1
|
Kimura G, Tagami A, Fukui R, Yaita M, Miyasaka T. Airway inflammation in a novel mouse model of asthma-COPD overlap induced by co-exposure to papain and tobacco smoke. Biochem Biophys Res Commun 2024; 709:149831. [PMID: 38552552 DOI: 10.1016/j.bbrc.2024.149831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/13/2024]
Abstract
Asthma and chronic obstructive pulmonary disease (COPD) are respiratory diseases associated with airway inflammation, which is the main pathogenesis. Although their causes and characteristics differ, in some cases, asthma and COPD may coexist in the same patient in a condition called asthma-COPD overlap (ACO). The prognosis of ACO is more unfavourable than those of asthma or COPD alone, without any treatment strategies demonstrating efficacy. Owing to its intricate spectrum of features, the detailed pathogenesis of how ACO exacerbates respiratory features remains unclear. In this study, we exposed papain-induced asthma model mice to tobacco smoke to establish an ACO mouse model, in which features of airway inflammation observed in both asthma and COPD were incorporated. This model exhibited distinctive mixed and corticosteroid-resistant airway inflammation and emphysematous changes that are characteristic of ACO. The novel mouse model established here is expected to significantly contribute to elucidating the mechanisms of the broad pathologies of ACO and identifying potential therapeutic targets.
Collapse
Affiliation(s)
- Genki Kimura
- Department of Physiology and Anatomy, Nihon University School of Pharmacy, Funabashi, Japan.
| | - Ai Tagami
- Department of Physiology and Anatomy, Nihon University School of Pharmacy, Funabashi, Japan
| | - Rina Fukui
- Department of Physiology and Anatomy, Nihon University School of Pharmacy, Funabashi, Japan
| | - Masaki Yaita
- Department of Physiology and Anatomy, Nihon University School of Pharmacy, Funabashi, Japan
| | - Tomohiro Miyasaka
- Department of Physiology and Anatomy, Nihon University School of Pharmacy, Funabashi, Japan.
| |
Collapse
|
2
|
Hansen S, Otten ND, Spang-Hanssen L, Bendorff C, Jacobsen S. Neutrophil gelatinase-associated lipocalin as a potential biomarker for equine asthma. Equine Vet J 2024; 56:44-50. [PMID: 36977608 DOI: 10.1111/evj.13939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 03/23/2023] [Indexed: 03/30/2023]
Abstract
BACKGROUND Studies in people have found neutrophil gelatinase-associated lipocalin (NGAL) concentrations are increased in asthma and can be used to distinguish between asthma subtypes. NGAL has not yet been investigated in equine asthma (EA). OBJECTIVES To investigate the ability of NGAL concentrations in bronchoalveolar lavage (BAL) fluid and serum to distinguish between control horses, horses with mild-moderate EA (MEA) and horses with severe EA (SEA). STUDY DESIGN Retrospective cross-sectional study. METHODS Details of endoscopic examination including tracheal mucus score (TMS, scale 0-5) and BAL cytology performed on 227 horses were extracted from records and NGAL concentrations were measured on stored serum and BAL fluid samples. The horses were divided into groups (control group n = 73, MEA n = 98, SEA n = 56) based on clinical signs and BAL cytology results. Differences between groups were evaluated with the Mann-Whitney test and correlation between BAL NGAL, serum NGAL, and BAL cytology were evaluated using Spearman's correlation. RESULTS BAL NGAL concentrations were higher in EA than in control horses (median: 25.6 and 13.3 μg/L, respectively, p < 0.001). Concentrations of NGAL in BAL differed between groups, with higher concentrations in MEA than in control horses (median: 18.5 and 13.3 μg/L, respectively, p < 0.001), and higher concentrations in SEA than in MEA horses (median: 54.1 and 18.5 μg/L, respectively, p < 0.001). BAL NGAL concentration differed between horses with TMS ≤2 an >2 (median 15.6 and 21.1 μg/L, respectively, p = 0.004). No differences were found in serum NGAL concentration between any of the groups. MAIN LIMITATION Only 66 of the 227 (29%) horses had haematology and serum NGAL measured. CONCLUSION BAL NGAL concentration differed between control and EA and reflected severity of disease. These results justify further research into the potential of NGAL as a biomarker of EA.
