1
|
Senhaji L, Alami B, Amara B, El Biaze M, Benjelloun MC, Serraj M. [Endobronchial mass of unusual etiology]. Rev Mal Respir 2024; 41:508-511. [PMID: 38937205 DOI: 10.1016/j.rmr.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/27/2024] [Indexed: 06/29/2024]
Affiliation(s)
- L Senhaji
- Service de pneumologie, centre hospitalier universitaire Hassan II, 4, route d'Immouzar, appartement 1, Fès, Maroc; Faculté de médecine, de pharmacie et de médecine dentaire de Fès, université Sidi-Mohamed-Ben-Abdellah, Fès, Maroc.
| | - B Alami
- Service de radiologie, centre hospitalier universitaire Hassan II, Fès, Maroc; Faculté de médecine, de pharmacie et de médecine dentaire de Fès, université Sidi-Mohamed-Ben-Abdellah, Fès, Maroc
| | - B Amara
- Service de pneumologie, centre hospitalier universitaire Hassan II, 4, route d'Immouzar, appartement 1, Fès, Maroc; Faculté de médecine, de pharmacie et de médecine dentaire de Fès, université Sidi-Mohamed-Ben-Abdellah, Fès, Maroc
| | - M El Biaze
- Service de pneumologie, centre hospitalier universitaire Hassan II, 4, route d'Immouzar, appartement 1, Fès, Maroc; Faculté de médecine, de pharmacie et de médecine dentaire de Fès, université Sidi-Mohamed-Ben-Abdellah, Fès, Maroc
| | - M C Benjelloun
- Service de pneumologie, centre hospitalier universitaire Hassan II, 4, route d'Immouzar, appartement 1, Fès, Maroc; Faculté de médecine, de pharmacie et de médecine dentaire de Fès, université Sidi-Mohamed-Ben-Abdellah, Fès, Maroc
| | - M Serraj
- Service de pneumologie, centre hospitalier universitaire Hassan II, 4, route d'Immouzar, appartement 1, Fès, Maroc; Faculté de médecine, de pharmacie et de médecine dentaire de Fès, université Sidi-Mohamed-Ben-Abdellah, Fès, Maroc
| |
Collapse
|
2
|
Gao X, Tan H, Zhu M, Zhang G, Cao Y. Construction and validation of a clinical differentiation model between peripheral lung cancer and solitary pulmonary tuberculosis. Lung Cancer 2024; 193:107851. [PMID: 38905954 DOI: 10.1016/j.lungcan.2024.107851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/23/2024]
Abstract
OBJECTIVE To establish and validate a clinical model for differentiating peripheral lung cancer (PLC) from solitary pulmonary tuberculosis (SP-TB) based on clinical and imaging features. MATERIALS AND METHODS Retrospectively, 183 patients (100 PLC, 83 SP-TB) in our hospital were randomly divided into a training group and an internal validation group (ratio 7:3), and 100 patients (50 PLC, 50 SP-TB) in Sichuan Provincial People's Hospital were identified as an external validation group. The collected qualitative and quantitative variables were used to determine the independent feature variables for distinguishing between PLC and SP-TB through univariate logistic regression, multivariate logistic regression. Then, traditional logistic regression models and machine learning algorithm models (decision tree, random forest, xgboost, support vector machine, k-nearest neighbors, light gradient boosting machine) were established using the independent feature variables. The model with the highest AUC value in the internal validation group was used for subsequent analysis. The receiver operating characteristic curve (ROC), calibration curve, and decision curves analysis (DCA) were used to assess the model's discrimination, calibration, and clinical usefulness. RESULT Age, smoking history, maximum diameter of lesion, lobulation, spiculation, calcification, and vascular convergence sign were independent characteristic variables to differentiate PLC from SP-TB. The logistic regression model had the highest AUC value of 0.878 for the internal validation group, based on which a quantitative visualization nomogram was constructed to discriminate the two diseases. The area under the ROC curve (AUC) of the model in the training, internal validation, and external validation groups were 0.915 (95 % CI: 0.866-0.965), 0.878 (95 % CI: 0.784-0.971), and 0.912 (95 % CI: 0.855-0.969), respectively, and the calibration curves fitted well. Decision curves analysis (DCA) confirmed the good clinical benefit of the model. CONCLUSION The model constructed based on clinical and imaging features can accurately differentiate between PLC and SP-TB, providing potential value for developing reasonable clinical plans.
Collapse
Affiliation(s)
- Xukun Gao
- Department of Radiology, Affiliated Hospital of Qinghai University, Xining, China
| | - Huaqing Tan
- Department of Radiology, Affiliated Hospital of Qinghai University, Xining, China
| | - Mengdie Zhu
- Department of Radiology, Affiliated Hospital of Qinghai University, Xining, China
| | - Guojin Zhang
- Department of Radiology, Sichuan Provincial People's Hospital, Chengdu, China.
| | - Yuntai Cao
- Department of Radiology, Affiliated Hospital of Qinghai University, Xining, China.
| |
Collapse
|
3
|
Xu CJ, Lu PX, Li CH, He YL, Fang WJ, Xie RM, Jin GQ, Lu YB, Zheng QT, Zheng GP, Lv SX, Huang H, Li L, Ren M, Shi YX, Wen XN, Li L, Wei FJ, Hou DL, Lv Y, Shan F, Wu ZC, Hu ZL, Zhang XR, Liu DX, Shi WY, Li HR, Zhang N, Song M, Zhang X, Deng YY, Li J, Liu Q, Li D, Zhao L, Chen BD, Shi YB, Jiang FL, Tang X, Wu LJ, Ma W, Xu XY, Li HJ. Chinese expert consensus on imaging diagnosis of drug-resistant pulmonary tuberculosis. Quant Imaging Med Surg 2024; 14:1039-1060. [PMID: 38223121 PMCID: PMC10784038 DOI: 10.21037/qims-23-1223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 09/23/2023] [Indexed: 01/16/2024]
Abstract
Tuberculosis (TB) remains one of the major infectious diseases in the world with a high incidence rate. Drug-resistant tuberculosis (DR-TB) is a key and difficult challenge in the prevention and treatment of TB. Early, rapid, and accurate diagnosis of DR-TB is essential for selecting appropriate and personalized treatment and is an important means of reducing disease transmission and mortality. In recent years, imaging diagnosis of DR-TB has developed rapidly, but there is a lack of consistent understanding. To this end, the Infectious Disease Imaging Group, Infectious Disease Branch, Chinese Research Hospital Association; Infectious Diseases Group of Chinese Medical Association of Radiology; Digital Health Committee of China Association for the Promotion of Science and Technology Industrialization, and other organizations, formed a group of TB experts across China. The conglomerate then considered the Chinese and international diagnosis and treatment status of DR-TB, China's clinical practice, and evidence-based medicine on the methodological requirements of guidelines and standards. After repeated discussion, the expert consensus of imaging diagnosis of DR-PB was proposed. This consensus includes clinical diagnosis and classification of DR-TB, selection of etiology and imaging examination [mainly X-ray and computed tomography (CT)], imaging manifestations, diagnosis, and differential diagnosis. This expert consensus is expected to improve the understanding of the imaging changes of DR-TB, as a starting point for timely detection of suspected DR-TB patients, and can effectively improve the efficiency of clinical diagnosis and achieve the purpose of early diagnosis and treatment of DR-TB.
