1
|
Das A, Biggs MA, Hunt HL, Mahabadi V, Goncalves BG, Phan CAN, Banerjee IA. Design and investigation of novel iridoid-based peptide conjugates for targeting EGFR and its mutants L858R and T790M/L858R/C797S: an in silico study. Mol Divers 2024:10.1007/s11030-024-11007-3. [PMID: 39424745 DOI: 10.1007/s11030-024-11007-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 09/29/2024] [Indexed: 10/21/2024]
Abstract
In this work, we designed novel peptide conjugates with plant-based iridoid and lichen-derived depside derivatives to target the wild-type EGFR (WT) and its mutants, L858R and T790M/L858R/C797S triple mutant. These mutations are often expressed in multiple cancers, particularly lung cancer. Specifically, the iridoids included 7-deoxyloganetic acid (7-DGA) and loganic acid (LG), while the depside derivative was sekikaic acid (SK). These compounds are known for their innate anticancer properties and were conjugated with two separate peptide sequences KLPGWSG (K) and YSIPKSS (Y). These sequences have been shown to target EGFR in previous phage display library screening, although the mechanism is unknown. Thus, we created the di-conjugates for dual targeting and investigated their interactions of the di-conjugates and that of the neat peptides with the kinase domain of EGFR (WT) and the two mutants using molecular docking, molecular dynamics (MD) simulations, and MM-GBSA analysis. Docking studies revealed that the (7-DGA)2-K showed the highest binding affinity at - 9.3 kcal/mol with the L858R mutant, while (LG)2-Y displayed the highest binding affinity at - 9.0 kcal/mol for the triple mutant receptor. Our results indicated that several of the conjugates interacted with crucial residues of the kinase domain, including ASP855 and THR854 (activation loop), MET793 and PRO794 (hinge region), ARG841 (catalytic loop), and LYS728 and LEU718 of the glycine-rich P-loop. Interestingly, strong hydrophobic interactions were also observed with the C-terminal tail residues, such as PHE997 and ALA1000 as well as with ARG999 for the YSIPKSS peptide and most of the conjugates. The hydroxyl group of the cyclopentane ring and the oxygen of the pyran ring of the (7-DGA)2-peptide conjugates contributed to binding particularly in the hinge region, while the peptide components formed an extended structure that bound well into the C-lobe. The (SK)2-Y di-conjugate and KLPGWSG peptide formed hydrogen bonds with the SER797 residue of the triple mutant. Overall, our results show that the (7-DGA)2-K, di-conjugate, the (7-DGA)2-Y di-conjugate, and the neat YSIPKSS demonstrated strong and stable binding with the L858R mutant and the highly resistant triple mutant EGFR, respectively. The novel designed conjugates demonstrate potential for further optimization for laboratory studies aimed at developing new therapeutics for targeting specific EGFR mutant expressing cells.
Collapse
Affiliation(s)
- Amrita Das
- Department of Chemistry and Biochemistry, Fordham University, 441 East Fordham Road, Bronx, NY, 10458, USA
| | - Mary A Biggs
- Department of Chemistry and Biochemistry, Fordham University, 441 East Fordham Road, Bronx, NY, 10458, USA
| | - Hannah L Hunt
- Department of Chemistry and Biochemistry, Fordham University, 441 East Fordham Road, Bronx, NY, 10458, USA
| | - Vida Mahabadi
- Department of Chemistry and Biochemistry, Fordham University, 441 East Fordham Road, Bronx, NY, 10458, USA
| | - Beatriz G Goncalves
- Department of Chemistry and Biochemistry, Fordham University, 441 East Fordham Road, Bronx, NY, 10458, USA
| | - Chau Anh N Phan
- Department of Chemistry and Biochemistry, Fordham University, 441 East Fordham Road, Bronx, NY, 10458, USA
| | - Ipsita A Banerjee
- Department of Chemistry and Biochemistry, Fordham University, 441 East Fordham Road, Bronx, NY, 10458, USA.
| |
Collapse
|
2
|
Ma J, Huang L, Han C. Expert consensus on the use of third-generation EGFR-TKIs in EGFR-mutated advanced non-small cell lung cancer with various T790M mutations post-resistance to first-/second-generation EGFR-TKIs. Ther Adv Med Oncol 2024; 16:17588359241289648. [PMID: 39434954 PMCID: PMC11492187 DOI: 10.1177/17588359241289648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 09/19/2024] [Indexed: 10/23/2024] Open
Abstract
Third-generation epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) have emerged as the mainstay of treatment for advanced EGFR-mutant advanced non-small cell lung cancer (NSCLC), effectively overcoming the problems of acquired threonine-to-methionine (T790M) mutations associated with the first- or second-generation TKIs. Evidence from several studies suggests that these agents, including osimertinib and aumolertinib, also show potential benefits in T790M-negative or unknown populations, particularly those with brain metastases, where the high permeability of the blood-brain barrier allows effective control of intracranial lesions. Despite the encouraging results, further high-quality research, including prospective trials, is warranted to fully elucidate the efficacy profiles of these third-generation TKIs in T790M-negative or unknown NSCLC patients after first- or second-line TKI failure. The present expert consensus highlights the evolving role of third-generation EGFR-TKIs in overcoming therapeutic resistance and optimizing patient outcomes.
Collapse
Affiliation(s)
- Jietao Ma
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Letian Huang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Chengbo Han
- Department of Oncology, Shengjing Hospital of China Medical University, No. 39, Huaxiang Road, Tiexi District, Shenyang 110022 China
| |
Collapse
|
3
|
Dawoud R, Saman H, Rasul K, Jibril F, Sahal A, Al-Okka R, Mahfouz Y, Omar NE, Hamad A, Mohsen R, Kanbour A, Battikh N, Chandra P, Elazzazy S. Real-World Data Presenting the Descriptive Analysis of the Use of Tyrosine Kinase Inhibitors (TKIs) Among Metastatic Non-Small-Cell Lung Cancer (mNSCLC) Patients in Qatar: A Nationwide Retrospective Cohort Study. Clin Med Insights Oncol 2024; 18:11795549241272490. [PMID: 39416762 PMCID: PMC11481063 DOI: 10.1177/11795549241272490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 07/11/2024] [Indexed: 10/19/2024] Open
Abstract
Background There has been significant improvement in treating metastatic non-small-cell lung cancer (mNSCLC) over the past 2 decades. The aim of this study is to describe the use of tyrosine kinase inhibitors (TKIs) in Qatar. This study focuses on the objective response rate (ORR) and reported adverse drug events (ADEs) of TKIs used for the management of patients with mNSCLC. Methods This is a descriptive retrospective cohort study. All non-small-cell lung cancers (NSCLCs) with epidermal growth factor receptor (EGFR) or anaplastic lymphoma kinase (ALK) mutations who received TKIs between 2015 and 2019 in Qatar were included. The TKIs used during this period include EGFR inhibitors such as afatinib, erlotinib, gefitinib, and osimertinib and ALK inhibitors such as alectinib and crizotinib. The response on each TKI was identified by reporting the ORR (as the sum of the complete response [CR] and the partial response [PR]), in addition stable disease (SD) and disease progression (DP) were reported. While ADEs were reported using the National Cancer Institute's Common Terminology Criteria for Adverse Events (NCI-CTCAE). Results A total of 63 patients were included, of which 36 cases (57.1%) expressed EGFR mutation, and 27 patients (42.9%) expressed ALK rearrangement. The ORR in EGFR inhibitors was as follows: osimertinib 40%, gefitinib 33%, afatinib 22%, and erlotinib 18%. However, the response to the ALK-targeted therapy was 43% with alectinib and 40% with crizotinib. A total of 112 ADEs were reported. They were distributed as 63.4% (71 of 112) with the anti-EGFR and 36.6% (41 of 112) ADEs with the ALK inhibitors. In the anti-EGFR group, the most common types of ADEs were dermatological toxicity 30%, whereas, in the anti-ALK group, gastrointestinal toxicity was the most common (29%). Conclusions The EGFR-targeted and ALK-targeted therapies appear to have acceptable clinical response rate and safety profile in our population. Close and frequent monitoring of adverse events is advised to ensure a good quality of life and prevent serious complications.