Collapse
Affiliation(s)
- Sanni Hansen
- Department of Veterinary Clinical Sciences, University of Copenhagen, Faculty of Health and Medical Sciences, Taastrup, Denmark
| | - Nina D Otten
- Department of Veterinary and Animal Sciences, University of Copenhagen, Faculty of Health and Medical Sciences, Frederiksberg C, Denmark
| | - Liv Spang-Hanssen
- Department of Veterinary Clinical Sciences, University of Copenhagen, Faculty of Health and Medical Sciences, Taastrup, Denmark
| | - Christine Bendorff
- Department of Veterinary Clinical Sciences, University of Copenhagen, Faculty of Health and Medical Sciences, Taastrup, Denmark
| | - Stine Jacobsen
- Department of Veterinary Clinical Sciences, University of Copenhagen, Faculty of Health and Medical Sciences, Taastrup, Denmark
| |
Collapse
|
3
|
Jo YS, Rhee CK, Yoon HK, Park CK, Lim JU, Joon AT, Hur J. Evaluation of asthma-chronic obstructive pulmonary disease overlap using a mouse model of pulmonary disease. J Inflamm (Lond) 2022; 19:25. [PMID: 36474247 PMCID: PMC9728005 DOI: 10.1186/s12950-022-00322-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Features of asthma and chronic obstructive pulmonary disease (COPD) can coexist in the same patient, in a condition termed asthma- chronic obstructive pulmonary disease overlap (ACO). ACO is heterogeneous condition exhibiting various combinations of asthma and COPD features. No clinically acceptable experimental model of ACO has been established. We aimed to establish an animal model of ACO. METHODS We generated two phenotypes of ACO by administering ovalbumin and porcine pancreatic elastase in combination, and papain. The proinflammatory cytokines and cell types in bronchoalveolar lavage fluid (BALF) were investigated, and lung function parameters were measured using the FlexiVent system. RESULTS Greater airway inflammation was observed in the asthma and both ACO models, and emphysema was found in the COPD and both ACO models. The proportion of eosinophils in BALF was elevated in the asthma and ACO-a model. Type 2 inflammatory cytokine levels were highest in the ACO-a model, and the neutrophil gelatinase-associated lipocalin level was elevated in the asthma and ACO-a model. Of lung function parameters, compliance was greater in the COPD and ACO-b model, in which elastance was lower than in the asthma model. Airway resistance increased with the methacholine concentration in the asthma and both ACO models, but not in the control or COPD model. CONCLUSION We established two murine models of ACO that exhibit features of asthma and COPD. We validated the clinical relevance of the ACO models based on changes in cytokine profiles and lung function. These models will be useful in further studies of the pathogenesis of, and therapeutic targets for ACO.