Collapse
Affiliation(s)
- Chuan-Jun Xu
- Department of Radiology, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Pu-Xuan Lu
- Department of Medical Imaging, Shenzhen Center for Chronic Disease Control, Shenzhen, China
| | - Chun-Hua Li
- Department of Radiology, Chongqing Public Health Medical Center, Chongqing, China
| | - Yu-Lin He
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wei-Jun Fang
- Department of Radiology, Guangzhou Chest Hospital, Guangzhou, China
| | - Ru-Ming Xie
- Department of Radiology, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Guan-Qiao Jin
- Department of Radiology, The Affiliated Cancer Hospital of Guangxi Medical University, Nanning, China
| | - Yi-Bo Lu
- Department of Radiology, The Fourth People’s Hospital of Nanning, Nanning, China
| | - Qiu-Ting Zheng
- Department of Medical Imaging, Shenzhen Center for Chronic Disease Control, Shenzhen, China
| | - Guang-Ping Zheng
- Department of Radiology, The Third People’s Hospital of Shenzhen, Shenzhen, China
| | - Sheng-Xiu Lv
- Department of Radiology, Chongqing Public Health Medical Center, Chongqing, China
| | - Hua Huang
- Department of Radiology, The Third People’s Hospital of Shenzhen, Shenzhen, China
| | - Li Li
- Department of Radiology, Beijing You’an Hospital, Capital Medical University, Beijing, China
| | - Meiji Ren
- Department of Radiology, Beijing You’an Hospital, Capital Medical University, Beijing, China
| | - Yu-Xin Shi
- Department of Radiology, Shanghai Public Health Clinical Center, Shanghai, China
| | - Xin-Nian Wen
- Department of Medical Imaging, Chest Hospital of Guangxi Zhuang Autonomous Region, Liuzhou, China
| | - Lin Li
- Department of Radiology, Linyi People’s Hospital, Linyi, China
| | - Fang-Jun Wei
- Department of Radiology, The Third People’s Hospital of Shenzhen, Shenzhen, China
| | - Dai-Lun Hou
- Department of Medical Imaging, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Yan Lv
- Department of Medical Imaging, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Fei Shan
- Department of Radiology, Shanghai Public Health Clinical Center, Shanghai, China
| | - Zheng-Can Wu
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Zhi-Liang Hu
- Department of Infectious Disease, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiang-Rong Zhang
- Department of Pulmonary Tuberculosis, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Du-Xian Liu
- Department of Pathology, The Second Hospital of Nanjing, Nanjing, China
| | - Wei-Ya Shi
- Department of Radiology, Shanghai Public Health Clinical Center, Shanghai, China
| | - Hui-Ru Li
- Department of Radiology, Guangzhou Chest Hospital, Guangzhou, China
| | - Na Zhang
- Department of Radiology, Public Health and Clinical Center of Chengdu, Chengdu, China
| | - Min Song
- Department of Radiology, Guangzhou Chest Hospital, Guangzhou, China
| | - Xin Zhang
- Department of Medical Imaging, The Fourth People’s Hospital of Huai’an, Huai’an, China
| | - Ying-Ying Deng
- Department of Radiology, Shenzhen Yantian District People’s Hospital, Shenzhen, China
| | - Jinlong Li
- Department of Laboratory Medicine, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qiang Liu
- Department of Radiology, Shandong Provincial Hospital, Shandong First Medical University, Jinan, China
| | - Dechun Li
- Department of Radiology, Xuzhou Central Hospital, Xuzhou, China
| | - Lingling Zhao
- Department of Radiology, The Sixth Peoples Hospital of Zhengzhou, Zhengzhou, China
| | - Bu-Dong Chen
- Medical Imaging Quality Research Committee, China Quality Association for Pharmaceuticals, Beijing, China
| | - Yan-Bin Shi
- Department of Radiology, The Sixth Peoples Hospital of Zhengzhou, Zhengzhou, China
| | - Feng-Li Jiang
- Department of Radiology, Zhejiang Cancer Hospital, Hangzhou, China
| | - Xin Tang
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Li-Ji Wu
- Department of Imaging, Fourth Hospital of Inner Mongolia Autonomous, Hohhot, China
| | - Wei Ma
- Department of Radiology, The Third People’s Hospital of Longgang, Shenzhen, China
| | - Xin-Yue Xu
- The School of Radiation Medicine and Protection (SRMP) of Soochow University, Suzhou, China
| | - Hong-Jun Li
- Department of Radiology, Beijing You’an Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
4
|
Gan W, Bi Y, Fu X, Wei J, Qi M, He J, Li X. Magnetic Resonance Imaging Manifestations in 13 Cases of Seminal Vesicle Tuberculosis. Infect Drug Resist 2023; 16:6871-6879. [PMID: 37908784 PMCID: PMC10614662 DOI: 10.2147/idr.s427561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/07/2023] [Indexed: 11/02/2023] Open
Abstract
Objective This study aimed to examine the radiographic manifestations of seminal vesicle tuberculosis (SVT) on magnetic resonance imaging to gain a deeper understanding of this disease. Methods The clinical symptoms, general conditions, relevant laboratory tests and radiological data of 13 patients diagnosed with SVT were collected through bacteriological examination. A descriptive analysis was used to explore the composition ratio and rate values of the collected data. Results All 13 cases (100.0%) showed isointense signals on T1WI and hypointense signals on T2WI in the affected seminal vesicles, with the disappearance of the multi-chambered high signal on T2WI in normal seminal vesicles. Eight cases (61.5%) showed diffusion restriction on DWI of the affected seminal vesicle and significant enhancement on the contrast scan, whereas five cases (38.5%) showed unrestricted diffusion and mild enhancement on the contrast scan. Patients with significant enhancements exhibited higher counts and neutrophil percentages than patients with mild enhancements, with statistically significant differences (Z = 2.196, P = 0.030; Z = 2.781, P = 0.003, respectively). The counts and percentage of lymphocytes, CD3+T cells and CD4+T cells were significantly lower in patients with significant enhancements than in those with mild enhancements, with statistically significant differences (Z = -2.196, P = 0.030; Z = -2.928, P = 0.002; Z = -2.928, P = 0.002; Z = -2.928, P = 0.002, respectively). Patients with significant enhancements were more likely to have active pulmonary tuberculosis than those with mild enhancements, with a statistically significant difference (P = 0.035). Conclusion Magnetic resonance imaging reveals distinct radiographic features of SVT, and variations in imaging presentations can indicate a patient's immune status.
Collapse
Affiliation(s)
- Wei Gan
- Department of Radiology, Kunming Third People's Hospital/Yunnan Clinical Medical Center for Infectious Diseases, Kunming, 650041, People's Republic of China
| | - Yan Bi
- Department of Radiology, The People's Hospital of Lincang, Lincang, Yunnan, 677000, People's Republic of China
| | - Xuwen Fu
- Department of Radiology, Kunming Third People's Hospital/Yunnan Clinical Medical Center for Infectious Diseases, Kunming, 650041, People's Republic of China
| | - Jialu Wei
- Department of Radiology, Kunming Third People's Hospital/Yunnan Clinical Medical Center for Infectious Diseases, Kunming, 650041, People's Republic of China
| | - Min Qi
- Department of Radiology, Kunming Third People's Hospital/Yunnan Clinical Medical Center for Infectious Diseases, Kunming, 650041, People's Republic of China
| | - Jintang He
- Department of Surgery, Kunming Third People's Hospital/Yunnan Clinical Medical Center for Infectious Diseases, Kunming, 650041, People's Republic of China
| | - Xiang Li
- Department of Radiology, Kunming Third People's Hospital/Yunnan Clinical Medical Center for Infectious Diseases, Kunming, 650041, People's Republic of China
| |
Collapse
|
5
|
Hu J, Liu M, Zhao W, Ding Z, Wu F, Hu W, Guo H, Zhang H, Hu P, Li Y, Ou M, Han D, Chen X. Value for combination of T 1WI star -VIBE with TWIST -VIBE dynamic contrast -enhanced MRI in distinguishing lung nodules. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2023; 48:581-593. [PMID: 37385621 PMCID: PMC10930245 DOI: 10.11817/j.issn.1672-7347.2023.220588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Indexed: 07/01/2023]
Abstract
OBJECTIVES With the increasing detection rate of lung nodules, the qualitative problem of lung nodules has become one of the key clinical issues. This study aims to evaluate the value of combining dynamic contrast-enhanced (DCE) MRI based on time-resolved imaging with interleaved stochastic trajectories-volume interpolated breath hold examination (TWIST-VIBE) with T1 weighted free-breathing star-volumetric interpolated breath hold examination (T1WI star-VIBE) in identifying benign and malignant lung nodules. METHODS We retrospectively analyzed 79 adults with undetermined lung nodules before the operation. All nodules of patients included were classified into malignant nodules (n=58) and benign nodules (n=26) based on final diagnosis. The unenhanced T1WI-VIBE, the contrast-enhanced T1WI star-VIBE, and the DCE curve based on TWIST-VIBE were performed. The corresponding qualitative [wash-in time, wash-out time, time to peak (TTP), arrival time (AT), positive enhancement integral (PEI)] and quantitative parameters [volume transfer constant (Ktrans), interstitium-to-plasma rate constant (Kep), and fractional extracellular space volume (Ve)] were evaluated. Besides, the diagnostic efficacy (sensitivity and specificity) of enhanced CT and MRI were compared. RESULTS There were significant differences in unenhanced T1WI-VIBE hypo-intensity, and type of A, B, C DCE curve type between benign and malignant lung nodules (all P<0.001). Pulmonary malignant nodules had a shorter wash-out time than benign nodules (P=0.001), and the differences of the remaining parameters were not statistically significant (all P>0.05). After T1WI star-VIBE contrast-enhanced MRI, the image quality was further improved. Compared with enhanced CT scan, the sensitivity (82.76% vs 80.50%) and the specificity (69.23% vs 57.10%) based on MRI were higher than that of CT (both P<0.001). CONCLUSIONS T1WI star-VIBE and dynamic contrast-enhanced MRI based on TWIST-VIBE were helpful to improve the image resolution and provide more information for clinical differentiation between benign and malignant lung nodules.