Collapse
Affiliation(s)
- Rawan Dawoud
- Department of Pharmacy, The National Center of Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Harman Saman
- Department of Pulmonary Medicine, Hazm Mebaireek General Hospital, Hamad Medical Corporation, Doha, Qatar
| | - Kakil Rasul
- Department of Medical Oncology, The National Center of Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Farah Jibril
- Department of Pharmacy, The National Center of Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Arwa Sahal
- Department of Pharmacy, The National Center of Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Randa Al-Okka
- Department of Pharmacy, The National Center of Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Yaser Mahfouz
- Department of Pharmacy, The National Center of Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Nabil E. Omar
- Department of Pharmacy, The National Center of Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Anas Hamad
- Department of Pharmacy, The National Center of Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
- College of Pharmacy, QU Health, Qatar University, Qatar
| | - Reyad Mohsen
- Department of Medical Oncology, The National Center of Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Aladdin Kanbour
- Department of Medical Oncology, The National Center of Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Naim Battikh
- Department of Medicine, Hamad General Hospital, Hamad Medical Corporation, Doha, Qatar
| | - Prem Chandra
- Department of Medical Research, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Shereen Elazzazy
- Department of Pharmacy, The National Center of Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
- College of Pharmacy, QU Health, Qatar University, Qatar
| |
Collapse
|
4
|
Shen J, Chen L, Liu J, Li A, Zheng L, Chen S, Li Y. EGFR degraders in non-small-cell lung cancer: Breakthrough and unresolved issue. Chem Biol Drug Des 2024; 103:e14517. [PMID: 38610074 DOI: 10.1111/cbdd.14517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/02/2024] [Accepted: 03/16/2024] [Indexed: 04/14/2024]
Abstract
The epidermal growth factor receptor (EGFR) has been well validated as a therapeutic target for anticancer drug discovery. Osimertinib has become the first globally accessible third-generation EGFR inhibitor, representing one of the most advanced developments in non-small-cell lung cancer (NSCLC) therapy. However, a tertiary Cys797 to Ser797 (C797S) point mutation has hampered osimertinib treatment in patients with advanced EGFR-mutated NSCLC. Several classes of fourth-generation EGFR inhibitors were consequently discovered with the aim of overcoming the EGFRC797S mutation-mediated resistance. However, no clinical efficacy data of the fourth-generation EGFR inhibitors were reported to date, and EGFRC797S mutation-mediated resistance remains an "unmet clinical need." Proteolysis-targeting chimeric molecules (PROTACs) obtained from EGFR-TKIs have been developed to target drug resistance EGFR in NSCLC. Some PROTACs are from nature products. These degraders compared with EGFR inhibitors showed better efficiency in their cellular potency, inhibition, and toxicity profiles. In this review, we first introduce the structural properties of EGFR, the resistance, and mutations of EGFR, and then mainly focus on the recent advances of EGFR-targeting degraders along with its advantages and outstanding challenges.
Collapse
Affiliation(s)
- Jiayi Shen
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou, Jiangxi, China
| | - Liping Chen
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou, Jiangxi, China
| | - Jihu Liu
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou, Jiangxi, China
| | - Anzhi Li
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou, Jiangxi, China
| | - Lüyin Zheng
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou, Jiangxi, China
| | - Sheng Chen
- Jiangxi Chiralsyn Biological Medicine Co., Ltd, Ganzhou, Jiangxi, China
| | - Yongdong Li
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou, Jiangxi, China
| |
Collapse
|
5
|
Wang A, Shuai W, Wu C, Pei J, Yang P, Wang X, Li S, Liu J, Wang Y, Wang G, Ouyang L. Design, Synthesis, and Biological Evaluation of Dual Inhibitors of EGFR L858R/T790M/ACK1 to Overcome Osimertinib Resistance in Nonsmall Cell Lung Cancers. J Med Chem 2024; 67:2777-2801. [PMID: 38323982 DOI: 10.1021/acs.jmedchem.3c01934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Activation of the alternative pathways and abnormal signaling transduction are frequently observed in third-generation EGFR-TKIs (epidermal growth factor receptor tyrosine kinase inhibitors)-resistant patients. Wherein, hyperphosphorylation of ACK1 contributes to EGFR-TKIs acquired resistance. Dual inhibition of EGFRL858R/T790M and ACK1 might improve therapeutic efficacy and overcome resistance in lung cancers treatment. Here, we identified a EGFRL858R/T790M/ACK1 dual-targeting compound 21a with aminoquinazoline scaffold, which showed excellent inhibitory activities against EGFRL858R/T790M (IC50 = 23 nM) and ACK1 (IC50 = 263 nM). The cocrystal and docking analysis showed that 21a occupied the ATP binding pockets of EGFRL858R/T790M and ACK1. Moreover, 21a showed potent antiproliferative activities against the H1975 cells, MCF-7 cells and osimertinib-resistant cells AZDR. Further, 21a showed significant antitumor effects and good safety in ADZR xenograft-bearing mice. Taken together, 21a was a potent dual inhibitor of EGFRL858R/T790M/ACK1, which is deserved as a potential lead for overcoming acquired resistance to osimertinib during the EGFR-targeted therapy.
Collapse
Affiliation(s)
- Aoxue Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Wen Shuai
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Chengyong Wu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Junping Pei
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Panpan Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Xin Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Shutong Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Jiaxi Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Yuxi Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Guan Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Liang Ouyang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu 610041, China
| |
Collapse
|
6
|
Audit of Molecular Mechanisms of Primary and Secondary Resistance to Various Generations of Tyrosine Kinase Inhibitors in Known Epidermal Growth Factor Receptor-Mutant Non-small Cell Lung Cancer Patients in a Tertiary Centre. Clin Oncol (R Coll Radiol) 2022; 34:e451-e462. [PMID: 35810049 DOI: 10.1016/j.clon.2022.06.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 03/30/2022] [Accepted: 06/13/2022] [Indexed: 01/31/2023]
Abstract
AIMS Presently, three generations of epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) are approved against oncogene addicted EGFR-mutant non-small cell lung cancer (NSCLC). Patients with actionable EGFR mutations invariably develop resistance. This resistance can be intrinsic (primary) or acquired (secondary). MATERIALS AND METHODS This was a retrospective study carried out between January 2016 and April 2021 analysing 486 samples of NSCLC for primary and secondary resistance to first- (erlotinib, gefitinb), second- (afatinib) and/or third-generation (osimertinib) TKIs in EGFR-mutant NSCLCs by next generation sequencing (NGS). Tissue NGS was carried out using the Thermofischer Ion Torrent™ Oncomine™ Focus 52 gene assay; liquid biopsy NGS was carried out using the Oncomine Lung Cell-Free Total Nucleic Acid assay. All cases were previously tested for a single EGFR gene with the Therascreen® EGFR RGQ PCR kit. RESULTS The results were divided into four groups: (i) group 1: primary resistance to first- and/or second-generation TKIs. This group, with 21 cases, showed EGFR exon 20 insertions, dual, complex mutations and variant of unknown significance, de novo MET gene amplification besides other mutations. (ii) Group 2: primary resistance to third-generation TKIs. This group showed two cases, with one showing dual EGFR mutation (L858R and E709A) and EGFR gene amplification. (iii) Group 3: secondary resistance to first- and second-generation TKIs. This group had 27 cases, which were previously reported negative for EGFR T790M by single gene testing. Significant findings were MET gene amplification in four cases, with one also showing MET exon 14 skipping mutation. Three cases showed small cell change and one showed loss of primary mutation. (iv) Group 4: secondary resistance to third-generation TKIs. The latter group was further subgrouped into group 4A: secondary resistance to osimertinib (third-generation TKI) when offered as second-line therapy after first- and second-generation TKIs on detection of T790M mutation. This group had 15 cases. EGFR T790M mutation was lost in 10 (10/15; 67%) cases and was retained in five cases. Patients with T790M loss experienced early resistance (6.9 months versus 12.6 months mean, P = 0.0024) compared with cases that retained T790M. Two cases gained MET amplification as the resistance mechanisms. Other mutations that were found when EGFR T790M was lost were in FGFR3, KRAS, PIK3CA, CTNNB1, BRAF genes. One case had EML4-ALK translocation. Two cases showed driver EGFR deletion 19, retained T790M and C797S mutation in Cis form. Group 4B: secondary resistance to osimertinib (when given as first-line therapy) in EGFR-mutant NSCLC. This group had three cases. The duration of osimertinib treatment ranged from 11 to 17 months. Two patients showed additional C797S mutation along with primary EGFR mutation. CONCLUSION This study shows the wide spectrum of primary and secondary EGFR resistance mechanisms to first, second and third generation of TKIs and helps us to identify newer therapeutic targets that could carry forward the initial advantage offered by EGFR TKIs.
Collapse
|
7
|
Yuan Z, Yu X, Wu S, Wu X, Wang Q, Cheng W, Hu W, Kang C, Yang W, Li Y, Zhou XY. Instability Mechanism of Osimertinib in Plasma and a Solving Strategy in the Pharmacokinetics Study. Front Pharmacol 2022; 13:928983. [PMID: 35935836 PMCID: PMC9354582 DOI: 10.3389/fphar.2022.928983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/20/2022] [Indexed: 11/25/2022] Open
Abstract
Osimertinib is a third-generation epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) and a star medication used to treat non-small-cell lung carcinomas (NSCLCs). It has caused broad public concern that osimertinib has relatively low stability in plasma. We explored why osimertinib and its primary metabolites AZ-5104 and AZ-7550 are unstable in rat plasma. Our results suggested that it is the main reason inducing their unstable phenomenon that the Michael addition reaction was putatively produced between the Michael acceptor of osimertinib and the cysteine in the plasma matrix. Consequently, we identified a method to stabilize osimertinib and its metabolite contents in plasma. The assay was observed to enhance the stability of osimertinib, AZ-5104, and AZ-7550 significantly. The validated method was subsequently applied to perform the pharmacokinetic study for osimertinib in rats with the newly established, elegant, and optimized ultra-performance liquid chromatography–tandem mass spectrometer (UPLC-MS/MS) strategy. The assay was assessed for accuracy, precision, matrix effects, recovery, and stability. This study can help understand the pharmacological effects of osimertinib and promote a solution for the similar problem of other Michael acceptor-contained third-generation EGFR-TKI.