Collapse
Affiliation(s)
- Yong Suk Jo
- grid.411947.e0000 0004 0470 4224Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Chin Kook Rhee
- grid.411947.e0000 0004 0470 4224Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Hyoung Kyu Yoon
- grid.411947.e0000 0004 0470 4224Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Yeouido St Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Chan Kwon Park
- grid.411947.e0000 0004 0470 4224Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Yeouido St Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Jeong Uk Lim
- grid.411947.e0000 0004 0470 4224Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Yeouido St Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - An Tai Joon
- grid.411947.e0000 0004 0470 4224Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Yeouido St Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Jung Hur
- grid.411947.e0000 0004 0470 4224Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| |
Collapse
|
4
|
Peng J, Wang M, Wu Y, Shen Y, Chen L. Clinical Indicators for Asthma-COPD Overlap: A Systematic Review and Meta-Analysis. Int J Chron Obstruct Pulmon Dis 2022; 17:2567-2575. [PMID: 36259043 PMCID: PMC9572492 DOI: 10.2147/copd.s374079] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 09/24/2022] [Indexed: 11/05/2022] Open
Abstract
Background Some clinical indicators have been reported to be useful in differentiating asthma-chronic obstructive pulmonary disease (COPD) overlap (ACO) from pure asthma/COPD, but the results were inconsistent. This study aims to evaluate the diagnostic value of these indicators for ACO. Methods Databases of PubMed, EMBASE, Ovid and Web of Science were retrieved. Pooled standardized mean differences (SMDs) with 95% confidence intervals (CIs) were calculated in random-effects models. Results 48 eligible studies were included. The pooled results indicated, compared with pure asthma, ACO patients had lower levels of forced expiratory volume in the first second (FEV1)% predicted (pred) (SMD=−1.09, 95% CI −1.3 to −0.87), diffusion lung capacity for carbon monoxide (DLCO)% pred (SMD=−0.83, 95% CI −1.24 to −0.42), fractional exhaled nitric oxide (FeNO) (SMD=−0.23, 95% CI −0.36 to −0.11), and higher levels of induced sputum neutrophil (SMD = 0.51, 95% CI 0.21 to 0.81), circulating YKL-40 (SMD = 0.96, 95% CI 0.27 to 1.64). However, relative to COPD alone, ACO patients had higher levels of FEV1% pred (SMD = 0.15, 95% CI 0.05 to 0.26), DLCO% pred (SMD = 0.38, 95% CI 0.16 to 0.6), FeNO (SMD = 0.59, 95% CI 0.40 to 0.78), serum total immunoglobulin (Ig)E (SMD = 0.42, 95% CI 0.1 to 0.75), blood eosinophil (SMD = 0.44, 95% CI 0.29 to 0.59), induced sputum eosinophil (SMD = 0.62, 95% CI 0.42 to 0.83), and lower levels of induced sputum neutrophil (SMD=−0.48, 95% CI −0.7 to −0.27), circulating YKL-40 (SMD=−1.09, 95% CI −1.92 to −0.26). Conclusion Compared with pure asthma/COPD, ACO patients have different levels of FEV1% pred, DLCO% pred, FeNO, serum total IgE, blood eosinophil, induced sputum eosinophil/neutrophil, and circulating YKL-40, which could be helpful to establish a clinical diagnosis of ACO.
Collapse
Affiliation(s)
- Junjie Peng
- Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, People’s Republic of China
| | - Min Wang
- Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, People’s Republic of China
| | - Yanqiu Wu
- Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, People’s Republic of China
| | - Yongchun Shen
- Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, People’s Republic of China
| | - Lei Chen
- Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, People’s Republic of China,Correspondence: Lei Chen; Yongchun Shen, Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, People’s Republic of China, Email ;
| |
Collapse
|
5
|
Relationship between Neutrophil Gelatinase-Associated Lipocalin, Eosinophil Cationic Protein, Cytokines, and Atopic Sensitization in Patients with Allergic Diseases. BIOMED RESEARCH INTERNATIONAL 2022; 2022:6564706. [PMID: 35707392 PMCID: PMC9192203 DOI: 10.1155/2022/6564706] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/09/2022] [Accepted: 05/23/2022] [Indexed: 11/25/2022]
Abstract
The effect of neutrophil gelatinase-associated lipocalin (NGAL) on eosinophil activation, atopic sensitization, and systemic inflammation in allergic diseases has rarely been investigated. This study aimed to investigate the relationship between NGAL, eosinophil cationic protein (ECP), cytokines, and allergen-specific immunoglobulin E (sIgE) in allergic diseases. A total of 136 patients with allergies and 58 healthy individuals were evaluated. The concentrations of NGAL, ECP, tumor necrosis factor-α (TNF-α), interleukin-5 (IL-5), sIgE, total IgE (tIgE), and high-sensitivity C-reactive protein (hsCRP) were measured. The transforming growth factor-β1 (TGF-β1) level was measured as a profibrotic marker of bronchial asthma. Allergic patients had significantly higher NGAL, ECP, and hsCRP levels than healthy individuals. However, there was no significant difference in NGAL levels between patients with positive and negative ECP tests and those with high and low sIgE scores. Asthmatic patients with elevated NGAL exhibited a significantly higher TGF-β1 level than those without elevated NGAL. However, no significant difference was observed in the ECP, IL-5, and sIgE levels between the two groups. Among the patients with a positive ECP test, subjects with elevated hsCRP had two times higher NGAL levels than those without elevated hsCRP. NGAL was positively correlated with TNF-α, TGF-β1, and hsCRP, but not with ECP, IL-5, tIgE, and sIgE. An elevated NGAL level led to a 1.3-fold increase in the prevalence of high TGF-β1 (odds ratio: 1.31; 95% CI: 1.04–2.58; P < 0.001). In conclusion, NGAL elevation may be more closely linked to allergic inflammation and a possible fibrotic change in the airways than to the severity of eosinophil activation and atopic sensitization.
