1
|
Pan B, Wu F, Lu S, Lu W, Cao J, Cheng F, Ou M, Chen Y, Zhang F, Wu G, Mei L. Luteolin-Loaded Hyaluronidase Nanoparticles with Deep Tissue Penetration Capability for Idiopathic Pulmonary Fibrosis Treatment. SMALL METHODS 2024:e2400980. [PMID: 39370583 DOI: 10.1002/smtd.202400980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/20/2024] [Indexed: 10/08/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive interstitial lung disease characterized by sustained fibrotic lesions. Orally administered drugs usually fail to efficiently penetrate the interstitial tissue and reach the lesions, resulting in low treatment efficiency. Luteolin (Lut) is a natural flavonoid, active metabolites of which possess antioxidant, anti-inflammatory, anti-fibrotic, and anti-apoptotic properties. In this study, a nano-formulation is developed by loading Lut into hyaluronidase nanoparticles (Lut@HAase). These Lut@HAase nanoparticles (NPs) exhibit small size and good stability, suitable for noninvasive inhalation and accumulation in the lungs, and hyaluronidase at the site of lesions can degrade hyaluronic acid in the interstitial tissue, enabling efficient penetration of Lut. Lut's therapeutic effect, when administered via NPs, is studied both in vitro (using MRC5 cells) and in vivo (using IPF mice models), and its anti-fibrotic properties are found to inhibit inflammation and eliminate reactive oxygen species. Conclusively, this study demonstrates that Lut@HAase can improve lung function and enhance survival rates while reducing lung damage with few abnormalities during IPF treatment.
Collapse
Affiliation(s)
- Bo Pan
- The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
| | - Fangping Wu
- The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
| | - Shanming Lu
- Department of Pathology, Longgang Central Hospital, Shenzhen, Guangdong, 518100, China
| | - Wenwen Lu
- The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
| | - Jiahui Cao
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Fei Cheng
- The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
| | - Meitong Ou
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Youyi Chen
- The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
| | - Fan Zhang
- Department of Pathology, Longgang Central Hospital, Shenzhen, Guangdong, 518100, China
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Guolin Wu
- The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
| | - Lin Mei
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| |
Collapse
|
2
|
Lu Y, Tang K, Wang S, Tian Z, Fan Y, Li B, Wang M, Zhao J, Xie J. Dach1 deficiency drives alveolar epithelium apoptosis in pulmonary fibrosis via modulating C-Jun/Bim activity. Transl Res 2023; 257:54-65. [PMID: 36754276 DOI: 10.1016/j.trsl.2023.01.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/10/2023] [Accepted: 01/30/2023] [Indexed: 02/08/2023]
Abstract
Dysregulation of type II alveolar epithelial cells (AECII) plays a vital role in the initiation and development of pulmonary fibrosis (PF). Dachshund homolog 1 (Dach1), frequently expressed in epithelial cells with stem cell potential, controls cell proliferation, apoptosis, and cell cycle in tissue development and disease process. In this study, we demonstrated that the lungs collected from PF patients and mice of Bleomycin (BLM)-treated were characterized by low expression of Dachshund homolog 1 (Dach1), especially in AECII. Dach1 deficiency in the alveolar epithelium exacerbated PF in BLM-treated mice, as evidenced by reduced pulmonary function and increased expression of fibrosis markers. Rather, treatment with lung-specific overexpression of Dach1 alleviated histopathological damage, lung compliance, and fibrosis in BLM-treated mice. Moreover, overexpression of Dach1 could inhibit epithelial apoptosis in vitro. Conversely, primary AECII with Dach1 depletion were more susceptible to apoptosis in vivo. Mechanically, Dach1 combined with C-Jun protooncogene selectively bound to the promoter of B-cell lymphoma 2 interacting mediators of cell death (Bim), by which it repressed Bim expression and alleviated epithelial apoptosis. Taken together, our data support that Dach1 in AECII contributes to the progression of PF and may be a viable target for the prevention and treatment of PF.