Collapse
Affiliation(s)
- Zheng Yuan
- Center for DMPK Research of Herbal Medicines, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xin Yu
- Center for DMPK Research of Herbal Medicines, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Siyang Wu
- Center for DMPK Research of Herbal Medicines, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaonan Wu
- Department of Oncology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Qiutao Wang
- School of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wenhao Cheng
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China
| | - Weiyu Hu
- Department of Hepatobiliary Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chen Kang
- Center for DMPK Research of Herbal Medicines, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wei Yang
- Center for DMPK Research of Herbal Medicines, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yingfei Li
- Center for DMPK Research of Herbal Medicines, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Xiao-Yang Zhou, ; Yingfei Li,
| | - Xiao-Yang Zhou
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
- *Correspondence: Xiao-Yang Zhou, ; Yingfei Li,
| |
Collapse
|
8
|
Jokic V, Savic-Vujovic K, Spasic J, Bukumiric Z, Marinkovic M, Radosavljevic D, Cavic M. Evaluation of Clinical and Genetic Determinants of Treatment OutCome In EGFR Mutation Positive Advanced Lung Adenocarcinoma. Dose Response 2022; 20:15593258221117354. [PMID: 35958274 PMCID: PMC9358214 DOI: 10.1177/15593258221117354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 06/06/2022] [Accepted: 07/15/2022] [Indexed: 11/27/2022] Open
Abstract
Background The aim of this research was to evaluate clinical and low-cost genetic determinants of treatment outcome in EGFR mutation positive advanced lung adenocarcinoma patients. Material and Methods EGFR mutation testing and EGFR 181946C>T genotyping were performed in 101 advanced lung adenocarcinoma patients using qRT-PCR and PCR-RFLP, respectively. Progression-free survival was defined as the time from the start of TKI therapy to date of progression, and overall survival as the time from diagnosis to death from any cause. Pain level was evaluated using a Numerical Rating Scale and the Verbal Descriptor Scale. Statistical significance was considered for P < .05. Results Patients were treated with EGFR-TKIs for a period of 1–39months (median 9), with a median PFS of 12.0 months (10.4-13.6, CI 95%), and a median OS of 19.0 months (15.1-22.7, CI 95%). The presence of pain was significantly correlated with the existence of bone (P < .001) and adrenal glands metastases (P = .029). Genetic factors did not have a direct impact on pain management but had a significant effect on the response to TKIs leading to pain alleviation. Conclusions EGFR mutation subtype and the EGFR 181946 C>T SNP had a significant effect on the response to TKI inducing an indirect anti-dolorous effect.
Collapse
Affiliation(s)
- Vera Jokic
- Clinic for Medical Oncology, Institute for Oncology and Radiology of Serbia, Belgrade, Serbia
| | - Katarina Savic-Vujovic
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Jelena Spasic
- Clinic for Medical Oncology, Institute for Oncology and Radiology of Serbia, Belgrade, Serbia
| | - Zoran Bukumiric
- Department of Statistics, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Mladen Marinkovic
- Clinic for Radiation Oncology and Diagnostics, Department of Radiation Oncology, Institute for Oncology and Radiology of Serbia, Belgrade, Serbia
| | - Davorin Radosavljevic
- Clinic for Medical Oncology, Institute for Oncology and Radiology of Serbia, Belgrade, Serbia
| | - Milena Cavic
- Department of Experimental Oncology, Institute for Oncology and Radiology of Serbia, Belgrade, Serbia
| |
Collapse
|
9
|
Zwierenga F, van Veggel B, Hendriks LEL, Hiltermann TJN, Hiddinga BI, Hijmering Kappelle LBM, Ter Elst A, Hashemi SMS, Dingemans AMC, van der Leest C, de Langen AJ, van den Heuvel MM, van der Wekken AJ. High dose osimertinib in patients with advanced stage EGFR exon 20 mutation-positive NSCLC: Results from the phase 2 multicenter POSITION20 trial. Lung Cancer 2022; 170:133-140. [PMID: 35777160 DOI: 10.1016/j.lungcan.2022.06.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/08/2022] [Accepted: 06/20/2022] [Indexed: 01/10/2023]
Abstract
INTRODUCTION Patients with life-threatening advanced non-small cell lung cancer (NSCLC) who harbor an exon 20 deletion and/or insertion mutation (EGFRex20 + ) have limited effective treatment options. The high dose 3rd generation tyrosine kinase inhibitor (TKI) osimertinib shows promising in vitro activity in EGFRex20 + NSCLC tumors. METHODS The POSITION20 is a single arm phase II, multicenter study investigating 160 mg osimertinib in patients with EGFRex20+, T790M negative NSCLC. We allowed patients to be treatment naïve and to have asymptomatic brain metastases. The primary endpoint was overall response rate (ORR). Secondary outcomes were duration of response (DoR), progression free survival (PFS), overall survival (OS), and treatment related adverse events (trAEs). RESULTS From June 2018 to October 2021, 25 patients were enrolled across five centers in the Netherlands. The median age was 70 years (range, 47-87), 20 patients (80%) were women, and the median number of previous lines of therapy was 1 (range, 0-3). The exon 20 mutations were clustered between A763 and L777. The most common exon 20 mutations were p.(N771_H773dup) (n = 3) and p.(A767_V769dup) (n = 3). The ORR was 28% (95% CI, 12-49%), including seven partial responses, with a median DoR of 5.3 months (range, 2.7-27.6). The median PFS was 6.8 months (95% CI, 4.6-9.1) and the median OS was 15.2 months (95% CI, 14.3-16.0). The most common trAEs were diarrhea (72%), dry skin (44%), and fatigue (44%). The primary reason for discontinuation was progressive disease in 14 patients (56%). CONCLUSION The POSITION20 study showed modest antitumor activity in patients with EGFRex20 + NSCLC treated with 160 mg osimertinib, with a confirmed ORR of 28% and acceptable toxicity.
Collapse
Affiliation(s)
- Fenneke Zwierenga
- Department of Pulmonary Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| | - Bianca van Veggel
- Department of Thoracic Oncology, Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Lizza E L Hendriks
- Department of Respiratory Medicine, Maastricht University Medical Centre, GROW School for Oncology and Developmental Biology, Maastricht, the Netherlands
| | - T Jeroen N Hiltermann
- Department of Pulmonary Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Birgitta I Hiddinga
- Department of Pulmonary Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Lucie B M Hijmering Kappelle
- Department of Pulmonary Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Arja Ter Elst
- Department of Pathology and Molecular Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Sayed M S Hashemi
- Department of Pulmonary Diseases, Amsterdam UMC, VU University Medical Center, Amsterdam, The Netherlands
| | - Anne-Marie C Dingemans
- Department of Pulmonary Diseases, Erasmus MC Cancer Institute Medical Center, Rotterdam, the Netherlands
| | | | - Adrianus J de Langen
- Department of Thoracic Oncology, Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Michel M van den Heuvel
- Department of Pulmonary Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Anthonie J van der Wekken
- Department of Pulmonary Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
10
|
Jung Y, Son M, Nam YR, Choi J, Heath JR, Yang S. Microfluidic Single-Cell Proteomics Assay Chip: Lung Cancer Cell Line Case Study. MICROMACHINES 2021; 12:mi12101147. [PMID: 34683198 PMCID: PMC8541572 DOI: 10.3390/mi12101147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/16/2021] [Accepted: 09/20/2021] [Indexed: 12/22/2022]
Abstract
Cancer is a dynamic disease involving constant changes. With these changes, cancer cells become heterogeneous, resulting in varying sensitivity to chemotherapy. The heterogeneity of cancer cells plays a key role in chemotherapy resistance and cancer recurrence. Therefore, for effective treatment, cancer cells need to be analyzed at the single-cell level by monitoring various proteins and investigating their heterogeneity. We propose a microfluidic chip for a single-cell proteomics assay that is capable of analyzing complex cellular signaling systems to reveal the heterogeneity of cancer cells. The single-cell assay chip comprises (i) microchambers (n = 1376) for manipulating single cancer cells, (ii) micropumps for rapid single-cell lysis, and (iii) barcode immunosensors for detecting nine different secretory and intracellular proteins to reveal the correlation among cancer-related proteins. Using this chip, the single-cell proteomics of a lung cancer cell line, which may be easily masked in bulk analysis, were evaluated. By comparing changes in the level of protein secretion and heterogeneity in response to combinations of four anti-cancer drugs, this study suggests a new method for selecting the best combination of anti-cancer drugs. Subsequent preclinical and clinical trials should enable this platform to become applicable for patient-customized therapies.
Collapse
Affiliation(s)
- Yugyung Jung
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea; (Y.J.); (M.S.); (Y.R.N.)
| | - Minkook Son
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea; (Y.J.); (M.S.); (Y.R.N.)
| | - Yu Ri Nam
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea; (Y.J.); (M.S.); (Y.R.N.)
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Jongchan Choi
- School of Mechanical Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea;
- Institute for Systems Biology, Seattle, WA 98109, USA;
| | - James R. Heath
- Institute for Systems Biology, Seattle, WA 98109, USA;
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
| | - Sung Yang
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea; (Y.J.); (M.S.); (Y.R.N.)