Collapse
|
6
|
Chen YC, Chang YP, Huang KT, Hsu PY, Hsiao CC, Lin MC. Unraveling the Pathogenesis of Asthma and Chronic Obstructive Pulmonary Disease Overlap: Focusing on Epigenetic Mechanisms. Cells 2022; 11:cells11111728. [PMID: 35681424 PMCID: PMC9179497 DOI: 10.3390/cells11111728] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/05/2022] [Accepted: 05/21/2022] [Indexed: 12/10/2022] Open
Abstract
Asthma and COPD overlap (ACO) is characterized by patients presenting with persistent airflow limitation and features of both asthma and COPD. It is associated with a higher frequency and severity of exacerbations, a faster lung function decline, and a higher healthcare cost. Systemic inflammation in COPD and asthma is driven by type 1 T helper (Th1) and Th2 immune responses, respectively, both of which may contribute to airway remodeling in ACO. ACO-related biomarkers can be classified into four categories: neutrophil-mediated inflammation, Th2 cell responses, arachidonic acid-eicosanoids pathway, and metabolites. Gene–environment interactions are key contributors to the complexity of ACO and are regulated by epigenetic mechanisms, including DNA methylation, histone modifications, and non-coding RNAs. Thus, this review focuses on the link between epigenetics and ACO, and outlines the following: (I) inheriting epigenotypes without change with environmental stimuli, or epigenetic changes in response to long-term exposure to inhaled particles plus intermittent exposure to specific allergens; (II) epigenetic markers distinguishing ACO from COPD and asthma; (III) potential epigenetic drugs that can reverse oxidative stress, glucocorticoid insensitivity, and cell injury. Improved understanding of the epigenetic regulations holds great value to give deeper insight into the mechanisms, and clarify their implications for biomedical research in ACO.
Collapse
Affiliation(s)
- Yung-Che Chen
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (Y.-P.C.); (K.-T.H.); (P.-Y.H.)
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Correspondence: (Y.-C.C.); (C.-C.H.); (M.-C.L.); Tel.: +886-7-731-7123 (ext. 8199) (Y.-C.C. & M.-C.L.); +886-7-731-7123 (ext. 8979) (C.-C.H.)
| | - Yu-Ping Chang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (Y.-P.C.); (K.-T.H.); (P.-Y.H.)
| | - Kuo-Tung Huang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (Y.-P.C.); (K.-T.H.); (P.-Y.H.)
| | - Po-Yuan Hsu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (Y.-P.C.); (K.-T.H.); (P.-Y.H.)
| | - Chang-Chun Hsiao
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (Y.-P.C.); (K.-T.H.); (P.-Y.H.)
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Correspondence: (Y.-C.C.); (C.-C.H.); (M.-C.L.); Tel.: +886-7-731-7123 (ext. 8199) (Y.-C.C. & M.-C.L.); +886-7-731-7123 (ext. 8979) (C.-C.H.)
| | - Meng-Chih Lin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (Y.-P.C.); (K.-T.H.); (P.-Y.H.)
