1
|
Repetowski P, Warszyńska M, Dąbrowski JM. NIR-activated multifunctional agents for the combined application in cancer imaging and therapy. Adv Colloid Interface Sci 2025; 336:103356. [PMID: 39612723 DOI: 10.1016/j.cis.2024.103356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 11/17/2024] [Indexed: 12/01/2024]
Abstract
Anticancer therapies that combine both diagnostic and therapeutic capabilities hold significant promise for enhancing treatment efficacy and patient outcomes. Among these, agents responsive to near-infrared (NIR) photons are of particular interest due to their negligible toxicity and multifunctionality. These compounds are not only effective in photodynamic therapy (PDT), but also serve as contrast agents in various imaging modalities, including fluorescence and photoacoustic imaging. In this review, we explore the photophysical and photochemical properties of NIR-activated porphyrin, cyanine, and phthalocyanines derivatives as well as aggregation-induced emission compounds, highlighting their application in synergistic detection, diagnosis, and therapy. Special attention is given to the design and optimization of these agents to achieve high photostability, efficient NIR absorption, and significant yields of fluorescence, heat, or reactive oxygen species (ROS) generation depending on the application. Additionally, we discuss the incorporation of these compounds into nanocarriers to enhance their solubility, stability, and target specificity. Such nanoparticle-based systems exhibit improved pharmacokinetics and pharmacodynamics, facilitating more effective tumor targeting and broadening the application range to photoacoustic imaging and photothermal therapy. Furthermore, we summarize the application of these NIR-responsive agents in multimodal imaging techniques, which combine the advantages of fluorescence and photoacoustic imaging to provide comprehensive diagnostic information. Finally, we address the current challenges and limitations of photodiagnosis and phototherapy and highlight some critical barriers to their clinical implementation. These include issues related to their phototoxicity, limited tissue penetration, and potential off-target effects. The review concludes by highlighting future research directions aimed at overcoming these obstacles, with a focus on the development of next-generation agents and platforms that offer enhanced therapeutic efficacy and imaging capabilities in the field of cancer treatment.
Collapse
Affiliation(s)
- Paweł Repetowski
- Faculty of Chemistry, Jagiellonian University, 30-387 Kraków, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University, 30-348 Kraków, Poland
| | - Marta Warszyńska
- Faculty of Chemistry, Jagiellonian University, 30-387 Kraków, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University, 30-348 Kraków, Poland
| | | |
Collapse
|
2
|
Lankoff AM, Czerwińska M, Kruszewski M. Advances in Nanotheranostic Systems for Concurrent Cancer Imaging and Therapy: An Overview of the Last 5 Years. Molecules 2024; 29:5985. [PMID: 39770074 PMCID: PMC11677634 DOI: 10.3390/molecules29245985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/16/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
The rapid development of nanotechnology during the last two decades has created new opportunities to design and generate more advanced nanotheranostics with diversified capabilities for diagnosis, drug delivery, and treatment response monitoring in a single platform. To date, several approaches have been employed in order to develop nanotheranostics. The purpose of this review is to briefly discuss the key components of nanotheranostic systems, to present the conventional and upcoming imaging and therapeutic modalities that employ nanotheranostic systems, and to evaluate recent progress in the field of cancer nanotheranostic systems in the past five years (2020-2024). Special attention is focused on the design of cancer nanotheranostic systems, their composition, specificity, potential for multimodal imaging and therapy, and in vitro and in vivo characterization.
Collapse
Affiliation(s)
- Anna Małgorzata Lankoff
- Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland;
- Department of Medical Biology, Institute of Biology, Jan Kochanowski University, Uniwersytecka 15, 25-406 Kielce, Poland
| | - Malwina Czerwińska
- Department of Dietetics, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS-SGGW), 159c Nowoursynowska Str, 02-776 Warsaw, Poland;
| | - Marcin Kruszewski
- Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland;
- Department of Molecular Biology and Translational Research, Institute of Rural Health, Jaczewskiego 2, 20-090 Lublin, Poland
| |
Collapse
|
3
|
Zhao G, Fang M, Han S, Peng X, Dong A. Differences in the effect of repetitive transcranial magnetic stimulation and median nerve electrical stimulation in patients with prolonged disorders of consciousness after intracerebral hemorrhage: a randomized controlled trial protocol. Front Neurol 2024; 15:1511767. [PMID: 39669104 PMCID: PMC11634755 DOI: 10.3389/fneur.2024.1511767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 11/13/2024] [Indexed: 12/14/2024] Open
Abstract
Background Repetitive transcranial magnetic stimulation (rTMS) and median nerve electrical stimulation (MNES) are two non-invasive neuromodulation techniques that have demonstrated potential in facilitating the recovery of consciousness in patients with impaired consciousness. However, existing studies on awakening interventions for patients with prolonged disorders of consciousness (pDoC) following intracerebral hemorrhage remains limited. In particular, systematic comparisons of the efficacy of rTMS versus MNES in this specific patient population are lacking. Methods This is a single-center randomized controlled trial in which 45 patients will be randomly assigned to the control group, rTMS group and MNES group. The intervention period will lasts 4 weeks. All patients underwent multimodal assessments before and at the end of treatment, which were used to comprehensively evaluate their recovery of consciousness and changes in brain function. The assessments includes the Coma Recovery Scale, electroencephalogram, event-related potentials (P300 and mismatched negative) and functional near-infrared spectroscopy. Discussion This study represents the first systematic comparison of the efficacy between rTMS and MNES in patients with pDoC following intracerebral hemorrhage. The objective is to employ multimodal assessment techniques to provide clinical references into the individualized application of these neuromodulation therapies. Clinical trial registration https://www.chictr.org.cn/, identifier ChiCTR2400082022.