- School of Mechanical Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea;
- Correspondence:
| |
Collapse
|
11
|
Shaikh M, Shinde Y, Pawara R, Noolvi M, Surana S, Ahmad I, Patel H. Emerging Approaches to Overcome Acquired Drug Resistance Obstacles to Osimertinib in Non-Small-Cell Lung Cancer. J Med Chem 2021; 65:1008-1046. [PMID: 34323489 DOI: 10.1021/acs.jmedchem.1c00876] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The pyrimidine core-containing compound Osimertinib is the only epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) from the third generation that has been approved by the U.S. Food and Drug Administration to target threonine 790 methionine (T790M) resistance while sparing the wild-type epidermal growth factor receptor (WT EGFR). It is nearly 200-fold more selective toward the mutant EGFR as compared to the WT EGFR. A tertiary cystein 797 to serine 797 (C797S) mutation in the EGFR kinase domain has hampered Osimertinib treatment in patients with advanced EGFR-mutated non-small-cell lung cancer (NSCLC). This C797S mutation is presumed to induce a tertiary-acquired resistance to all current reversible and irreversible EGFR TKIs. This review summarizes the molecular mechanisms of resistance to Osimertinib as well as different strategies for overcoming the EGFR-dependent and EGFR-independent mechanisms of resistance, new challenges, and a future direction.
Collapse
Affiliation(s)
- Matin Shaikh
- H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India 425405
| | - Yashodeep Shinde
- R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India 425405
| | - Rahul Pawara
- R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India 425405
| | - Malleshappa Noolvi
- Shree Dhanvantari College of Pharmacy, Kim, Surat, Gujarat, India 394111
| | - Sanjay Surana
- R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India 425405
| | - Iqrar Ahmad
- R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India 425405
| | - Harun Patel
- R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India 425405
| |
Collapse
|
12
|
Yang Y, Liu Q, Cao L, Sun W, Gu X, Liu B, Xiao N, Teng F, Li X, Chen M, Yu W, Lin H, Xu G. Osimertinib versus afatinib in patients with T790M-positive, non-small-cell lung cancer and multiple central nervous system metastases after failure of initial EGFR-TKI treatment. BMC Pulm Med 2021; 21:172. [PMID: 34011336 PMCID: PMC8135149 DOI: 10.1186/s12890-021-01539-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 05/11/2021] [Indexed: 11/24/2022] Open
Abstract
Background The purpose of this study was to compare the efficacy of osimertinib (OSI) versus afatinib (AFA) in patients with T790M-positive, non-small-cell lung cancer (NSCLC) and multiple central nervous system (CNS) metastases after failure of initial epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) treatment. Methods Consecutive patients with T790M-positive NSCLC and multiple CNS metastases after failure of initial EGFR-TKI treatment were retrospectively identified from our medical institution during 2016–2018 and underwent either oral 80 daily OSI or oral 40 daily AFA every 3 weeks for up to 6 cycles, until disease progression, intolerable adverse events (AEs), or death. The co-primary endpoints were overall survival (OS) and progression-free survival (PFS). Results The cohort consisted of 124 patients (OSI: n = 60, mean age = 64.24 years [SD: 12.33]; AFA: n = 64, mean age = 64.13 years [SD: 13.72]). After a median follow-up of 24 months (range, 3 to 28), a significant improvement in OS was detected (hazard ratio [HR] 0.59, 95% confidence interval [CI], 0.39–0.91; p = 0.0160; median, 13.7 months [95% CI, 11.1–14.8] for OSI vs 9.6 months [95% CI, 8.4–10.2] for AFA). The median duration of PFS was significantly longer with OSI than with AFA (HR 0.62; 95% CI, 0.41–0.91; p = 0.014; median, 4.5 months [95% CI, 3.5–5.7] vs 3.9 months [95% CI, 3.1–4.8]). The proportion of grade 3 or higher adverse events (AEs) was lower with OSI (22.4%) than with AFA (39.4%). Conclusions In patients with T790M-positive NSCLC and multiple CNS metastases after failure of initial EGFR-TKI treatment, OSI may be associated with significantly improved survival benefit compared with AFA, with a controllable tolerability profile.
Collapse
Affiliation(s)
- Yang Yang
- Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Department of Medical Oncology, Affiliated Hospital of Hebei University, No. 212, Yuhua Dong Road, Lianchi District, Baoding, 071000, Hebei Province, China
| | - Qilong Liu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-Sen University, No. 58, Zhongshan 2nd Road, Yuexiu District, Guangzhou, 510080, China
| | - Lei Cao
- Department of Anaesthesiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Wei Sun
- Department of Anaesthesiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Xiaowei Gu
- Department of Head and Neck Surgery, Affiliated Hospital of Hebei University, No. 212, Yuhua Dong Road, Lianchi District, Baoding, 071000, Hebei Province, China
| | - Bin Liu
- Central Laboratory, Affiliated Hospital of Hebei University, No. 212, Yuhua Dong Road, Lianchi District, Baoding, 071000, Hebei Province, China
| | - Na Xiao
- Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Department of Medical Oncology, Affiliated Hospital of Hebei University, No. 212, Yuhua Dong Road, Lianchi District, Baoding, 071000, Hebei Province, China
| | - Fei Teng
- Department of Radiotherapy, Affiliated Hospital of Hebei University, No. 212, Yuhua Dong Road, Lianchi District, Baoding, 071000, Hebei Province, China
| | - Xiaoli Li
- Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Department of Medical Oncology, Affiliated Hospital of Hebei University, No. 212, Yuhua Dong Road, Lianchi District, Baoding, 071000, Hebei Province, China.
| | - Meiji Chen
- Department of Pediatrics, The First Affiliated Hospital, Sun Yat-Sen University, No. 58, Zhongshan 2nd Road, Yuexiu District, Guangzhou, 510080, China
| | - Weiguang Yu
- Department of Orthopaedics, The First Affiliated Hospital, Sun Yat-Sen University, No. 58, Zhongshan 2nd Road, Yuexiu District, Guangzhou, 510080, China
| | - Huanyi Lin
- Department of Urinary Surgery, The First Affiliated Hospital, Sun Yat-Sen University, No. 58, Zhongshan 2nd Road, Yuexiu District, Guangzhou, 510080, China.
| | - Guixing Xu
- Department of Neurosurgery, The First Affiliated Hospital, Sun Yat-Sen University, No. 58, Zhongshan 2nd Road, Yuexiu District, Guangzhou, 510080, China.
| |
Collapse
|
13
|
Zeeshan Ozair M, Giantini Larsen AM, Eng J, Moss NS. Exceptional Response of a Large and Symptomatic EGFR-Mutant Brain Metastasis to Osimertinib: Case Report and Review of the Literature. JCO Precis Oncol 2021; 5:PO.20.00485. [PMID: 34095710 DOI: 10.1200/po.20.00485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/19/2021] [Accepted: 03/03/2021] [Indexed: 12/24/2022] Open
Affiliation(s)
- M Zeeshan Ozair
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, New York, NY
| | - Alexandra M Giantini Larsen
- Department of Neurosurgery and Brain Metastasis Center, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Juliana Eng
- Department of Medical Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Nelson S Moss
- Department of Neurosurgery and Brain Metastasis Center, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
14
|
Kagohashi K, Shiozawa T, Miyazaki K, Satoh H. Successful dacomitinib treatment after osimertinib resistance in a patient with lung adenocarcinoma. CLINICAL RESPIRATORY JOURNAL 2021; 15:851-852. [DOI: 10.1111/crj.13360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 03/11/2021] [Indexed: 11/28/2022]
Affiliation(s)
- Katsunori Kagohashi
- Division of Respiratory Medicine Mito Medical Center University of Tsukuba Mito City Japan
| | - Toshihiro Shiozawa
- Division of Respiratory Medicine Ryugasaki Saiseikai Hospital Ryugasaki City Japan
| | - Kunihiko Miyazaki
- Division of Respiratory Medicine Faculty of Medicine University of Tsukuba Mito City Japan
| | - Hiroaki Satoh
- Division of Respiratory Medicine Mito Medical Center University of Tsukuba Mito City Japan
| |
Collapse
|
15
|
Verusingam ND, Chen YC, Lin HF, Liu CY, Lee MC, Lu KH, Cheong SK, Han-Kiat Ong A, Chiou SH, Wang ML. Generation of osimertinib-resistant cells from epidermal growth factor receptor L858R/T790M mutant non-small cell lung carcinoma cell line. J Chin Med Assoc 2021; 84:248-254. [PMID: 33009209 DOI: 10.1097/jcma.0000000000000438] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Lung cancer contributes to high cancer mortality worldwide with 80% of total cases diagnosed as non-small cell lung cancer (NSCLC). Epidermal growth factor receptor (EGFR) tyrosine kinase (TK) domain serves as a druggable target in NSCLC patients with exon 19 deletion and L858R mutation. However, patients eventually succumbed to resistance to first- and second-generation EGFR-TK inhibitors through activation of T790M mutation. Third-generation EGFR-TKI, Osimertinib exhibits high efficacy in patients with exon 19 deletion/L858R/T790M mutation but they experienced acquired resistance thereafter. Available treatment options in NSCLC patients remains a challenge due to unknown molecular heterogeneity responsible for acquired resistance to EGFR-TKI. In this study, we aim to generate Osimertinib-resistant (OR) cells from H1975 carrying L858R/T790M double mutation which can be used as a model to elucidate mechanism of resistance. METHODS OR cells were established via stepwise-dose escalation and limiting single-cell dilution method. We then evaluated Osimertinib resistance potential via cell viability assay. Proteins expression related to EGFR-signalling, epithelial to mesenchymal transition (EMT), and autophagy were analyzed via western blot. RESULTS OR cell lines exhibited increased drug resistance potential compared to H1975. Distinguishable mesenchymal-like features were observed in OR cells. Protein expression analysis revealed EGFR-independent signaling involved in the derived OR cells as well as EMT and autophagy activity. CONCLUSION We generated OR cell lines in-vitro as evidenced by increased drug resistance potential, increased mesenchymal features, and enhanced autophagy activity. Development of Osimertinib resistance cells may serve as in-vitro model facilitating discovery of molecular aberration present during acquired mechanism of resistance.
