV, paving the way for their clinical translation.
Collapse
Affiliation(s)
- Mario Barilani
- Laboratory of Regenerative Medicine–Cell Factory, Department of Transfusion Medicine and Hematology, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, via F. Sforza 35, 20122 Milano (MI), Italy; (M.B.); (V.P.); (A.C.); (M.D.)
| | - Valeria Peli
- Laboratory of Regenerative Medicine–Cell Factory, Department of Transfusion Medicine and Hematology, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, via F. Sforza 35, 20122 Milano (MI), Italy; (M.B.); (V.P.); (A.C.); (M.D.)
| | - Alessandro Cherubini
- Laboratory of Regenerative Medicine–Cell Factory, Department of Transfusion Medicine and Hematology, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, via F. Sforza 35, 20122 Milano (MI), Italy; (M.B.); (V.P.); (A.C.); (M.D.)
| | - Marta Dossena
- Laboratory of Regenerative Medicine–Cell Factory, Department of Transfusion Medicine and Hematology, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, via F. Sforza 35, 20122 Milano (MI), Italy; (M.B.); (V.P.); (A.C.); (M.D.)
| | - Vincenza Dolo
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Lorenza Lazzari
- Laboratory of Regenerative Medicine–Cell Factory, Department of Transfusion Medicine and Hematology, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, via F. Sforza 35, 20122 Milano (MI), Italy; (M.B.); (V.P.); (A.C.); (M.D.)
- Correspondence:
| |
Collapse
|
13
|
Goligorsky MS. New Trends in Regenerative Medicine: Reprogramming and Reconditioning. J Am Soc Nephrol 2019; 30:2047-2051. [PMID: 31540964 DOI: 10.1681/asn.2019070722] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Michael S Goligorsky
- Departments of Medicine, .,Pharmacology, and.,Physiology, Renal Research Institute, New York Medical College at Touro University, Valhalla, New York
| |
Collapse
|
14
|
Tawil JN, Adams BA, Nicoara A, Boisen ML. Noteworthy Literature Published in 2018 for Thoracic Organ Transplantation. Semin Cardiothorac Vasc Anesth 2019; 23:171-187. [PMID: 31064319 DOI: 10.1177/1089253219845408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Publications of note from 2018 are reviewed for the cardiothoracic transplant anesthesiologist. Strategies to expand the availability of donor organs were highlighted, including improved donor management, accumulating experience with increased-risk donors, ex vivo perfusion techniques, and donation after cardiac death. A number of reports examined posttransplant outcomes, including outcomes other than mortality, with new data-driven risk models. Use of extracorporeal support in cardiothoracic transplantation was a prominent theme. Major changes in adult heart allocation criteria were implemented, aiming to improve objectivity and transparency in the listing process. Frailty and prehabilitation emerged as targets of comprehensive perioperative risk mitigation programs.
Collapse
Affiliation(s)
| | | | | | - Michael L Boisen
- 4 University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|