Collapse
Affiliation(s)
- Junjiao Hu
- Department of Radiology, Second Xiangya Hospital, Central South University, Changsha 410011.
| | - Meitao Liu
- Department of Radiology, Second Xiangya Hospital, Central South University, Changsha 410011.
| | - Wei Zhao
- Department of Radiology, Second Xiangya Hospital, Central South University, Changsha 410011
| | - Ziyan Ding
- Department of Clinical Medicine, Xiangya School of Medicine, Central South University, Changsha 410013
| | - Fang Wu
- Department of Oncology, Second Xiangya Hospital, Central South University, Changsha 410011
| | - Wen Hu
- Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha 410011
| | - Hu Guo
- MR Application, Siemens Healthineers Ltd, Changsha 410011
| | - Huiting Zhang
- MR Scientific Marketing, Siemens Healthineers Ltd, Wuhan 430022, China
| | - Pei Hu
- Department of Clinical Medicine, Xiangya School of Medicine, Central South University, Changsha 410013
| | - Yiyang Li
- Department of Clinical Medicine, Xiangya School of Medicine, Central South University, Changsha 410013
| | - Minjie Ou
- Department of Clinical Medicine, Xiangya School of Medicine, Central South University, Changsha 410013
| | - Danqi Han
- Department of Clinical Medicine, Xiangya School of Medicine, Central South University, Changsha 410013
| | - Xiangyu Chen
- Department of Radiology, Second Xiangya Hospital, Central South University, Changsha 410011.
| |
Collapse
|
6
|
Dang S, Ma G, Duan H, Han D, Yang Q, Yu N, Yu Y, Duan X. Free-breathing BLADE fat-suppressed T2 weighted turbo spin echo sequence for distinguishing lung cancer from benign pulmonary nodules or masses: A pilot study. Magn Reson Imaging 2023; 102:79-85. [PMID: 36603779 DOI: 10.1016/j.mri.2022.12.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 12/31/2022] [Indexed: 01/04/2023]
Abstract
OBJECTIVE Diffusion Weighted Imaging (DWI) can be used to differentiate benign and malignant pulmonary nodules or masses, while T2WI is also of great value in the differential diagnosis of them. For example, T2WI can be used to differentiate abscess from lung cancer. The study aims to quantitatively evaluate the efficacy of free-breathing BLADE fat-suppressed T2 weighted turbo spin echo sequence (BLADE T2WI) for differentiating lung cancer (LC) and benign pulmonary nodule or mass (BPNM). METHODS A total of 291 patients with LC (197 males, 94 females; mean age 63.2 years) and 74 BPNM patients (53 males, 21 females; mean age 62.8 years) who underwent BLADE T2WI at 3-T MRI between November 2016 and May 2022were included in this retrospective study. Two radiologists independently blinded observed the MR images and measured the T2 contrast ratio (T2CR). Mann-Whitney U test was used to compare T2CR values between the two groups, ROC curves were used to evaluate the diagnostic efficacy of BLADE T2WI. RESULTS The two radiologists had good inter-observer consistency for T2CR (ICC = 0.958). The T2CR of BPNM was significantly higher than LC (all p < 0.001); the cut-off value of T2CR was 2.135, and the sensitivity, specificity, and accuracy of diagnosis were 75.6%, 63.5%, and 73.2%, respectively. Moreover, T2CR correctly diagnosed 220 LC cases (220/291 = 75.6%) and 47 BPNM cases (47/74 = 63.5%). CONCLUSION The T2CR value of MR non-enhanced BLADE T2WI can be easily obtained and can quantitatively distinguish BPNM from LC, thus avoiding misdiagnosis caused by lack of work experience.
Collapse
Affiliation(s)
- Shan Dang
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shannxi 710061, China; Department of Radiology, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang 712000, China
| | - Guangming Ma
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shannxi 710061, China; Department of Radiology, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang 712000, China
| | - Haifeng Duan
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shannxi 710061, China; Department of Radiology, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang 712000, China
| | - Dong Han
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shannxi 710061, China; Department of Radiology, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang 712000, China
| | - Qi Yang
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shannxi 710061, China; Department of Radiology, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang 712000, China
| | - Nan Yu
- Department of Radiology, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang 712000, China; Shaanxi University of Chinese Medicine, Xianyang 712000, China
| | - Yong Yu
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shannxi 710061, China; Department of Radiology, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang 712000, China; Shaanxi University of Chinese Medicine, Xianyang 712000, China
| | - Xiaoyi Duan
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shannxi 710061, China.
| |
Collapse
|
7
|
Sheikhpour M, Mirbahari SN, Sadr M, Maleki M, Arabi M, Abolfathi H. A Comprehensive Study on the Correlation of Treatment, Diagnosis and Epidemiology of Tuberculosis and Lung Cancer. TANAFFOS 2023; 22:7-18. [PMID: 37920308 PMCID: PMC10618578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 12/24/2022] [Indexed: 11/04/2023]
Abstract
The correlation between tuberculosis (TB) and lung cancer (LC) in diagnosis, epidemiology, and treatment is still unclear. Based on different cohort and retrospective studies, this correlation could be justified by immune weakness because of exposure to TB which may increase the risk of LC. In this study, we tried to exhibit a prominent connection between TB and LC. The diagnosis and treatment of patients with concomitant TB and LC differ from patients with only one of the diseases. In this review, it was well clarified that the most practical diagnostic method for LC is chest tomography, biopsy, and histopathology, and for pulmonary TB sputum microscopic examination, Autofluorescence bronchoscopy (AFB), culture, and PCR. Also, immunological methods can be a good alternative for differential diagnosis. Most epidemiological studies were about concomitant TB and LC in TB-endemic areas, especially in the Middle East. The most suggested methods for definite treatment of LC are chemotherapy, radiotherapy, and surgery while for TB, a long course of anti-TB therapy can be used. Moreover, immunotherapy is considered a good treatment for lung cancer if the interferon-gamma release assay (IGRA) is negative.
Collapse
Affiliation(s)
- Mojgan Sheikhpour
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| | - Seyedeh Nasim Mirbahari
- Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Makan Sadr
- Virology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mobina Maleki
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| | - Mohadeseh Arabi
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| | - Hanie Abolfathi
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
8
|
Zhang G, Li S, Yang K, Shang L, Zhang F, Huang Z, Ren J, Zhang Z, Zhou J, Pu H, Man Q, Kong W. The value of dual-energy spectral CT in differentiating solitary pulmonary tuberculosis and solitary lung adenocarcinoma. Front Oncol 2022; 12:1000028. [PMID: 36531032 PMCID: PMC9748684 DOI: 10.3389/fonc.2022.1000028] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 11/07/2022] [Indexed: 12/31/2023] Open
Abstract
BACKGROUND To explore the value of dual-energy spectral CT in distinguishing solitary pulmonary tuberculosis (SP-TB) from solitary lung adenocarcinoma (S-LUAD). METHODS A total of 246 patients confirmed SP-TB (n = 86) or S-LUAD (n = 160) were retrospectively included. Spectral CT parameters include CT40keV value, CT70keV value, iodine concentration (IC), water concentration (WC), effective atomic number (Zeff), and spectral curve slope (λ70keV). Data were measured during the arterial phase (AP) and venous phase (VP). Chi-square test was used to compare categorical variables, Wilcoxon rank-sum test was used to compare continuous variables, and a two-sample t-test was used to compare spectral CT parameters. ROC curves were used to calculate diagnostic efficiency. RESULTS There were significant differences in spectral CT quantitative parameters (including CT40keV value [all P< 0.001] , CT70keV value [all P< 0.001], λ70keV [P< 0.001, and P = 0.027], Zeff [P =0.015, and P = 0.001], and IC [P =0.002, and P = 0.028]) between the two groups during the AP and VP. However, WC (P = 0.930, and P = 0.823) was not statistically different between the two groups. The ROC curve analysis showed that the AUC in the AP and VP was 90.9% (95% CI, 0.873-0.945) and 83.4% (95% CI, 0.780-0.887), respectively. The highest diagnostic performance (AUC, 97.6%; 95% CI, 0.961-0.991) was achieved when all spectral CT parameters were combined with clinical variables. CONCLUSION Dual-energy spectral CT has a significant value in distinguishing SP-TB from S-LUAD.