Collapse
Affiliation(s)
- Nalini Devi Verusingam
- Centre for Stem Cell Research, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Selangor, Malaysia
- Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- National Cancer Council (MAKNA), Kuala Lumpur, Malaysia
| | - Yi-Chen Chen
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Heng-Fu Lin
- Division of Thoracic Surgery, Department of Surgery, Far Eastern Memorial Hospital, New Taipei City, Taiwan, ROC
| | - Chao-Yu Liu
- Division of Traumatology, Department of Surgery, Far Eastern Memorial Hospital, New Taipei City, Taiwan, ROC
| | - Ming-Cheng Lee
- Division of Infectious Diseases, Department of Internal Medicine, Cheng-Hsin General Hospital, Taipei, Taiwan, ROC
| | - Kai-Hsi Lu
- Department of Medical Research and Education, Cheng-Hsin General Hospital, Taipei, Taiwan, ROC
| | - Soon-Keng Cheong
- Centre for Stem Cell Research, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Selangor, Malaysia
- National Cancer Council (MAKNA), Kuala Lumpur, Malaysia
| | - Alan Han-Kiat Ong
- Centre for Stem Cell Research, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Selangor, Malaysia
| | - Shih-Hwa Chiou
- Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Stem Cell & Genomic Center, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Genomic Research Center, Academia Sinica, Taipei, Taiwan, ROC
| | - Mong-Lien Wang
- Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Institute of Food Safety and Health Risk Assessment, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| |
Collapse
|
16
|
Yu HA, Paz-Ares LG, Yang JCH, Lee KH, Garrido P, Park K, Kim JH, Lee DH, Mao H, Wijayawardana SR, Gao L, Hozak RR, Chao BH, Planchard D. Phase I Study of the Efficacy and Safety of Ramucirumab in Combination with Osimertinib in Advanced T790M-positive EGFR-mutant Non-small Cell Lung Cancer. Clin Cancer Res 2021; 27:992-1002. [PMID: 33046516 PMCID: PMC8793125 DOI: 10.1158/1078-0432.ccr-20-1690] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/07/2020] [Accepted: 10/06/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE We report the final analysis of JVDL (NCT02789345), which examined the combination of the EGFR tyrosine kinase inhibitor (TKI) osimertinib plus the VEGFR2-directed antibody ramucirumab in patients with T790M-positive EGFR-mutant non-small cell lung cancer (NSCLC). PATIENTS AND METHODS This open-label, single-arm phase I study enrolled patients with EGFR T790M-positive NSCLC, who had progressed following EGFR TKI but were third-generation EGFR TKI-naïve. A dose-limiting toxicity (DLT) period with as-needed dose deescalation was followed by an expansion cohort. Patients received daily oral osimertinib and intravenous ramucirumab every 2 weeks until progression or discontinuation. RESULTS Twenty-five patients were enrolled. No DLTs were observed. Median follow-up time was 25.0 months. Common grade 3 or higher treatment-related adverse events (TRAE) were hypertension (8%) and platelet count decreased (16%); grade 5 TRAE (subdural hemorrhage) occurred in 1 patient. Patients with (N = 10) and without central nervous system (CNS) metastasis (N = 15) had similar safety outcomes. Five patients remain on treatment. Objective response rate (ORR) was 76%. Median duration of response was 13.4 months [90% confidence interval (CI): 9.6-21.2]. Median progression-free survival (PFS) was 11.0 months (90% CI: 5.5-19.3). Efficacy was observed in patients with and without CNS metastasis (ORR 60% and 87%; median PFS 10.9 and 14.7 months, respectively). Exploratory biomarker analyses in circulating tumor DNA suggested that on-treatment loss of EGFR Exon 19 deletion or L858R mutations, detectable at baseline, correlated with longer PFS, but on-treatment loss of T790M did not. Emergent genetic alterations postprogression included C797S, MET amplification, and EGFR amplification. CONCLUSIONS Ramucirumab plus osimertinib demonstrated encouraging safety and antitumor activity in T790M-positive EGFR-mutant NSCLC.See related commentary by Garon, p. 905.
Collapse
Affiliation(s)
- Helena A Yu
- Department of Medicine, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, New York.
| | - Luis G Paz-Ares
- Medical Oncology Department, University Hospital 12 de Octubre, Madrid, Spain
| | | | - Ki Hyeong Lee
- Division of Hematology and Oncology, Chungbuk National University Hospital, Chungbuk National University College of Medicine, Cheongju, Republic of Korea
| | - Pilar Garrido
- Medical Oncology Department, Hospital Ramón y Cajal, Madrid, Spain
| | - Keunchil Park
- Department of Medicine, Division of Hematology-Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Joo-Hang Kim
- Division of Medical Oncology, Department of Internal Medicine, CHA Bundang Medical Center, Gyeonggi, Republic of Korea
| | - Dae Ho Lee
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine Seoul, Seoul, Republic of Korea
| | - Huzhang Mao
- Eli Lilly and Company, Indianapolis, Indiana
| | | | - Ling Gao
- Eli Lilly and Company, Indianapolis, Indiana
| | | | - Bo H Chao
- Eli Lilly and Company, New York, New York
| | - David Planchard
- Department of Medical Oncology, Thoracic Unit, Gustave Roussy, Villejuif, France
| |
Collapse
|
17
|
Jiang T, Xu X, Chen X, Ding N, Hu Q, Zhou C, Hu J. Osimertinib in combination with bevacizumab in EGFR-Mutated NSCLC with leptomeningeal metastases. Transl Lung Cancer Res 2020; 9:2514-2517. [PMID: 33489813 PMCID: PMC7815344 DOI: 10.21037/tlcr-20-984] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tao Jiang
- Department of Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Pulmonary Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Xiaobo Xu
- Department of Pulmonary Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Xiaojuan Chen
- Department of Gastroenterology, Wenzhou People's Hospital, The Wenzhou Third Clinical Institute Affiliated To Wenzhou Medical University, Wenzhou, China
| | - Ning Ding
- Department of Pulmonary Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Qin Hu
- Department of Pathology, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Caicun Zhou
- Department of Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jie Hu
- Department of Pulmonary Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| |
Collapse
|
18
|
Vanza JD, Patel RB, Patel MR. Nanocarrier centered therapeutic approaches: Recent developments with insight towards the future in the management of lung cancer. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.102070] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
19
|
Ahmad I, Shaikh M, Surana S, Ghosh A, Patel H. p38α MAP kinase inhibitors to overcome EGFR tertiary C797S point mutation associated with osimertinib in non-small cell lung cancer (NSCLC): emergence of fourth-generation EGFR inhibitor. J Biomol Struct Dyn 2020; 40:3046-3059. [DOI: 10.1080/07391102.2020.1844801] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Iqrar Ahmad
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India
| | - Matin Shaikh
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India
| | - Sanjay Surana
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India
| | - Arabinda Ghosh
- Microbiology Division, Department of Botany, Gauhati University, Guwahati, Assam, India
| | - Harun Patel
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India
| |
Collapse
|
20
|
Choi J, Sung JY, Lee S, Yoo J, Rongo C, Kim YN, Shim J. Rab8 and Rabin8-Mediated Tumor Formation by Hyperactivated EGFR Signaling via FGFR Signaling. Int J Mol Sci 2020; 21:ijms21207770. [PMID: 33092268 PMCID: PMC7589727 DOI: 10.3390/ijms21207770] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/13/2020] [Accepted: 10/19/2020] [Indexed: 02/08/2023] Open
Abstract
The epidermal growth factor receptor (EGFR) signaling is important for normal development, such as vulval development in Caenorhabditis elegans, and hyperactivation of the EGFR is often associated with cancer development. Our previous report demonstrated the multivulva (Muv) phenotype, a tumor model in C. elegans (jgIs25 strain) by engineering LET-23/EGFR with a TKI-resistant human EGFR T790-L858 mutant. Because Rab proteins regulate vesicle transport, which is important for receptor signaling, we screened the RNAi in the jgIs25 strain to find the Rabs critical for Muv formation. Herein, we show that rab-8 RNAi and the rab-8 (-/-) mutation effectively reduce Muv formation. We demonstrate that RABN-8, an ortholog of Rabin8, known as a GEF for Rab8, is also required for Muv formation by promoting the secretion of EGL-17/FGF from vulval precursor cells. In addition, FGFR inhibitors decreased Muv formation mediated by mutant EGFR. Our data suggest that Rab8 and Rabin8 mediate Muv formation through FGF secretion in the EGFR-TKI-resistant nematode model. Furthermore, FGFR-TKIs more effectively inhibit the growth of lung cancer cell lines in H1975 (EGFR T790M-L858R; EGFR-TKI-resistant) than H522 (wild-type EGFR) and H1650 (EGFR exon 19 deletion; EGFR-TKI-sensitive) cells, suggesting that FGFR-TKIs could be used to control cancers with EGFR-TKI-resistant mutations.