- Correspondence: (Y.-C.C.); (C.-C.H.); (M.-C.L.); Tel.: +886-7-731-7123 (ext. 8199) (Y.-C.C. & M.-C.L.); +886-7-731-7123 (ext. 8979) (C.-C.H.)
| |
Collapse
|
7
|
Jo YS. Current Status of Studies Investigating Asthma-Chronic Obstructive Pulmonary Disease Overlap in Korea: A Review. Tuberc Respir Dis (Seoul) 2021; 85:101-110. [PMID: 34871477 PMCID: PMC8987665 DOI: 10.4046/trd.2021.0140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/02/2021] [Indexed: 11/24/2022] Open
Abstract
There is a considerable number of individuals who exhibit features of both asthma and chronic obstructive pulmonary disease (COPD), defined as asthma-COPD overlap (ACO). Many studies have reported that these patients have a greater burden of symptoms, including cough and dyspnea, and experience more exacerbations and hospitalizations than those with non-ACO COPD or asthma. Although diagnostic criteria for ACO have not yet been clearly established, their clinical significance remains to be determined. As interest in ACO grows, related studies have been conducted in South Korea as well. The present review summarizes ACO-related studies in South Korea to better understand Korean ACO patients and guide further research. Several cohort studies of asthma and COPD and population-based studies for ACO were reviewed and the key results from demographics, clinical features, lung function, biomarkers, treatment, and prognosis were summarized.
Collapse
Affiliation(s)
- Yong Suk Jo
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Internal Medicine, Hallym University Kangdong Sacred Heart Hospital, Seoul, Korea
| |
Collapse
|
8
|
Fujino N, Sugiura H. ACO (Asthma-COPD Overlap) Is Independent from COPD, a Case in Favor: A Systematic Review. Diagnostics (Basel) 2021; 11:859. [PMID: 34064650 PMCID: PMC8150952 DOI: 10.3390/diagnostics11050859] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 05/10/2021] [Indexed: 01/03/2023] Open
Abstract
Asthma and chronic obstructive pulmonary disease (COPD) are now recognized to be able to co-exist as asthma-COPD overlap (ACO). It is clinically relevant to evaluate whether patients with COPD concurrently have components of asthma in primary care. This is because: (i) ACO is a relatively common condition among asthma (over 40 years of age) or COPD irrespective of its diagnosis criteria; (ii) patients with ACO can have higher frequency of exacerbation and more rapid decline in lung function than those with asthma or COPD; and (iii) asthmatic features such as eosinophilic airway inflammation are promising indicators for prediction of inhaled corticosteroid-responsiveness in COPD. The aim of this review to evaluate diagnostic markers for ACO. We searched PubMed for articles related to ACO published until 2020. Articles associated with diagnostic biomarkers were included. We identified a total of 25 studies, some of which have revealed that a combination of biomarkers such as fractional exhaled nitric oxide and serum immunoglobulin E is useful to discern type 2 inflammation in the airways of COPD. Here, we review the current understanding of the clinical characteristics, biomarkers and molecular pathophysiology of ACO in the context of how ACO can be differentiated from COPD.