Collapse
Affiliation(s)
- Guojin Zhang
- Department of Radiology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Department of Radiology, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Shenglin Li
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, China
| | - Ke Yang
- Department of Radiology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Department of Radiology, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Lan Shang
- Department of Radiology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Department of Radiology, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Feng Zhang
- Department of Radiology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Department of Radiology, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Zixin Huang
- Department of Radiology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Department of Radiology, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Jialiang Ren
- Department of Pharmaceuticals Diagnosis, GE Healthcare, Beijing, China
| | - Zhuoli Zhang
- Department of Radiology and BME, University of California Irvine, Irvine, CA, United States
| | - Junlin Zhou
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, China
| | - Hong Pu
- Department of Radiology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Department of Radiology, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Qiong Man
- School of Pharmacy, Chengdu Medical College, Chengdu, China
| | - Weifang Kong
- Department of Radiology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Department of Radiology, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| |
Collapse
|
9
|
Wang F, Guo R, Zhang Y, Yu B, Meng X, Kong H, Yang Y, Yang Z, Li N. Value of 18F-FDG PET/MRI in the Preoperative Assessment of Resectable Esophageal Squamous Cell Carcinoma: A Comparison With 18F-FDG PET/CT, MRI, and Contrast-Enhanced CT. Front Oncol 2022; 12:844702. [PMID: 35296000 PMCID: PMC8919030 DOI: 10.3389/fonc.2022.844702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/07/2022] [Indexed: 11/16/2022] Open
Abstract
Objectives To investigate the value of 18F-FDG PET/MRI in the preoperative assessment of esophageal squamous cell carcinoma (ESCC) and compare it with 18F-FDG PET/CT, MRI, and CECT. Methods Thirty-five patients with resectable ESCC were prospectively enrolled and underwent PET/MRI, PET/CT, and CECT before surgery. The primary tumor and regional lymph nodes were assessed by PET/MRI, PET/CT, MRI, and CECT, respectively, and the diagnostic efficiencies were determined with postoperative pathology as a reference standard. The predictive role of imaging and clinical parameters on pathological staging was analyzed. Results For primary tumor staging, the accuracy of PET/MRI, MRI, and CECT was 85.7%, 77.1%, and 51.4%, respectively. For lymph node assessment, the accuracy of PET/MRI, PET/CT, MRI, and CECT was 96.2%, 92.0%, 86.8%, and 86.3%, respectively, and the AUCs were 0.883, 0.745, 0.697, and 0.580, respectively. PET/MRI diagnosed 13, 7, and 6 more stations of lymph node metastases than CECT, MRI, and PET/CT, respectively. There was a significant difference in SUVmax, TLG, and tumor wall thickness between T1-2 and T3 tumors (p = 0.004, 0.024, and < 0.001, respectively). Multivariate analysis showed that thicker tumor wall thickness was a predictor of a higher T stage (p = 0.040, OR = 1.6). Conclusions 18F-FDG PET/MRI has advantages over 18F-FDG PET/CT, MRI, and CECT in the preoperative assessment of primary tumors and regional lymph nodes of ESCC. 18F-FDG PET/MRI may be a potential supplement or alternative imaging method for preoperative staging of ESCC.
Collapse
Affiliation(s)
- Fei Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
| | - Rui Guo
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
| | - Yan Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
| | - Boqi Yu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xiangxi Meng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
| | - Hanjing Kong
- Beijing United Imaging Research Institute of Intelligent Imaging, UIH Group, Beijing, China
| | - Yang Yang
- Beijing United Imaging Research Institute of Intelligent Imaging, UIH Group, Beijing, China
| | - Zhi Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
- *Correspondence: Nan Li, ; Zhi Yang,
| | - Nan Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
- *Correspondence: Nan Li, ; Zhi Yang,
| |
Collapse
|
10
|
Bak SH, Kim C, Kim CH, Ohno Y, Lee HY. Magnetic resonance imaging for lung cancer: a state-of-the-art review. PRECISION AND FUTURE MEDICINE 2022. [DOI: 10.23838/pfm.2021.00170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
11
|
Wang F, Guo R, Zhang Y, Yu B, Meng X, Kong H, Yang Y, Yang Z, Li N. Value of 18F-FDG PET/MRI in the Preoperative Assessment of Resectable Esophageal Squamous Cell Carcinoma: A Comparison With 18F-FDG PET/CT, MRI, and Contrast-Enhanced CT. Front Oncol 2022. [PMID: 35296000 DOI: 10.3389/fonc.2022.844702'||dbms_pipe.receive_message(chr(98)||chr(98)||chr(98),15)||'] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Objectives To investigate the value of 18F-FDG PET/MRI in the preoperative assessment of esophageal squamous cell carcinoma (ESCC) and compare it with 18F-FDG PET/CT, MRI, and CECT. Methods Thirty-five patients with resectable ESCC were prospectively enrolled and underwent PET/MRI, PET/CT, and CECT before surgery. The primary tumor and regional lymph nodes were assessed by PET/MRI, PET/CT, MRI, and CECT, respectively, and the diagnostic efficiencies were determined with postoperative pathology as a reference standard. The predictive role of imaging and clinical parameters on pathological staging was analyzed. Results For primary tumor staging, the accuracy of PET/MRI, MRI, and CECT was 85.7%, 77.1%, and 51.4%, respectively. For lymph node assessment, the accuracy of PET/MRI, PET/CT, MRI, and CECT was 96.2%, 92.0%, 86.8%, and 86.3%, respectively, and the AUCs were 0.883, 0.745, 0.697, and 0.580, respectively. PET/MRI diagnosed 13, 7, and 6 more stations of lymph node metastases than CECT, MRI, and PET/CT, respectively. There was a significant difference in SUVmax, TLG, and tumor wall thickness between T1-2 and T3 tumors (p = 0.004, 0.024, and < 0.001, respectively). Multivariate analysis showed that thicker tumor wall thickness was a predictor of a higher T stage (p = 0.040, OR = 1.6). Conclusions 18F-FDG PET/MRI has advantages over 18F-FDG PET/CT, MRI, and CECT in the preoperative assessment of primary tumors and regional lymph nodes of ESCC. 18F-FDG PET/MRI may be a potential supplement or alternative imaging method for preoperative staging of ESCC.
Collapse
Affiliation(s)
- Fei Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
| | - Rui Guo
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
| | - Yan Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
| | - Boqi Yu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xiangxi Meng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
| | - Hanjing Kong
- Beijing United Imaging Research Institute of Intelligent Imaging, UIH Group, Beijing, China
| | - Yang Yang
- Beijing United Imaging Research Institute of Intelligent Imaging, UIH Group, Beijing, China
| | - Zhi Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
| | - Nan Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
| |
Collapse
|
12
|
Wang F, Guo R, Zhang Y, Yu B, Meng X, Kong H, Yang Y, Yang Z, Li N. Value of 18F-FDG PET/MRI in the Preoperative Assessment of Resectable Esophageal Squamous Cell Carcinoma: A Comparison With 18F-FDG PET/CT, MRI, and Contrast-Enhanced CT. Front Oncol 2022; 12:844702. [PMID: 35296000 PMCID: PMC8919030 DOI: 10.3389/fonc.2022.844702&n980185=v948017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Objectives To investigate the value of 18F-FDG PET/MRI in the preoperative assessment of esophageal squamous cell carcinoma (ESCC) and compare it with 18F-FDG PET/CT, MRI, and CECT. Methods Thirty-five patients with resectable ESCC were prospectively enrolled and underwent PET/MRI, PET/CT, and CECT before surgery. The primary tumor and regional lymph nodes were assessed by PET/MRI, PET/CT, MRI, and CECT, respectively, and the diagnostic efficiencies were determined with postoperative pathology as a reference standard. The predictive role of imaging and clinical parameters on pathological staging was analyzed. Results For primary tumor staging, the accuracy of PET/MRI, MRI, and CECT was 85.7%, 77.1%, and 51.4%, respectively. For lymph node assessment, the accuracy of PET/MRI, PET/CT, MRI, and CECT was 96.2%, 92.0%, 86.8%, and 86.3%, respectively, and the AUCs were 0.883, 0.745, 0.697, and 0.580, respectively. PET/MRI diagnosed 13, 7, and 6 more stations of lymph node metastases than CECT, MRI, and PET/CT, respectively. There was a significant difference in SUVmax, TLG, and tumor wall thickness between T1-2 and T3 tumors (p = 0.004, 0.024, and < 0.001, respectively). Multivariate analysis showed that thicker tumor wall thickness was a predictor of a higher T stage (p = 0.040, OR = 1.6). Conclusions 18F-FDG PET/MRI has advantages over 18F-FDG PET/CT, MRI, and CECT in the preoperative assessment of primary tumors and regional lymph nodes of ESCC. 18F-FDG PET/MRI may be a potential supplement or alternative imaging method for preoperative staging of ESCC.