Collapse
Affiliation(s)
| | | | | | | | - Anqin Dong
- Department of Rehabilitation Medicine, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
4
|
Menozzi L, Yao J. Deep tissue photoacoustic imaging with light and sound. NPJ IMAGING 2024; 2:44. [PMID: 39525280 PMCID: PMC11541195 DOI: 10.1038/s44303-024-00048-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 09/23/2024] [Indexed: 11/16/2024]
Abstract
Photoacoustic computed tomography (PACT) can harvest diffusive photons to image the optical absorption contrast of molecules in a scattering medium, with ultrasonically-defined spatial resolution. PACT has been extensively used in preclinical research for imaging functional and molecular information in various animal models, with recent clinical translations. In this review, we aim to highlight the recent technical breakthroughs in PACT and the emerging preclinical and clinical applications in deep tissue imaging.
Collapse
Affiliation(s)
- Luca Menozzi
- Department of Biomedical Engineering, Duke University, Durham, NC 27708 USA
| | - Junjie Yao
- Department of Biomedical Engineering, Duke University, Durham, NC 27708 USA
- Department of Neurology, Duke University School of Medicine, Durham, NC 27710 USA
| |
Collapse
|
5
|
Chauhan JK, Dubey PK, Rai S, Tripathi A. Induction and characterization of a rat model of endometriosis. Sci Rep 2024; 14:18827. [PMID: 39138257 PMCID: PMC11322168 DOI: 10.1038/s41598-024-69440-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024] Open
Abstract
Endometriosis is a common condition that affects 5% to 10% of women during their reproductive years, although the aetiology and pathophysiology are still unknown. This study aimed to create an endometriosis model in rats to investigate the efficacy of natural and synthetic medications in treating endometriosis. An in vivo endometriotic model was established using a surgical induction method and the endocrine-disrupting drug diethylstilbestrol (DES). In brief, the experiment is categorised into three different groups. Each group contains five rats. The first group had no surgery, while in the in the second group of rats (n = 5), two small tissue grafts were fixed at the right and left walls of the abdomen. But in the in the third group of rats (n = 5), two small pieces of tissue have been grafted on the right and left abdomen walls by surgically along with DES treatments. Noninvasive photoacoustic imaging (PAI) was employed in the study to measure factors such as haemoglobin levels, oxygen saturation, and the size of endometriotic lesions. Histopathological analysis was carried out utilising staining techniques such as Hematoxylin and Eosin, Masson's Trichrome, and Periodic Acid Schiff, as well as immunohistochemistry with marker antibodies. Molecular markers in uterine tissue were examined using Western blots and real-time PCR. The developed endometriosis rat model showed a significant increase in the expression of anti-apoptotic Bcl-2, angiogenic marker VEGF and pro-inflammatory (COX-2 and IL-6) protein markers. In contrast to the control group, the treatment group had considerably lower Caspase-3 expression levels. Photoacoustic imaging (PAI) data demonstrated a constant increase in lesion size, as well as a decrease in oxygen saturation levels. The findings suggest that the in vivo endometriosis rat model may accurately assess the efficacy of natural or synthetic endometriosis treatments. This model may help in the improvement of disease understanding and the development of targeted therapeutic drugs.