Collapse
Affiliation(s)
- Junghwa Choi
- Research Institute of National Cancer Center, 323 Ilsan-ro, Goyang, Gyeonggi-do 10408, Korea; (J.C.); (J.Y.S.); (S.L.); (J.Y.)
| | - Jee Young Sung
- Research Institute of National Cancer Center, 323 Ilsan-ro, Goyang, Gyeonggi-do 10408, Korea; (J.C.); (J.Y.S.); (S.L.); (J.Y.)
| | - Saerom Lee
- Research Institute of National Cancer Center, 323 Ilsan-ro, Goyang, Gyeonggi-do 10408, Korea; (J.C.); (J.Y.S.); (S.L.); (J.Y.)
| | - Jungyoen Yoo
- Research Institute of National Cancer Center, 323 Ilsan-ro, Goyang, Gyeonggi-do 10408, Korea; (J.C.); (J.Y.S.); (S.L.); (J.Y.)
| | - Christopher Rongo
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, 190 Frelinghuysen Road, Piscataway, NJ 08854, USA;
| | - Yong-Nyun Kim
- Research Institute of National Cancer Center, 323 Ilsan-ro, Goyang, Gyeonggi-do 10408, Korea; (J.C.); (J.Y.S.); (S.L.); (J.Y.)
- Correspondence: (Y.-N.K.); (J.S.); Tel.: +82-31-920-2415 (Y.-N.K.); +82-31-920-2262 (J.S.)
| | - Jaegal Shim
- Research Institute of National Cancer Center, 323 Ilsan-ro, Goyang, Gyeonggi-do 10408, Korea; (J.C.); (J.Y.S.); (S.L.); (J.Y.)
- Correspondence: (Y.-N.K.); (J.S.); Tel.: +82-31-920-2415 (Y.-N.K.); +82-31-920-2262 (J.S.)
| |
Collapse
|
21
|
Dos Santos JM, Joiakim A, Kaplan DJ, Putt DA, Perez Bakovic G, Servoss SL, Rybicki BA, Dombkowski AA, Kim H. Levels of plasma glycan-binding auto-IgG biomarkers improve the accuracy of prostate cancer diagnosis. Mol Cell Biochem 2020; 476:13-22. [PMID: 32816187 DOI: 10.1007/s11010-020-03876-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 08/07/2020] [Indexed: 11/29/2022]
Abstract
Strategies to improve the early diagnosis of prostate cancer will provide opportunities for earlier intervention. The blood-based prostate-specific antigen (PSA) assay is widely used for prostate cancer diagnosis but specificity of the assay is not satisfactory. An algorithm based on serum levels of PSA combined with other serum biomarkers may significantly improve prostate cancer diagnosis. Plasma glycan-binding IgG/IgM studies suggested that glycan patterns differ between normal and tumor cells. We hypothesize that in prostate cancer glycoproteins or glycolipids are secreted from tumor tissues into the blood and induce auto-immunoglobulin (Ig) production. A 24-glycan microarray and a 5-glycan subarray were developed using plasma samples obtained from 35 prostate cancer patients and 54 healthy subjects to identify glycan-binding auto-IgGs. Neu5Acα2-8Neu5Acα2-8Neu5Acα (G81)-binding auto-IgG was higher in prostate cancer samples and, when levels of G81-binding auto-IgG and growth differentiation factor-15 (GDF-15 or NAG-1) were combined with levels of PSA, the prediction rate of prostate cancer increased from 78.2% to 86.2% than with PSA levels alone. The G81 glycan-binding auto-IgG fraction was isolated from plasma samples using G81 glycan-affinity chromatography and identified by N-terminal sequencing of the 50 kDa heavy chain variable region of the IgG. G81 glycan-binding 25 kDa fibroblast growth factor-1 (FGF1) fragment was also identified by N-terminal sequencing. Our results demonstrated that a multiplex diagnostic combining G81 glycan-binding auto-IgG, GDF-15/NAG-1 and PSA (≥ 2.1 ng PSA/ml for cancer) increased the specificity of prostate cancer diagnosis by 8%. The multiplex assessment could improve the early diagnosis of prostate cancer thereby allowing the prompt delivery of prostate cancer treatment.
Collapse
Affiliation(s)
- Julia Matzenbacher Dos Santos
- Detroit R&D, Inc., 2727 Second Ave. Suite 4113, Detroit, MI, USA.,Department of Education, Health and Human Performance, Fairmont State University, Fairmont, WV, USA
| | - Aby Joiakim
- Detroit R&D, Inc., 2727 Second Ave. Suite 4113, Detroit, MI, USA
| | - David J Kaplan
- Detroit R&D, Inc., 2727 Second Ave. Suite 4113, Detroit, MI, USA
| | - David A Putt
- Detroit R&D, Inc., 2727 Second Ave. Suite 4113, Detroit, MI, USA
| | - German Perez Bakovic
- Department of Chemical Engineering, University of Arkansas, Fayetteville, AR, USA
| | - Shannon L Servoss
- Department of Chemical Engineering, University of Arkansas, Fayetteville, AR, USA
| | | | - Alan A Dombkowski
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Hyesook Kim
- Detroit R&D, Inc., 2727 Second Ave. Suite 4113, Detroit, MI, USA.
| |
Collapse
|
22
|
Seung SJ, Hurry M, Walton RN, Evans WK. Real-world treatment patterns and survival in stage IV non-small-cell lung cancer in Canada. Curr Oncol 2020; 27:e361-e367. [PMID: 32905294 PMCID: PMC7467785 DOI: 10.3747/co.27.6049] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Background Almost half of all patients with non-small-cell lung cancer (nsclc) present with stage iv disease. The objective of the present study was to characterize treatment patterns and survival outcomes in patients with advanced nsclc. Methods We conducted a longitudinal population-level study in patients diagnosed with stage iv nsclc in Ontario between 1 April 2010 and 31 March 2015, with follow-up to 31 March 2017 for overall survival and treatment sequence. Patients were stratified as nonsquamous or squamous histology. A sub-analysis was conducted for patients with nonsquamous histology who received targeted therapies, on the assumption that their tumours were EGFR mutation-positive (EGFRm+). Treatment patterns were determined, and survival was calculated from date of diagnosis to death or censoring. Results Of 24,729 nsclc cases identified, stage iv disease was diagnosed in 49.2%, histology was nonsquamous in 10,103, and EGFRm+ was assumed in 508. Median patient age ranged from 69 to 72 years for the three cohorts. For patients with nonsquamous histology, palliative radiotherapy was the most frequently used first-line treatment (44.4%), followed by no treatment (26.7%) and chemotherapy (14.9%). In the EGFRm+ cohort, 75.6% received gefitinib as first- or second-line therapy, and almost half (47.4%) the 473 patients with squamous histology treated with first-line chemotherapy received cisplatin or carboplatin with gemcitabine. Median overall survival in the nonsquamous and squamous cohorts was 4.9 and 4.6 months respectively; it was 17.6 months for patients who were EGFRm+. Conclusions Survival of patients with stage iv nsclc remains poor, with the exception of patients who are EGFRm+. Only 14.9% of patients received first-line chemotherapy; the mainstay of treatment was palliative radiotherapy.
Collapse
Affiliation(s)
- S J Seung
- hope Research Centre, Sunnybrook Research Institute, Toronto, ON
| | - M Hurry
- AstraZeneca Canada Inc., Mississauga, ON
| | - R N Walton
- AstraZeneca Canada Inc., Mississauga, ON
| | - W K Evans
- McMaster University, Department of Oncology, Division of Medical Oncology, Hamilton, ON
| |
Collapse
|
23
|
Rapid and Sensitive Quantification of Osimertinib in Human Plasma Using a Fully Validated MALDI-IM-MS/MS Assay. Cancers (Basel) 2020; 12:cancers12071897. [PMID: 32674434 PMCID: PMC7409122 DOI: 10.3390/cancers12071897] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 12/12/2022] Open
Abstract
The third-generation tyrosine kinase inhibitor (TKI), osimertinib, has revolutionized the treatment of patients with non-small cell lung carcinoma with epidermal growth factor receptor (EGFR)-activating mutation, and resistant to first- and second-generation TKIs. Osimertinib is now also proposed as a first-line therapy, thus extending the scope of applications in lung oncology. Personalized medicine approaches are still necessary to monitor if patients are exposed to adequate concentrations of osimertinib during their treatment. It would also help to understand the appearance of new resistances in patients after several months of dosing with osimertinib. Liquid chromatography–tandem mass spectrometry (LC–MS/MS) is currently the gold standard for the quantification of drugs in plasma enabling pharmacokinetic analyses and patient monitoring. In the present study, we propose an alternative to LC–MS/MS methods for the rapid and sensitive quantification of osimertinib in plasma using matrix-assisted laser desorption/ionization (MALDI) –MS. The presented assay requires only 3 min per sample for their preparation, analysis, and data extraction, and less than 3 h for quantification. A lower limit of quantification (LLOQ) of 5 ng/mL in plasma was retrieved. The method was fully validated, following the guidelines of the US Food and Drug Administration (FDA) and the European Medicines Agency (EMA) for bioanalytical method validation. The present developments prove the importance to consider alternative MS assays for time-efficient quantification of small molecule inhibitors in plasma in the context of personalized medicine for targeted therapies.