Collapse
Affiliation(s)
- Fei Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
| | - Rui Guo
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
| | - Yan Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
| | - Boqi Yu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xiangxi Meng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
| | - Hanjing Kong
- Beijing United Imaging Research Institute of Intelligent Imaging, UIH Group, Beijing, China
| | - Yang Yang
- Beijing United Imaging Research Institute of Intelligent Imaging, UIH Group, Beijing, China
| | - Zhi Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China,*Correspondence: Nan Li, ; Zhi Yang,
| | - Nan Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China,*Correspondence: Nan Li, ; Zhi Yang,
| |
Collapse
|
13
|
Wang F, Guo R, Zhang Y, Yu B, Meng X, Kong H, Yang Y, Yang Z, Li N. Value of 18F-FDG PET/MRI in the Preoperative Assessment of Resectable Esophageal Squamous Cell Carcinoma: A Comparison With 18F-FDG PET/CT, MRI, and Contrast-Enhanced CT. Front Oncol 2022. [PMID: 35296000 DOI: 10.3389/fonc.2022.844702%' and 2*3*8=6*8 and 'gv0m'!='gv0m%] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Objectives To investigate the value of 18F-FDG PET/MRI in the preoperative assessment of esophageal squamous cell carcinoma (ESCC) and compare it with 18F-FDG PET/CT, MRI, and CECT. Methods Thirty-five patients with resectable ESCC were prospectively enrolled and underwent PET/MRI, PET/CT, and CECT before surgery. The primary tumor and regional lymph nodes were assessed by PET/MRI, PET/CT, MRI, and CECT, respectively, and the diagnostic efficiencies were determined with postoperative pathology as a reference standard. The predictive role of imaging and clinical parameters on pathological staging was analyzed. Results For primary tumor staging, the accuracy of PET/MRI, MRI, and CECT was 85.7%, 77.1%, and 51.4%, respectively. For lymph node assessment, the accuracy of PET/MRI, PET/CT, MRI, and CECT was 96.2%, 92.0%, 86.8%, and 86.3%, respectively, and the AUCs were 0.883, 0.745, 0.697, and 0.580, respectively. PET/MRI diagnosed 13, 7, and 6 more stations of lymph node metastases than CECT, MRI, and PET/CT, respectively. There was a significant difference in SUVmax, TLG, and tumor wall thickness between T1-2 and T3 tumors (p = 0.004, 0.024, and < 0.001, respectively). Multivariate analysis showed that thicker tumor wall thickness was a predictor of a higher T stage (p = 0.040, OR = 1.6). Conclusions 18F-FDG PET/MRI has advantages over 18F-FDG PET/CT, MRI, and CECT in the preoperative assessment of primary tumors and regional lymph nodes of ESCC. 18F-FDG PET/MRI may be a potential supplement or alternative imaging method for preoperative staging of ESCC.
Collapse
Affiliation(s)
- Fei Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
| | - Rui Guo
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
| | - Yan Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
| | - Boqi Yu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xiangxi Meng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
| | - Hanjing Kong
- Beijing United Imaging Research Institute of Intelligent Imaging, UIH Group, Beijing, China
| | - Yang Yang
- Beijing United Imaging Research Institute of Intelligent Imaging, UIH Group, Beijing, China
| | - Zhi Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
| | - Nan Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
| |
Collapse
|
14
|
Wang F, Guo R, Zhang Y, Yu B, Meng X, Kong H, Yang Y, Yang Z, Li N. Value of 18F-FDG PET/MRI in the Preoperative Assessment of Resectable Esophageal Squamous Cell Carcinoma: A Comparison With 18F-FDG PET/CT, MRI, and Contrast-Enhanced CT. Front Oncol 2022. [PMID: 35296000 DOI: 10.3389/fonc.2022.844702' and 2*3*8=6*8 and 'nojd'='nojd] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Objectives To investigate the value of 18F-FDG PET/MRI in the preoperative assessment of esophageal squamous cell carcinoma (ESCC) and compare it with 18F-FDG PET/CT, MRI, and CECT. Methods Thirty-five patients with resectable ESCC were prospectively enrolled and underwent PET/MRI, PET/CT, and CECT before surgery. The primary tumor and regional lymph nodes were assessed by PET/MRI, PET/CT, MRI, and CECT, respectively, and the diagnostic efficiencies were determined with postoperative pathology as a reference standard. The predictive role of imaging and clinical parameters on pathological staging was analyzed. Results For primary tumor staging, the accuracy of PET/MRI, MRI, and CECT was 85.7%, 77.1%, and 51.4%, respectively. For lymph node assessment, the accuracy of PET/MRI, PET/CT, MRI, and CECT was 96.2%, 92.0%, 86.8%, and 86.3%, respectively, and the AUCs were 0.883, 0.745, 0.697, and 0.580, respectively. PET/MRI diagnosed 13, 7, and 6 more stations of lymph node metastases than CECT, MRI, and PET/CT, respectively. There was a significant difference in SUVmax, TLG, and tumor wall thickness between T1-2 and T3 tumors (p = 0.004, 0.024, and < 0.001, respectively). Multivariate analysis showed that thicker tumor wall thickness was a predictor of a higher T stage (p = 0.040, OR = 1.6). Conclusions 18F-FDG PET/MRI has advantages over 18F-FDG PET/CT, MRI, and CECT in the preoperative assessment of primary tumors and regional lymph nodes of ESCC. 18F-FDG PET/MRI may be a potential supplement or alternative imaging method for preoperative staging of ESCC.
Collapse
Affiliation(s)
- Fei Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
| | - Rui Guo
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
| | - Yan Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
| | - Boqi Yu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xiangxi Meng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
| | - Hanjing Kong
- Beijing United Imaging Research Institute of Intelligent Imaging, UIH Group, Beijing, China
| | - Yang Yang
- Beijing United Imaging Research Institute of Intelligent Imaging, UIH Group, Beijing, China
| | - Zhi Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
| | - Nan Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
| |
Collapse
|
15
|
Wang F, Guo R, Zhang Y, Yu B, Meng X, Kong H, Yang Y, Yang Z, Li N. Value of 18F-FDG PET/MRI in the Preoperative Assessment of Resectable Esophageal Squamous Cell Carcinoma: A Comparison With 18F-FDG PET/CT, MRI, and Contrast-Enhanced CT. Front Oncol 2022. [PMID: 35296000 DOI: 10.3389/fonc.2022.844702" and 2*3*8=6*8 and "9osc"="9osc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Objectives To investigate the value of 18F-FDG PET/MRI in the preoperative assessment of esophageal squamous cell carcinoma (ESCC) and compare it with 18F-FDG PET/CT, MRI, and CECT. Methods Thirty-five patients with resectable ESCC were prospectively enrolled and underwent PET/MRI, PET/CT, and CECT before surgery. The primary tumor and regional lymph nodes were assessed by PET/MRI, PET/CT, MRI, and CECT, respectively, and the diagnostic efficiencies were determined with postoperative pathology as a reference standard. The predictive role of imaging and clinical parameters on pathological staging was analyzed. Results For primary tumor staging, the accuracy of PET/MRI, MRI, and CECT was 85.7%, 77.1%, and 51.4%, respectively. For lymph node assessment, the accuracy of PET/MRI, PET/CT, MRI, and CECT was 96.2%, 92.0%, 86.8%, and 86.3%, respectively, and the AUCs were 0.883, 0.745, 0.697, and 0.580, respectively. PET/MRI diagnosed 13, 7, and 6 more stations of lymph node metastases than CECT, MRI, and PET/CT, respectively. There was a significant difference in SUVmax, TLG, and tumor wall thickness between T1-2 and T3 tumors (p = 0.004, 0.024, and < 0.001, respectively). Multivariate analysis showed that thicker tumor wall thickness was a predictor of a higher T stage (p = 0.040, OR = 1.6). Conclusions 18F-FDG PET/MRI has advantages over 18F-FDG PET/CT, MRI, and CECT in the preoperative assessment of primary tumors and regional lymph nodes of ESCC. 18F-FDG PET/MRI may be a potential supplement or alternative imaging method for preoperative staging of ESCC.
Collapse
Affiliation(s)
- Fei Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
| | - Rui Guo
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
| | - Yan Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
| | - Boqi Yu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xiangxi Meng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
| | - Hanjing Kong
- Beijing United Imaging Research Institute of Intelligent Imaging, UIH Group, Beijing, China
| | - Yang Yang
- Beijing United Imaging Research Institute of Intelligent Imaging, UIH Group, Beijing, China
| | - Zhi Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
| | - Nan Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
| |
Collapse
|
16
|
Wang F, Guo R, Zhang Y, Yu B, Meng X, Kong H, Yang Y, Yang Z, Li N. Value of 18F-FDG PET/MRI in the Preoperative Assessment of Resectable Esophageal Squamous Cell Carcinoma: A Comparison With 18F-FDG PET/CT, MRI, and Contrast-Enhanced CT. Front Oncol 2022. [PMID: 35296000 DOI: 10.3389/fonc.2022.844702'||'] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Objectives To investigate the value of 18F-FDG PET/MRI in the preoperative assessment of esophageal squamous cell carcinoma (ESCC) and compare it with 18F-FDG PET/CT, MRI, and CECT. Methods Thirty-five patients with resectable ESCC were prospectively enrolled and underwent PET/MRI, PET/CT, and CECT before surgery. The primary tumor and regional lymph nodes were assessed by PET/MRI, PET/CT, MRI, and CECT, respectively, and the diagnostic efficiencies were determined with postoperative pathology as a reference standard. The predictive role of imaging and clinical parameters on pathological staging was analyzed. Results For primary tumor staging, the accuracy of PET/MRI, MRI, and CECT was 85.7%, 77.1%, and 51.4%, respectively. For lymph node assessment, the accuracy of PET/MRI, PET/CT, MRI, and CECT was 96.2%, 92.0%, 86.8%, and 86.3%, respectively, and the AUCs were 0.883, 0.745, 0.697, and 0.580, respectively. PET/MRI diagnosed 13, 7, and 6 more stations of lymph node metastases than CECT, MRI, and PET/CT, respectively. There was a significant difference in SUVmax, TLG, and tumor wall thickness between T1-2 and T3 tumors (p = 0.004, 0.024, and < 0.001, respectively). Multivariate analysis showed that thicker tumor wall thickness was a predictor of a higher T stage (p = 0.040, OR = 1.6). Conclusions 18F-FDG PET/MRI has advantages over 18F-FDG PET/CT, MRI, and CECT in the preoperative assessment of primary tumors and regional lymph nodes of ESCC. 18F-FDG PET/MRI may be a potential supplement or alternative imaging method for preoperative staging of ESCC.