Collapse
Affiliation(s)
- Naoya Fujino
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan;
| | | |
Collapse
|
9
|
Ambroszkiewicz J, Gajewska J, Chełchowska M, Rowicka G. Assessment of Inflammatory Markers in Children with Cow's Milk Allergy Treated with a Milk-Free Diet. Nutrients 2021; 13:nu13041057. [PMID: 33805091 PMCID: PMC8064076 DOI: 10.3390/nu13041057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/19/2021] [Accepted: 03/21/2021] [Indexed: 12/20/2022] Open
Abstract
Background: The aim of the study was to establish whether the use of a strict milk-free diet in children with cow’s milk allergy, resulting in the resolution of clinical symptoms of the disease, also extinguishes the inflammatory reaction induced by the allergy. Methods: We examined 64 children (aged 3–6 years) with a diagnosed cow’s milk allergy who had been treated with an elimination diet for at least six months and showed remission of the disease’s clinical symptoms as a result of the treatment. The control group consisted of 30 healthy children of the same age following an unrestricted age-appropriate diet. Concentrations of cytokines, calprotectin, and adipokines (leptin, resistin, chemerin, neutrophilic lipocalin associated with gelatinase—NGAL) were determined in the serum samples obtained from the studied children by immunoenzymatic assays. Results: Patients with CMA had significantly higher median values of serum IL-6, TNF-α, resistin, chemerin and NGAL in comparison to the healthy children (p < 0.05, p < 0.001, p < 0.05, p < 0.01, p < 0.001, respectively). Serum concentrations of IL-10, leptin, calprotectin and CRP as well as in WBC count were in the same range in both studied groups. We observed direct statistically significant correlations between levels of IL-10 and CRP (p = 0.005), IL-10 and WBC (p = 0.045), TNF-α and WBC (p = 0.038), calprotectin and WBC (p < 0.001), chemerin and CRP (p < 0.001) as well as between NGAL and WBC (p = 0.002) in children with CMA. Conclusion: The use of a strict milk-free diet by children with CMA, resulting in the resolution of clinical symptoms of the disease, does not seem to extinguish the inflammation induced by the allergy. The findings of this study—elevated IL-6, TNF-α, resistin, chemerin and NGAL levels in patients with CMA—suggest that these parameters seem to be involved in the generation of a low-grade proinflammatory environment observed in cow‘s milk allergy and could be used to monitor the effectiveness of treatment.
Collapse
Affiliation(s)
- Jadwiga Ambroszkiewicz
- Department of Screening Tests and Metabolic Diagnostics, Institute of Mother and Child, Kasprzaka 17A, 01-211 Warsaw, Poland; (J.G.); (M.C.)
- Correspondence: ; Tel.: +48-22-327-7260
| | - Joanna Gajewska
- Department of Screening Tests and Metabolic Diagnostics, Institute of Mother and Child, Kasprzaka 17A, 01-211 Warsaw, Poland; (J.G.); (M.C.)
| | - Magdalena Chełchowska
- Department of Screening Tests and Metabolic Diagnostics, Institute of Mother and Child, Kasprzaka 17A, 01-211 Warsaw, Poland; (J.G.); (M.C.)
| | - Grażyna Rowicka
- Department of Nutrition, Institute of Mother and Child, Kasprzaka 17A, 01-211 Warsaw, Poland;
| |
Collapse
|
10
|
Tu X, Donovan C, Kim RY, Wark PAB, Horvat JC, Hansbro PM. Asthma-COPD overlap: current understanding and the utility of experimental models. Eur Respir Rev 2021; 30:30/159/190185. [PMID: 33597123 PMCID: PMC9488725 DOI: 10.1183/16000617.0185-2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 11/03/2020] [Indexed: 12/21/2022] Open
Abstract
Pathological features of both asthma and COPD coexist in some patients and this is termed asthma-COPD overlap (ACO). ACO is heterogeneous and patients exhibit various combinations of asthma and COPD features, making it difficult to characterise the underlying pathogenic mechanisms. There are no controlled studies that define effective therapies for ACO, which arises from the lack of international consensus on the definition and diagnostic criteria for ACO, as well as scant in vitro and in vivo data. There remain unmet needs for experimental models of ACO that accurately recapitulate the hallmark features of ACO in patients. The development and interrogation of such models will identify underlying disease-causing mechanisms, as well as enabling the identification of novel therapeutic targets and providing a platform for assessing new ACO therapies. Here, we review the current understanding of the clinical features of ACO and highlight the approaches that are best suited for developing representative experimental models of ACO. Understanding the pathogenesis of asthma-COPD overlap is critical for improving therapeutic approaches. We present current knowledge on asthma-COPD overlap and the requirements for developing an optimal animal model of disease.https://bit.ly/3lsjyvm