Collapse
|
24
|
Al-Quteimat OM, Amer AM. A review of Osimertinib in NSCLC and pharmacist role in NSCLC patient care. J Oncol Pharm Pract 2020; 26:1452-1460. [PMID: 32525442 DOI: 10.1177/1078155220930285] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Lung cancer is a complex, genetically heterogeneous disease. It is the most common cause of cancer-related deaths worldwide. Non-small cell lung cancer (NSCLC) represents the majority of the diagnosed lung cancer cases. Osimertinib is a new treatment option that demonstrated a superior efficacy over standard epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) or platinum-based chemotherapy. The safety and efficacy of osimertinib (a third generation EGFR-TKIs) were confirmed by well-designed clinical trials. Consequently, osimertinib was considered a first-line treatment option, particularly in patients with EGFR mutant NSCLC. It has been approved by FDA for the treatment of advance or metastatic NSCLC patients with specific EGFR-mutant NSCLC. As an active member of the multidisciplinary team, pharmacist has a promising role in assuring safe, effective and cost-effective treatment in patient with NSCLC. This review article aims to highlight the latest evidence about osimertinib use as a new treatment option in the clinical practice and to review the potential pharmacist key roles in NSCLC patient care.
Collapse
|
25
|
Janssen EM, Dy SM, Meara AS, Kneuertz PJ, Presley CJ, Bridges JFP. Analysis of Patient Preferences in Lung Cancer - Estimating Acceptable Tradeoffs Between Treatment Benefit and Side Effects. Patient Prefer Adherence 2020; 14:927-937. [PMID: 32581519 PMCID: PMC7276327 DOI: 10.2147/ppa.s235430] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 04/28/2020] [Indexed: 02/02/2023] Open
Abstract
OBJECTIVE Increased treatment options and longer survival for lung cancer have generated increased interest in patient preferences. Previous studies of patient preferences in lung cancer have not fully explored preference heterogeneity. We demonstrate a method to explore preference heterogeneity in the willingness of patients with lung cancer and caregivers to trade progression-free survival (PFS) with side effects. PATIENTS AND METHODS Patients and caregivers attending a national lung cancer meeting completed a discrete-choice experiment (DCE) designed through a collaboration with patients. Participants answered 13 choice tasks described across PFS, short-term side effects, and four long-term side effects. Side effects were coded as a one-level change in severity (none-mild, mild-moderate, or moderate-severe). A mixed logit model in willingness-to-pay space estimated preference heterogeneity in acceptable tradeoffs (time equivalents) between PFS and side effects. The study was reported following quality indicators from the United States Food and Drug Administration's patient preference guidance. RESULTS A total of 87 patients and 24 caregivers participated in the DCE. Participants would trade 3.7 month PFS (95% CI (CI): 3.3-4.1) for less severe functional long-term treatment side effects, 2.3 months for less severe physical long-term effects (CI: 1.9-2.8) and cognitive long-term effects (CI: 1.8-2.8), 0.9 months (CI: 0.4-1.4) for less severe emotional long-term effects, and 1.8 months (CI: 1.4-2.3) for less severe short-term side effects. Most participants (90%) would accept treatment with more severe functional long-term effects for 8.4 additional month PFS. CONCLUSION Participants would trade PFS for changes in short-term side effects and long-term side effects, although preference heterogeneity existed. Lung cancer treatments that offer less PFS but also less severe side effects might be acceptable to some patients.
Collapse
Affiliation(s)
- Ellen M Janssen
- Center for Medical Technology Policy, Baltimore, MD, USA
- Correspondence: Ellen M Janssen Research Director,Center for Medical Technology Policy, 401 East Pratt Street, Suite 631, Baltimore, MD21202, USATel +1 443-222-8775 Email
| | - Sydney M Dy
- Department of Health Policy and Management, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Alexa S Meara
- Department of Internal Medicine Division Of Rheumatology, The Ohio State University, College of Medicine, Columbus, OH, USA
| | - Peter J Kneuertz
- Thoracic Surgery Division, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Carolyn J Presley
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH, USA
| | - John F P Bridges
- Department of Biomedical Informatics, The Ohio State University College of Medicine, Columbus, OH, USA
- Department of Surgery, The Ohio State University College of Medicine, Columbus, OH, USA
| |
Collapse
|
26
|
Exploring receptor tyrosine kinases-inhibitors in Cancer treatments. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2019. [DOI: 10.1186/s43042-019-0035-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
AbstractBackgroundReceptor tyrosine kinases (RTKs) are signaling enzymes responsible for the transfer of Adenosine triphosphate (ATP) γ-phosphate to the tyrosine residues substrates. RTKs demonstrate essential roles in cellular growth, metabolism, differentiation, and motility. Anomalous expression of RTK customarily leads to cell growth dysfunction, which is connected to tumor takeover, angiogenesis, and metastasis. Understanding the structure, mechanisms of adaptive and acquired resistance, optimizing inhibition of RTKs, and eradicating cum minimizing the havocs of quiescence cancer cells is paramount.MainTextTyrosine kinase inhibitors (TKIs) vie with RTKs ATP-binding site for ATP and hitherto reduce tyrosine kinase phosphorylation, thus hampering the growth of cancer cells. TKIs can either be monoclonal antibodies that compete for the receptor’s extracellular domain or small molecules that inhibit the tyrosine kinase domain and prevent conformational changes that activate RTKs. Progression of cancer is related to aberrant activation of RTKs due to due to mutation, excessive expression, or autocrine stimulation.ConclusionsUnderstanding the modes of inhibition and structures of RTKs is germane to the design of novel and potent TKIs. This review shed light on the structures of tyrosine kinases, receptor tyrosine kinases, tyrosine kinase inhibitors, minimizing imatinib associated toxicities, optimization of tyrosine kinase inhibition in curtailing quiescence in cancer cells and the prospects of receptor tyrosine kinase based treatments.
Collapse
|
27
|
Leonetti A, Sharma S, Minari R, Perego P, Giovannetti E, Tiseo M. Resistance mechanisms to osimertinib in EGFR-mutated non-small cell lung cancer. Br J Cancer 2019; 121:725-737. [PMID: 31564718 PMCID: PMC6889286 DOI: 10.1038/s41416-019-0573-8] [Citation(s) in RCA: 761] [Impact Index Per Article: 126.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 08/09/2019] [Accepted: 08/23/2019] [Indexed: 02/06/2023] Open
Abstract
Osimertinib is an irreversible, third-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor that is highly selective for EGFR-activating mutations as well as the EGFR T790M mutation in patients with advanced non-small cell lung cancer (NSCLC) with EGFR oncogene addiction. Despite the documented efficacy of osimertinib in first- and second-line settings, patients inevitably develop resistance, with no further clear-cut therapeutic options to date other than chemotherapy and locally ablative therapy for selected individuals. On account of the high degree of tumour heterogeneity and adaptive cellular signalling pathways in NSCLC, the acquired osimertinib resistance is highly heterogeneous, encompassing EGFR-dependent as well as EGFR-independent mechanisms. Furthermore, data from repeat plasma genotyping analyses have highlighted differences in the frequency and preponderance of resistance mechanisms when osimertinib is administered in a front-line versus second-line setting, underlying the discrepancies in selection pressure and clonal evolution. This review summarises the molecular mechanisms of resistance to osimertinib in patients with advanced EGFR-mutated NSCLC, including MET/HER2 amplification, activation of the RAS-mitogen-activated protein kinase (MAPK) or RAS-phosphatidylinositol 3-kinase (PI3K) pathways, novel fusion events and histological/phenotypic transformation, as well as discussing the current evidence regarding potential new approaches to counteract osimertinib resistance.
Collapse
Affiliation(s)
- Alessandro Leonetti
- Medical Oncology Unit, University Hospital of Parma, 43126, Parma, Italy
- Department of Medical Oncology, Amsterdam University Medical Center, VU University, 1081 HV, Amsterdam, Netherlands
| | - Sugandhi Sharma
- Department of Medical Oncology, Amsterdam University Medical Center, VU University, 1081 HV, Amsterdam, Netherlands
| | - Roberta Minari
- Medical Oncology Unit, University Hospital of Parma, 43126, Parma, Italy
| | - Paola Perego
- Molecular Pharmacology Unit, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133, Milan, Italy
| | - Elisa Giovannetti
- Department of Medical Oncology, Amsterdam University Medical Center, VU University, 1081 HV, Amsterdam, Netherlands.