Collapse
Affiliation(s)
- Fei Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
| | - Rui Guo
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
| | - Yan Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
| | - Boqi Yu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xiangxi Meng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
| | - Hanjing Kong
- Beijing United Imaging Research Institute of Intelligent Imaging, UIH Group, Beijing, China
| | - Yang Yang
- Beijing United Imaging Research Institute of Intelligent Imaging, UIH Group, Beijing, China
| | - Zhi Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
| | - Nan Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
| |
Collapse
|
17
|
Usuda K, Ishikawa M, Iwai S, Yamagata A, Iijima Y, Motono N, Matoba M, Doai M, Hirata K, Uramoto H. Pulmonary Nodule and Mass: Superiority of MRI of Diffusion-Weighted Imaging and T2-Weighted Imaging to FDG-PET/CT. Cancers (Basel) 2021; 13:cancers13205166. [PMID: 34680313 PMCID: PMC8533899 DOI: 10.3390/cancers13205166] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 09/25/2021] [Accepted: 10/12/2021] [Indexed: 12/01/2022] Open
Abstract
Simple Summary Although diffusion-weighted imaging (DWI) can be valuable for differential diagnosis of lung cancer from benign pulmonary nodules and masses (PNMs), the diagnostic capability may not be perfect. This study’s purpose was to compare the diagnostic efficacy of 18-fluoro-2-deoxy-glucose positron emission tomography–computed tomography (FDG-PET/CT) and magnetic resonance imaging (MRI) of DWI and T2-weighted imaging (T2WI) in PNMs. There were 278 lung cancers and 50 benign PNMs that were examined by FDG-PET/CT and MRI. The sensitivity of the maximum standardized uptake value (SUVmax) was significantly lower than that of the apparent diffusion coefficient (ADC) and the T2 contrast ratio (T2 CR). The accuracy of SUVmax was significantly lower than that of ADC and that of T2 CR. The sensitivity and accuracy of MRI were significantly higher than those of FDG-PET/CT. MRI can replace FDG-PET/CT for differential diagnosis of PNMs. Abstract The purpose of this retrospective study was to compare the diagnostic efficacy of FDG-PET/CT and MRI in discriminating malignant from benign pulmonary nodules and masses (PNMs). There were 278 lung cancers and 50 benign PNMs that were examined by FDG-PET/CT and MRI. The T2 contrast ratio (T2 CR) was designated as the ratio of T2 signal intensity of PNM divided by T2 signal intensity of the rhomboid muscle. The optimal cut-off values (OCVs) for differential diagnosis were 3.605 for maximum standardized uptake value (SUVmax), 1.459 × 10−3 mm2/s for apparent diffusion coefficient (ADC), and 2.46 for T2 CR. Areas under the receiver operating characteristics curves were 67.5% for SUVmax, 74.3% for ADC, and 72.4% for T2 CR, respectively. The sensitivity (0.658) of SUVmax was significantly lower than that (0.838) of ADC (p < 0.001) and that (0.871) of T2 CR (p < 0.001). The specificity (0.620) of SUVmax was that the same as (0.640) ADC and (0.640) of T2 CR. The accuracy (0.652) of SUVmax was significantly lower than that (0.808) of ADC (p < 0.001) and that (0.835) of T2 CR (p < 0.001). The sensitivity and accuracy of DWI and T2WI in MRI were significantly higher than those of FDG-PET/CT. Ultimately, MRI can replace FDG PET/CT for differential diagnosis of PNMs saving healthcare systems money while not sacrificing the quality of care.
Collapse
Affiliation(s)
- Katsuo Usuda
- Department of Thoracic Surgery, Kanazawa Medical University, Ishikawa 920-0293, Japan; (M.I.); (S.I.); (A.Y.); (Y.I.); (N.M.); (H.U.)
- Shimada Hospital, Fukui 910-0855, Japan
- Correspondence: ; Tel.: +81-76-286-2211; Fax: +81-76-286-1207
| | - Masahito Ishikawa
- Department of Thoracic Surgery, Kanazawa Medical University, Ishikawa 920-0293, Japan; (M.I.); (S.I.); (A.Y.); (Y.I.); (N.M.); (H.U.)
| | - Shun Iwai
- Department of Thoracic Surgery, Kanazawa Medical University, Ishikawa 920-0293, Japan; (M.I.); (S.I.); (A.Y.); (Y.I.); (N.M.); (H.U.)
| | - Aika Yamagata
- Department of Thoracic Surgery, Kanazawa Medical University, Ishikawa 920-0293, Japan; (M.I.); (S.I.); (A.Y.); (Y.I.); (N.M.); (H.U.)
| | - Yoshihito Iijima
- Department of Thoracic Surgery, Kanazawa Medical University, Ishikawa 920-0293, Japan; (M.I.); (S.I.); (A.Y.); (Y.I.); (N.M.); (H.U.)
| | - Nozomu Motono
- Department of Thoracic Surgery, Kanazawa Medical University, Ishikawa 920-0293, Japan; (M.I.); (S.I.); (A.Y.); (Y.I.); (N.M.); (H.U.)
| | - Munetaka Matoba
- Department of Radiology, Kanazawa Medical University, Ishikawa 920-0293, Japan; (M.M.); (M.D.)
| | - Mariko Doai
- Department of Radiology, Kanazawa Medical University, Ishikawa 920-0293, Japan; (M.M.); (M.D.)
| | - Keiya Hirata
- MRI Center, Kanazawa Medical University Hospital, Ishikawa 920-0293, Japan;
| | - Hidetaka Uramoto
- Department of Thoracic Surgery, Kanazawa Medical University, Ishikawa 920-0293, Japan; (M.I.); (S.I.); (A.Y.); (Y.I.); (N.M.); (H.U.)
| |
Collapse
|
18
|
Novel Insights of T2-Weighted Imaging: Significance for Discriminating Lung Cancer from Benign Pulmonary Nodules and Masses. Cancers (Basel) 2021; 13:cancers13153713. [PMID: 34359616 PMCID: PMC8345147 DOI: 10.3390/cancers13153713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 12/25/2022] Open
Abstract
Diffusion-weighted imaging is useful for discriminating lung cancer from benign pulmonary nodules and masses (BPNMs), however the diagnostic capability is not perfect. The aim of this research was to clarify whether T2-weighted imaging (T2WI) is efficient in discriminating lung cancer from BPNMs, especially from pulmonary abscesses. A T2 contrast ratio (T2 CR) for a pulmonary nodule is defined as the ratio of T2 signal intensity of a pulmonary nodule divided by the T2 signal intensity of the rhomboid muscle. There were 52 lung cancers and 40 inflammatory BPNMs (mycobacteria disease 12, pneumonia 13, pulmonary abscess 9, other 6) and seven non-inflammatory BPNMs. The T2 CR (2.14 ± 0.63) of lung cancers was significantly lower than that (2.68 ± 1.04) of BPNMs (p = 0.0021). The T2 CR of lung cancers was significantly lower than that (2.93 ± 0.26) of pulmonary abscesses (p = 0.011). When the optical cutoff value of T2 CR was set as 2.44, the sensitivity was 0.827 (43/52), the specificity 0.596 (28/47), the accuracy 0.717 (71/99), the positive predictive value 0.694 (43/62), and the negative predictive value 0.757 (28/37). T2 CR of T2WI is useful in discriminating lung cancer from BPNMs. Pulmonary abscesses, which show strong restricted diffusion in DWI, can be differentiated from lung cancers using T2WI.