Collapse
Affiliation(s)
- Yanjiao Lu
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Kum Tang
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Shanshan Wang
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhen Tian
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yan Fan
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Boyu Li
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Meijia Wang
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jianping Zhao
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Jungang Xie
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
3
|
Xiang Y, Peng J, Nie H, Ou B. In vitro investigation of protective mechanisms of triptolide against coronary heart disease by regulating miR-24-3p-BCL2L11 axis and PPARs-PGC1α pathway. Am J Transl Res 2020; 12:7982-7994. [PMID: 33437374 PMCID: PMC7791505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
Coronary heart disease (CHD) is a fatal disease associated with coronary atherosclerosis. Although triptolide (TTL) has been reported to protect against CHD, the mechanism has not yet been determined. This study intended to explore its molecular regulation mechanism in CHD. It is shown in this study that TTL contributed to the proliferation and migration of in vitro cell models of CHD (endothelial cells) and the inhibition of apoptosis, and had an improvement effect on apoptosis factors and endoplasmic reticulum stress (ERS). From its mechanisms, TTL evidently downregulates miR-24-3p which is elevated in CHD, and evidently upregulates BCL2-like 11 (BCL2L11) which is suppressed in CHD, as well as affects the activation of peroxisome proliferator-activated receptors (PPARs)-Peroxisome proliferator activated receptor-γ co-activator-1α (PGC-1α) pathway of nuclear receptor transcription factors. In addition, miR-24-3p-BCL2L11-PPARs-PGC1α axis regulates protective effects of TTL against CHD.
Collapse
Affiliation(s)
- Yi Xiang
- Geriatrics Center, Hunan Provincial People’s HospitalChangsha 410000, Hunan Province, China
| | - Jianqiao Peng
- Department of Laboratory Medicine, Hunan Provincial People’s HospitalChangsha 410000, Hunan Province, China
| | - Hao Nie
- Geriatrics Center, Hunan Provincial People’s HospitalChangsha 410000, Hunan Province, China
| | - Baiqing Ou
- Geriatrics Center, Hunan Provincial People’s HospitalChangsha 410000, Hunan Province, China
| |
Collapse
|
4
|
Wolska-Gawron K, Bartosińska J, Rusek M, Kowal M, Raczkiewicz D, Krasowska D. Circulating miRNA-181b-5p, miRNA-223-3p, miRNA-210-3p, let 7i-5p, miRNA-21-5p and miRNA-29a-3p in patients with localized scleroderma as potential biomarkers. Sci Rep 2020; 10:20218. [PMID: 33214624 PMCID: PMC7678876 DOI: 10.1038/s41598-020-76995-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 10/26/2020] [Indexed: 12/13/2022] Open
Abstract
Localized scleroderma (LoSc) is a rare disease manifested by an inflammation and sclerosis of the skin. The latest studies focused on glycoprotein Krebs von den Lungen-6, surfactant protein-D, chemokine ligand 18 and dipeptidylpeptidase 4 as potential biomarkers of skin fibrosis in systemic scleroderma. Our study aimed to identify 6 miRNAs with elevated or decreased levels in 38 LoSc patients (31 females, 7 males) compared to healthy volunteers (HVs) and to correlate the selected miRNAs' serum levels with the severity and the clinical symptoms of LoSc and some laboratory parameters with the selected miRNAs' serum levels. The serum levels of miRNAs, i.e. miRNA-181b-5p, miRNA-223-3p, miRNA-21-5p, let 7i-5p, miRNA-29a-3p and miRNA-210-3p were significantly increased in the LoSc patients compared to the HVs. The level of let-7i increase in the female LoSc patients correlated negatively with BSA (r = - 0.355, p = 0.049) and mLoSSI (r = - 0.432, p = 0.015). Moreover, the female patients with inactive LoSc had significantly higher level of let-7i (2.68-fold on average) in comparison to those with active disease (p = 0.045). The exact role of those molecules has not been revealed in LoSc and a long-term longitudinal research is pivotal to confirm their prognostic value.
Collapse
Affiliation(s)
- Katarzyna Wolska-Gawron
- Department of Dermatology, Venerology and Paediatric Dermatology, The Medical University of Lublin, 20-081 Lublin 11 Staszica St, Lublin, Poland.
| | - Joanna Bartosińska
- Department of Cosmetology and Aesthetic Medicine, The Medical University of Lublin, Lublin, Poland
| | - Marta Rusek
- Department of Dermatology, Venerology and Paediatric Dermatology, The Medical University of Lublin, 20-081 Lublin 11 Staszica St, Lublin, Poland
- Department of Pathophysiology, The Medical University of Lublin, Lublin, Poland
| | - Małgorzata Kowal
- Department of Dermatology, Venerology and Paediatric Dermatology, The Medical University of Lublin, 20-081 Lublin 11 Staszica St, Lublin, Poland
| | - Dorota Raczkiewicz
- SGH Warsaw School of Economics, Collegium of Economic Analysis, Institute of Statistics and Demography, Warsaw, Poland
| | - Dorota Krasowska
- Department of Dermatology, Venerology and Paediatric Dermatology, The Medical University of Lublin, 20-081 Lublin 11 Staszica St, Lublin, Poland
| |
Collapse
|