- Cancer Pharmacology Lab, AIRC Start-Up Unit, Fondazione Pisana per la Scienza, 56017, Pisa, Italy.
| | - Marcello Tiseo
- Medical Oncology Unit, University Hospital of Parma, 43126, Parma, Italy
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| |
Collapse
|
28
|
Hakozaki T, Okuma Y. Management of non-small cell lung cancer harboring epidermal growth factor receptor mutations in the era of first-line osimertinib. J Thorac Dis 2019; 11:2664-2668. [PMID: 31463088 PMCID: PMC6687974 DOI: 10.21037/jtd.2019.06.16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 06/05/2019] [Indexed: 12/26/2022]
Affiliation(s)
- Taiki Hakozaki
- Department of Thoracic Oncology and Respiratory Medicine, Tokyo Metropolitan Cancer and Infectious diseases Center Komagome Hospital, Tokyo, Japan
| | - Yusuke Okuma
- Department of Thoracic Oncology and Respiratory Medicine, Tokyo Metropolitan Cancer and Infectious diseases Center Komagome Hospital, Tokyo, Japan
| |
Collapse
|
29
|
Santoni-Rugiu E, Melchior LC, Urbanska EM, Jakobsen JN, Stricker KD, Grauslund M, Sørensen JB. Intrinsic resistance to EGFR-Tyrosine Kinase Inhibitors in EGFR-Mutant Non-Small Cell Lung Cancer: Differences and Similarities with Acquired Resistance. Cancers (Basel) 2019; 11:E923. [PMID: 31266248 PMCID: PMC6678669 DOI: 10.3390/cancers11070923] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 06/25/2019] [Accepted: 06/25/2019] [Indexed: 02/06/2023] Open
Abstract
Activating mutations in the epidermal growth factor receptor gene occur as early cancer-driving clonal events in a subset of patients with non-small cell lung cancer (NSCLC) and result in increased sensitivity to EGFR-tyrosine-kinase-inhibitors (EGFR-TKIs). Despite very frequent and often prolonged clinical response to EGFR-TKIs, virtually all advanced EGFR-mutated (EGFRM+) NSCLCs inevitably acquire resistance mechanisms and progress at some point during treatment. Additionally, 20-30% of patients do not respond or respond for a very short time (<3 months) because of intrinsic resistance. While several mechanisms of acquired EGFR-TKI-resistance have been determined by analyzing tumor specimens obtained at disease progression, the factors causing intrinsic TKI-resistance are less understood. However, recent comprehensive molecular-pathological profiling of advanced EGFRM+ NSCLC at baseline has illustrated the co-existence of multiple genetic, phenotypic, and functional mechanisms that may contribute to tumor progression and cause intrinsic TKI-resistance. Several of these mechanisms have been further corroborated by preclinical experiments. Intrinsic resistance can be caused by mechanisms inherent in EGFR or by EGFR-independent processes, including genetic, phenotypic or functional tumor changes. This comprehensive review describes the identified mechanisms connected with intrinsic EGFR-TKI-resistance and differences and similarities with acquired resistance and among clinically implemented EGFR-TKIs of different generations. Additionally, the review highlights the need for extensive pre-treatment molecular profiling of advanced NSCLC for identifying inherently TKI-resistant cases and designing potential combinatorial targeted strategies to treat them.
Collapse
Affiliation(s)
- Eric Santoni-Rugiu
- Department of Pathology, Rigshospitalet, Copenhagen University Hospital, DK-2100 Copenhagen, Denmark.
| | - Linea C Melchior
- Department of Pathology, Rigshospitalet, Copenhagen University Hospital, DK-2100 Copenhagen, Denmark
| | - Edyta M Urbanska
- Department of Oncology, Rigshospitalet, Copenhagen University Hospital, DK-2100 Copenhagen, Denmark
| | - Jan N Jakobsen
- Department of Oncology and Palliative Units, Zealand University Hospital, DK-4700 Næstved, Denmark
| | - Karin de Stricker
- Department of Pathology, Rigshospitalet, Copenhagen University Hospital, DK-2100 Copenhagen, Denmark
| | - Morten Grauslund
- Department of Clinical Genetics and Pathology, Skåne University Hospital, SE-221 85 Lund, Sweden
| | - Jens B Sørensen
- Department of Oncology, Rigshospitalet, Copenhagen University Hospital, DK-2100 Copenhagen, Denmark
| |
Collapse
|
30
|
Cerebral Thromboembolism after Lobectomy for Lung Cancer: Pathological Diagnosis and Mechanism of Thrombus Formation. Cancers (Basel) 2019; 11:cancers11040488. [PMID: 30959839 PMCID: PMC6521235 DOI: 10.3390/cancers11040488] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/02/2019] [Accepted: 04/02/2019] [Indexed: 12/15/2022] Open
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide. Although molecular therapies have emerged as efficacious strategies for the treatment of lung cancer, surgical resection is still recommended as a radical therapeutic option. Currently, lobectomy is regarded as the most reliable radical treatment of primary lung cancer. Among the various complications after lobectomy, cerebral thromboembolism requires attention as a life-threatening complication during the early postoperative period. It occurs in 0.2–1.2% of surgical cases of lung cancer and typically develops following left upper lobectomy with a long pulmonary vein stump (PVS). PVS-associated thrombosis is known to cause cerebral thromboembolism after such procedures; however, distinguishing this specific complication from that caused by postoperative atrial fibrillation is challenging. We summarize herein the diagnostic pathology of thrombus formation in accordance with its thrombogenic mechanism. We focus on the potential utility of the pathological assessment of thrombectomy specimens. The morphological information obtained from these specimens enables the presumption of thrombogenic etiology and provides useful clues to both select an appropriate pharmacotherapy and determine a follow-up treatment for cerebral thromboembolism.
Collapse
|
31
|
Liam CK. The role of osimertinib in epidermal growth factor receptor ( EGFR)-mutant non-small cell lung cancer. J Thorac Dis 2019; 11:S448-S452. [PMID: 30997245 DOI: 10.21037/jtd.2018.11.45] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Chong-Kin Liam
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
32
|
Ricciuti B. Osimertinib for EGFR-mutant non-small cell lung cancer: place in therapy and future perspectives. J Thorac Dis 2019; 11:S249-S252. [PMID: 30997189 DOI: 10.21037/jtd.2019.01.104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Biagio Ricciuti
- Thoracic Oncology Unit, Santa Maria della Misericordia Hospital, University of Perugia, Piazzale Menghini, Perugia, Italy
| |
Collapse
|
33
|
Jeong BH, Um SW. Current role and future direction of osimertinib in epidermal growth factor receptor-mutant non-small cell lung cancer. J Thorac Dis 2019; 11:39-41. [PMID: 30863565 DOI: 10.21037/jtd.2018.12.37] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Byeong-Ho Jeong
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sang-Won Um
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
34
|
Zhou Y, Zheng X, Xu B, Chen L, Wang Q, Deng H, Jiang J. Circular RNA hsa_circ_0004015 regulates the proliferation, invasion, and TKI drug resistance of non-small cell lung cancer by miR-1183/PDPK1 signaling pathway. Biochem Biophys Res Commun 2018; 508:527-535. [PMID: 30509491 DOI: 10.1016/j.bbrc.2018.11.157] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 11/24/2018] [Indexed: 12/25/2022]
Abstract
Circular RNAs (circRNAs) were recently reported to be involved in the pathogenesis of Non-small cell lung cancer (NSCLC), however, the molecular mechanisms of circRNAs in cell proliferation, invasion and TKI drug resistance remain largely undetermined. Here, we identified hsa_circ_0004015 was upregulated in NSCLC tissues, and was associated with the poor overall survival rate of NSCLC patients. Knockdown of hsa_circ_0004015 significantly decreased cell viability, proliferation, and invasion, whereas overexpression exhibited opposed effects in vivo and in vitro. Furthermore, hsa_circ_0004015 could enhance the resistance of HCC827 to gefitinib. In mechanism, hsa_circ_0004015 acted as a sponge for miR-1183, and PDPK1 was revealed to be target gene of miR-1183. Subsequently, functional assays illustrated that the oncogenic effects of hsa_circ_0004015 was attributed to the regulation of miR-1183/PDPK1 axis. In conclusion, circ_0016760/miR-1183/PDPK1 signaling pathway might play vital roles in the tumorigenesis of NSCLC.
Collapse
Affiliation(s)
- You Zhou
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, 213003, China; Institute of Cell Therapy, Soochow University, Changzhou, 213003, China
| | - Xiao Zheng
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, 213003, China; Institute of Cell Therapy, Soochow University, Changzhou, 213003, China
| | - Bin Xu
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, 213003, China; Institute of Cell Therapy, Soochow University, Changzhou, 213003, China
| | - Lujun Chen
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, 213003, China; Institute of Cell Therapy, Soochow University, Changzhou, 213003, China
| | - Qi Wang
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, 213003, China; Institute of Cell Therapy, Soochow University, Changzhou, 213003, China
| | - Haifeng Deng
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, 213003, China; Institute of Cell Therapy, Soochow University, Changzhou, 213003, China
| | - Jingting Jiang
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, 213003, China; Institute of Cell Therapy, Soochow University, Changzhou, 213003, China.
| |
Collapse
|