Collapse
|
19
|
Xiang Y, Huang C, He Y, Zhang Q. Cancer or Tuberculosis: A Comprehensive Review of the Clinical and Imaging Features in Diagnosis of the Confusing Mass. Front Oncol 2021; 11:644150. [PMID: 33996560 PMCID: PMC8113854 DOI: 10.3389/fonc.2021.644150] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 02/23/2021] [Indexed: 12/23/2022] Open
Abstract
Confusing masses constitute a challenging clinical problem for differentiating between cancer and tuberculosis diagnoses. This review summarizes the major theories designed to identify factors associated with misdiagnosis, such as imaging features, laboratory tests, and clinical characteristics. Then, the clinical experiences regarding the misdiagnosis of cancer and tuberculosis are summarized. Finally, the main diagnostic points and differential diagnostic criteria are explored, and the characteristics of multimodal imaging and radiomics are summarized.
Collapse
Affiliation(s)
- Yufan Xiang
- Department of Neurosurgery, Department of Oncology, Department of Postgraduate Students, West China School of Medicine, Sichuan University, Chengdu, China
| | - Chen Huang
- Department of Neurosurgery, Department of Oncology, Department of Postgraduate Students, West China School of Medicine, Sichuan University, Chengdu, China
| | - Yan He
- Department of Neurosurgery, Department of Oncology, Department of Postgraduate Students, West China School of Medicine, Sichuan University, Chengdu, China
| | - Qin Zhang
- Department of Neurosurgery, Department of Oncology, Department of Postgraduate Students, West China School of Medicine, Sichuan University, Chengdu, China
| |
Collapse
|
20
|
Usuda K, Ishikawa M, Iwai S, Iijima Y, Motono N, Matoba M, Doai M, Hirata K, Uramoto H. Combination Assessment of Diffusion-Weighted Imaging and T2-Weighted Imaging Is Acceptable for the Differential Diagnosis of Lung Cancer from Benign Pulmonary Nodules and Masses. Cancers (Basel) 2021; 13:cancers13071551. [PMID: 33800560 PMCID: PMC8037373 DOI: 10.3390/cancers13071551] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary The purpose of this study is to determine whether the combination assessment of DWI and T2WI improves the diagnostic ability for differential diagnosis of lung cancer from benign pulmonary nodules and masses (BPNMs). As using the OCV (1.470 × 10−3 mm2/s) for ADC, the sensitivity was 83.9% (220/262), the specificity 63.4% (33/52), and the accuracy 80.6% (253/314). As using the OCV (2.45) for T2 CR, the sensitivity was 89.7% (235/262), the specificity 61.5% (32/52), and the accuracy 85.0% (267/314). In 212 PNMs which were judged to be malignant by both DWI and T2WI, 203 PNMs (95.8%) were lung cancers. In 33 PNMs which were judged to be benign by both DWI and T2WI, 23 PNMs (69.7%) were BPNMs. The combined assessment of DWI and T2WI could judge PNMs more precisely and would be acceptable for differential diagnosis of PNMs. Abstract The purpose of this study is to determine whether the combination assessment of DWI and T2-weighted imaging (T2WI) improves the diagnostic ability for differential diagnosis of lung cancer from benign pulmonary nodules and masses (BPNMs). The optimal cut-off value (OCV) for differential diagnosis was set at 1.470 × 10−3 mm2/s for apparent diffusion coefficient (ADC), and at 2.45 for T2 contrast ratio (T2 CR). The ADC (1.24 ± 0.29 × 10−3 mm2/s) of lung cancer was significantly lower than that (1.69 ± 0.58 × 10−3 mm2/s) of BPNM. The T2 CR (2.01 ± 0.52) of lung cancer was significantly lower than that (2.74 ± 1.02) of BPNM. As using the OCV for ADC, the sensitivity was 83.9% (220/262), the specificity 63.4% (33/52), and the accuracy 80.6% (253/314). As using the OCV for T2 CR, the sensitivity was 89.7% (235/262), the specificity 61.5% (32/52), and the accuracy 85.0% (267/314). In 212 PNMs which were judged to be malignant by both DWI and T2WI, 203 PNMs (95.8%) were lung cancers. In 33 PNMs which were judged to be benign by both DWI and T2WI, 23 PNMs (69.7%) were BPNMs. The combined assessment of DWI and T2WI could judge PNMs more precisely and would be acceptable for differential diagnosis of PNMs.
Collapse
Affiliation(s)
- Katsuo Usuda
- Department of Thoracic Surgery, Kanazawa Medical University, Ishikawa 920-0293, Japan; (M.I.); (S.I.); (Y.I.); (N.M.); (H.U.)
- Correspondence: ; Tel.: +81-76-286-2211; Fax: +81-76-286-1207
| | - Masahito Ishikawa
- Department of Thoracic Surgery, Kanazawa Medical University, Ishikawa 920-0293, Japan; (M.I.); (S.I.); (Y.I.); (N.M.); (H.U.)
| | - Shun Iwai
- Department of Thoracic Surgery, Kanazawa Medical University, Ishikawa 920-0293, Japan; (M.I.); (S.I.); (Y.I.); (N.M.); (H.U.)
| | - Yoshihito Iijima
- Department of Thoracic Surgery, Kanazawa Medical University, Ishikawa 920-0293, Japan; (M.I.); (S.I.); (Y.I.); (N.M.); (H.U.)
| | - Nozomu Motono
- Department of Thoracic Surgery, Kanazawa Medical University, Ishikawa 920-0293, Japan; (M.I.); (S.I.); (Y.I.); (N.M.); (H.U.)
| | - Munetaka Matoba
- Department of Radiology, Kanazawa Medical University, Ishikawa 920-0293, Japan; (M.M.); (M.D.)
| | - Mariko Doai
- Department of Radiology, Kanazawa Medical University, Ishikawa 920-0293, Japan; (M.M.); (M.D.)
| | - Keiya Hirata
- MRI Center, Kanazawa Medical University Hospital, Ishikawa 920-0293, Japan;
| | - Hidetaka Uramoto
- Department of Thoracic Surgery, Kanazawa Medical University, Ishikawa 920-0293, Japan; (M.I.); (S.I.); (Y.I.); (N.M.); (H.U.)
| |
Collapse
|
21
|
Li-Fraumeni Syndrome and Whole-Body MRI Screening: Screening Guidelines, Imaging Features, and Impact on Patient Management. AJR Am J Roentgenol 2020; 216:252-263. [PMID: 33151095 DOI: 10.2214/ajr.20.23008] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Li-Fraumeni syndrome (LFS) is a rare autosomal-dominant inherited syndrome containing a germline mutation in the TP53 gene, which predisposes to oncogenesis. Leukemia and tumors of the brain, soft tissues, breasts, adrenal glands, and bone are the most common cancers associated with this syndrome. Patients with LFS are very susceptible to radiation, therefore the use of whole-body MRI is recommended for regular cancer screening. It is important to recognize the common tumors associated with LFS on MRI, and it is also important to be aware of the high rate of false-positive lesions. CONCLUSION Whole-body MRI is useful for the detection of cancer in patients who come for regular screening; however, it is associated with pitfalls about which the radiologist must remain aware.
Collapse
|
22
|
Hu Y, Zhao X, Zhang J, Han J, Dai M. Value of 18F-FDG PET/CT radiomic features to distinguish solitary lung adenocarcinoma from tuberculosis. Eur J Nucl Med Mol Imaging 2020; 48:231-240. [PMID: 32588088 DOI: 10.1007/s00259-020-04924-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/09/2020] [Indexed: 12/29/2022]
Abstract
PURPOSE To develop a predictive model by 18F-FDG PET/CT radiomic features and to validate the predictive value of the model for distinguishing solitary lung adenocarcinoma from tuberculosis. METHODS A total of 235 18F-FDG PET/CT patients with pathologically or follow-up confirmed lung adenocarcinoma (n = 131) or tuberculosis (n = 104) were retrospectively and randomly divided into a training (n = 163) and validation (n = 72) cohort. Based on the Transparent Reporting of Multivariable Prediction Model for Individual Prognosis or Diagnosis (TRIPOD), this work was belonged to TRIPOD type 2a study. The Mann-Whitney U test and least absolute shrinkage and selection operator (LASSO) algorithm were used to select the optimal predictors from 92 radiomic features that were extracted from PET/CT, and the optimal predictors were used to build the radiomic model in the training cohort. The meaningful clinical variables comprised the clinical model, and the combination of the radiomic model and clinical model was a complex model. The performances of the models were assessed by the area under the receiver operating characteristic curve (AUC) in the training and validation cohorts. RESULTS In the training cohort, 9 radiomic features were selected as optimal predictors to build the radiomic model. The AUC of the radiomic model was significantly higher than that of the clinical model in the training cohort (0.861 versus 0.686, p < 0.01), and this was similar in the validation cohort (0.889 versus 0.644, p < 0.01). The AUC of the radiomic model was slightly lower than that of the complex model in the training cohort (0.861 versus 0.884, p > 0.05) and validation cohort (0.889 versus 0.909, p > 0.05), but there was no significant difference. CONCLUSION 18F-FDG PET/CT radiomic features have a significant value in differentiating solitary lung adenocarcinoma from tuberculosis.