Collapse
Affiliation(s)
- Xiaofan Tu
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, Australia.,Both authors contributed equally
| | - Chantal Donovan
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, Australia.,Centre for Inflammation, Centenary Institute, Camperdown, Australia.,University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, Australia.,Both authors contributed equally
| | - Richard Y Kim
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, Australia.,Centre for Inflammation, Centenary Institute, Camperdown, Australia.,University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, Australia
| | - Peter A B Wark
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, Australia
| | - Jay C Horvat
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, Australia
| | - Philip M Hansbro
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, Australia .,Centre for Inflammation, Centenary Institute, Camperdown, Australia.,University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, Australia
| |
Collapse
|
11
|
Nicotine promotes breast cancer metastasis by stimulating N2 neutrophils and generating pre-metastatic niche in lung. Nat Commun 2021; 12:474. [PMID: 33473115 PMCID: PMC7817836 DOI: 10.1038/s41467-020-20733-9] [Citation(s) in RCA: 140] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 12/17/2020] [Indexed: 12/12/2022] Open
Abstract
Smoking has a profound impact on tumor immunity, and nicotine, which is the major addictive component of smoke, is known to promote tumor progression despite being a non-carcinogen. In this study, we demonstrate that chronic exposure of nicotine plays a critical role in the formation of pre-metastatic niche within the lungs by recruiting pro-tumor N2-neutrophils. This pre-metastatic niche promotes the release of STAT3-activated lipocalin 2 (LCN2), a secretory glycoprotein from the N2-neutrophils, and induces mesenchymal-epithelial transition of tumor cells thereby facilitating colonization and metastatic outgrowth. Elevated levels of serum and urine LCN2 is elevated in early-stage breast cancer patients and cancer-free females with smoking history, suggesting that LCN2 serve as a promising prognostic biomarker for predicting increased risk of metastatic disease in female smoker(s). Moreover, natural compound, salidroside effectively abrogates nicotine-induced neutrophil polarization and consequently reduced lung metastasis of hormone receptor-negative breast cancer cells. Our findings suggest a pro-metastatic role of nicotine-induced N2-neutrophils for cancer cell colonization in the lungs and illuminate the therapeutic use of salidroside to enhance the anti-tumor activity of neutrophils in breast cancer patients. Smoking is known to impact tumor immunity and promote tumor progression. Here, the authors show that chronic nicotine exposure promotes the lung pre-metastatic niche formation by recruiting pro-tumor N2-neutrophils that release lipocalin-2.
Collapse
|
12
|
Serum Biomarkers of Cardiovascular Remodelling Reflect Extra-Valvular Cardiac Damage in Patients with Severe Aortic Stenosis. Int J Mol Sci 2020; 21:ijms21114174. [PMID: 32545310 PMCID: PMC7312014 DOI: 10.3390/ijms21114174] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/03/2020] [Accepted: 06/08/2020] [Indexed: 12/20/2022] Open
Abstract
In patients with aortic stenosis (AS), a novel staging classification of extra-valvular left and right heart damage with prognostic relevance was introduced in 2017. The aim of the study was to evaluate the biomarkers of cardiovascular tissue remodelling in relation to this novel staging classification. Patients were categorized according to the novel staging classification into stages 0 to 4. The levels of matrix metalloproteinase 9 (MMP-9), tissue inhibitor of metalloproteinases 1 (TIMP-1), B and C domain containing tenascin-C (B+ Tn-C, C+ Tn-C), the ED-A and ED-B domain containing fibronectin (ED-A+ Fn, ED-B+ Fn), endothelin 1 (ET-1) and neutrophil gelatinase-associated lipocalin (NGAL) were determined in serum by ELISA. There were significantly decreased serum levels of MMP-9 and increased levels of B+ Tn-C and C+ Tn-C when comparing stages 0 and 1 with stage 2, with no further dynamics in stages 3 and 4. In contrast, for TIMP-1, C+ Tn-C, ED-A+ Fn, ET-1 and NGAL, significantly increased serum levels could be detected in stages 3 and 4 compared to both stages 0 and 1 and stage 2. ED-A+ Fn and ET-1 could be identified as independent predictors of the presence of stage 3 and/or 4. To the best of our knowledge, this is the first study identifying novel serum biomarkers differentially reflecting the patterns of left and right heart extra-valvular damage in patients suffering from AS. Our findings might indicate a more precise initial diagnosis and risk stratification.
Collapse
|