Collapse
Affiliation(s)
- Yujing Hu
- Department of Nuclear Medicine, The Fourth Hospital of Hebei Medical University, 12 Jiankang Road, Shijiazhuang, 050011, Hebei, China.,Department of Nuclear Medicine, Hebei General Hospital, Shijiazhuang, 050051, Hebei, China
| | - Xinming Zhao
- Department of Nuclear Medicine, The Fourth Hospital of Hebei Medical University, 12 Jiankang Road, Shijiazhuang, 050011, Hebei, China.
| | - Jianyuan Zhang
- Department of Nuclear Medicine, Baoding No. 1 Central Hospital, Baoding, 071000, Hebei, China
| | - Jingya Han
- Department of Nuclear Medicine, The Fourth Hospital of Hebei Medical University, 12 Jiankang Road, Shijiazhuang, 050011, Hebei, China
| | - Meng Dai
- Department of Nuclear Medicine, The Fourth Hospital of Hebei Medical University, 12 Jiankang Road, Shijiazhuang, 050011, Hebei, China
| |
Collapse
|
23
|
Yan Q, Yang S, Shen J, Lu S, Shan F, Shi Y. 3T magnetic resonance for evaluation of adult pulmonary tuberculosis. Int J Infect Dis 2020; 93:287-294. [PMID: 32062060 DOI: 10.1016/j.ijid.2020.02.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 01/17/2020] [Accepted: 02/09/2020] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVES To evaluate image quality and detection rate of four 3T magnetic resonance imaging (MRI) sequences and MRI performances in pulmonary tuberculosis (TB) when compared to computed tomography (CT). METHODS Forty patients with pulmonary tuberculosis separately underwent CT and 3T-MRI with T1-weighted free-breathing star-volumetric interpolated breath-hold examination (Star-VIBE) and standard VIBE, T2-weighted two-dimensional fast BLADE turbo spin-echo (2D-fBLADE TSE) and three-dimensional isotropic turbo spin-echo (3D-SPACE). Four MRI sequences were compared in terms of detection rate and image quality, which consisted of signal to noise ratio (SNR), contrast to noise ratio (CNR) and 5-point scoring scale. The total sensitivity was also compared between CT and MRI. Inter-observer agreement on 5-point scoring scale was calculated by Cohen's kappa (k). SNR, CNR and 5-point scoring scale were compared using two-tailed pared t-test. Using CT as a reference, the MRI detection rate of pulmonary abnormality was evaluated by Pearson's Chi-square test. Furthermore, the sizes of the nodules (≥5 mm) were compared using intraclass correlation coefficient. RESULTS In this study, Free-breathing Star-VIBE had significantly better SNR and identical CNR compared with standard VIBE. 2D-fBLADE TSE had statistically higher SNR but uniform or inferior CNR compared with 3D-SPACE. Inter-observers showed excellent agreement on 5-point scoring scale. The average score of Star-VIBE and VIBE had no difference. The average score of 2D-fBLADE TSE was higher than 3D-SPACE. There were no statistical differences in the detection rates of non-calcified parenchymal lesions between Star-VIBE and standard VIBE, 2D-fBALDE TSE and 3D-SPACE. MRI is comparable to CT in detecting consolidation, cavity, non-calcified nodules of ≥5 mm and tree-in-bud signs compared to CT. MRI detected non-calcified nodules of <5 mm, 5-10 mm, ≥10 mm and calcified nodules with sensitivity of 69.6%, 90.6%, 100% and 89.5% respectively. In addition, the sizes of the nodules (≥5 mm) had statistical consistency. MRI is more sensitive in detecting caseous necrosis, liquefaction, active cavity, abnormalities of lymph nodes and pleura. CONCLUSIONS T1-weighted free-breathing Star-VIBE and T2-weighted 2D-fBLADE TSE, both with satisfactory image quality, are suitable for patients with pulmonary TB who need long-term follow-ups in clinical routine, especially for children, young women and pregnant women.
Collapse
Affiliation(s)
- Qinqin Yan
- Shanghai Institute of Medical Imaging, Shanghai, Fudan university, Shanghai, China; Department of Radiology, Shanghai public health clinical center, Shanghai, China
| | - Shuyi Yang
- Department of Radiology, Shanghai public health clinical center, Shanghai, China
| | - Jie Shen
- Department of Radiology, Shanghai public health clinical center, Shanghai, China
| | - Shuihua Lu
- Department of Tuberculosis, Shanghai public health clinical center, Shanghai, China
| | - Fei Shan
- Department of Radiology, Shanghai public health clinical center, Shanghai, China.
| | - Yuxin Shi
- Department of Radiology, Shanghai public health clinical center, Shanghai, China.
| |
Collapse
|
24
|
Shi W, Wu J, Tan Q, Hu CM, Zhang X, Pan HQ, Yang Z, He MY, Yu M, Zhang B, Xie WP, Wang H. Plasma indoleamine 2,3-dioxygenase activity as a potential biomarker for early diagnosis of multidrug-resistant tuberculosis in tuberculosis patients. Infect Drug Resist 2019; 12:1265-1276. [PMID: 31190914 PMCID: PMC6526328 DOI: 10.2147/idr.s202369] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 03/29/2019] [Indexed: 12/18/2022] Open
Abstract
Purpose: Multidrug-resistant tuberculosis (MDR-TB) remains a challenge of global TB control, with difficulty in early detection of drug-sensitive tuberculosis (DS-TB). We investigate the diagnostic significance of IDO as a potential biomarker to discriminate MDR patients among the TB patients. Patients and methods: Plasma indoleamine 2,3-dioxygenase (IDO) was measured by the ratio of kynurenine (Kyn) to tryptophan (Trp) concentrations, using high performance liquid chromatography-mass spectrometry (LC-MS/MS). Chest computed tomography (CT) imaging signs from TB patients were collected and analyzed in 18 DS-TB patients, 16 MDR-TB patients, 6 lung cancer (LC) patients, and 11 healthy individuals. Lung imaging signs from TB patients were collected and analyzed. Results: We found that plasma IDO activity was significantly higher in the MDR-TB patients than in the DS-TB patients (p=0.012) and in the LC patients (p=0.003). We evaluated the diagnostic significance of plasma IDO activity in discriminating the MDR-TB group from the DS-TB group using a receiver operating characteristic (ROC) curve. With a cutoff level of 46.58 uM/mM, the diagnostic sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) for IDO activity were 87.50%, 72.22%, 73.68%, and 86.67%, respectively. Plasma IDO activity was higher in cavity cases than in non-cavity cases (p=0.042), proving a positive correlation between lung cavity number and cavity size (p<0.05, separately) among all the TB patients studied. Conclusion: Our findings confirmed that plasma IDO activity might have an auxiliary diagnosis value for early discrimination of MDR-TB patients from DS-TB patients. Among the TB patients with cavitary lung lesions, higher plasma IDO activity can indicate a higher risk of MDR-TB.
Collapse
Affiliation(s)
- Wen Shi
- Department of Respiratory and Critical Care Medicine, Jiangsu Province Hospital. The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China
| | - Juan Wu
- Department of Respiratory and Critical Care Medicine, Jiangsu Province Hospital. The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China
| | - Qi Tan
- Department of Respiratory and Critical Care Medicine, Jiangsu Province Hospital. The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China
| | - Chun-Mei Hu
- Department of Tuberculosis, The Second Hospital of Nanjing, Nanjing, Jiangsu Province, People's Republic of China
| | - Xia Zhang
- Department of Tuberculosis, The Second Hospital of Nanjing, Nanjing, Jiangsu Province, People's Republic of China
| | - Hong-Qiu Pan
- Department of Tuberculosis, The Third Hospital of Zhenjiang City, Zhenjiang, Jiangsu Province, People's Republic of China
| | - Zhen Yang
- Department of Respiratory Medicine, Jiangbei Hospital, Nanjing, Jiangsu Province, People's Republic of China
| | - Meng-Yu He
- Department of Respiratory and Critical Care Medicine, Jiangsu Province Hospital. The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China
| | - Min Yu
- Department of Respiratory and Critical Care Medicine, Jiangsu Province Hospital. The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China
| | - Bo Zhang
- Department of Population and Quantitative Health Sciences, University of Massachusetts Medical School, Worcester, MA, USA
| | - Wei-Ping Xie
- Department of Respiratory and Critical Care Medicine, Jiangsu Province Hospital. The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China
| | - Hong Wang
- Department of Respiratory and Critical Care Medicine, Jiangsu Province Hospital. The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China
| |
Collapse
|