Collapse
Affiliation(s)
| | - Pawan K Dubey
- Centre for Genetic Disorders, Banaras Hindu University, Varanasi, 221005, UP, India
| | - Sangeeta Rai
- Department of Obstetrics and Gynecology, Institute of Medical Science, Banaras Hindu University, Varanasi, 221005, UP, India
| | - Anima Tripathi
- Department of Zoology, MMV, Banaras Hindu University, Varanasi, 221005, UP, India.
| |
Collapse
|
6
|
Pinjari D, Patil Y, Misra R. Near-Infrared Absorbing Aza-BODIPY Dyes for Optoelectronic Applications. Chem Asian J 2024; 19:e202400167. [PMID: 38733151 DOI: 10.1002/asia.202400167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/04/2024] [Accepted: 05/07/2024] [Indexed: 05/13/2024]
Abstract
Organic dyes that absorb light in the visible to near-infrared region have garnered significant interest, owing to their extensive utility in organic photovoltaics and various biomedical applications. Aza-boron-dipyrromethene (Aza-BODIPY) dyes are a class of chromophores with impressive photophysical properties such as tunable absorption from the visible region towards near infrared (NIR) region, high molar absorptivity, and fluorescence quantum yield. In this review, we discuss the developments in the aza-BODIPYs, related to their synthetic routes, photophysical properties and their applications. Their design strategies, modifications in chemical structures, mode/position of attachment, and their impact on photo-physical properties are reviewed. The potential applications of aza-BODIPY derivatives such as organic solar cells, photodynamic therapy, boron-neutron capture therapy, fluorescence sensors, photo-redox catalysis, photoacoustic probes and optoelectronic devices are explained.
Collapse
Affiliation(s)
- Dilip Pinjari
- Department of Chemistry, Indian Institute of Technology Indore, Indore, 453552, India
| | - Yuvraj Patil
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota, 58108, United States
| | - Rajneesh Misra
- Department of Chemistry, Indian Institute of Technology Indore, Indore, 453552, India
| |
Collapse
|
7
|
Apra C, Bemora JS, Palfi S. Achieving Gross Total Resection in Neurosurgery: A Review of Intraoperative Techniques and Their Influence on Surgical Goals. World Neurosurg 2024; 185:246-253. [PMID: 38431211 DOI: 10.1016/j.wneu.2024.02.128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 02/23/2024] [Indexed: 03/05/2024]
Abstract
The definition of complete resection in neurosurgery depends on tumor type, surgical aims, and postoperative investigations, directly guiding the choice of intraoperative tools. Most common tumor types present challenges in achieving complete resection due to their infiltrative nature and anatomical constraints. The development of adjuvant treatments has altered the balance between oncological aims and surgical risks. We review local recurrence associated with incomplete resection based on different definitions and emphasize the importance of achieving maximal safe resection in all tumor types. Intraoperative techniques that aid surgeons in identifying tumor boundaries are used in practice and in preclinical or clinical research settings. They encompass both conservative and invasive techniques. Among them, morphological tools include imaging modalities such as intraoperative magnetic resonance imaging, ultrasound, and optical coherence tomography. Fluorescence-guided surgery, mainly using 5-aminolevulinic acid, enhances gross total resection in glioblastomas. Nuclear methods, including positron emission tomography probes, provide tumor detection based on beta or gamma emission after a radiotracer injection. Mass spectrometry- and spectroscopy-based methods offer molecular insights. The adoption of these techniques depends on their relevance, effectiveness, and feasibility. With the emergence of positron emission tomography imaging for use in recurrence benchmarking, positron emission tomography probes raise particular interest among those tools. While all such tools provide valuable insights, their clinical benefits need further evaluation.
Collapse
Affiliation(s)
- Caroline Apra
- Department of Neurosurgery, Henri Mondor University Hospital, Créteil, France; Institut Mondor de Recherche Biomédicale, Biotherapies Department, INSERM U955, Créteil, France; Faculté de Santé, Université Paris-Est Créteil, Créteil, France.
| | - Joseph Synèse Bemora
- Department of Neurosurgery, Henri Mondor University Hospital, Créteil, France; Department of Neurosurgery, Joseph Ravoahangy Andrianavalona Hospital, Antananarivo University, Antananarivo, Madagascar
| | - Stéphane Palfi
- Department of Neurosurgery, Henri Mondor University Hospital, Créteil, France; Institut Mondor de Recherche Biomédicale, Biotherapies Department, INSERM U955, Créteil, France; Faculté de Santé, Université Paris-Est Créteil, Créteil, France
| |
Collapse
|
8
|
Yu Y, Feng T, Qiu H, Gu Y, Chen Q, Zuo C, Ma H. Simultaneous photoacoustic and ultrasound imaging: A review. ULTRASONICS 2024; 139:107277. [PMID: 38460216 DOI: 10.1016/j.ultras.2024.107277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 01/09/2024] [Accepted: 02/26/2024] [Indexed: 03/11/2024]
Abstract
Photoacoustic imaging (PAI) is an emerging biomedical imaging technique that combines the advantages of optical and ultrasound imaging, enabling the generation of images with both optical resolution and acoustic penetration depth. By leveraging similar signal acquisition and processing methods, the integration of photoacoustic and ultrasound imaging has introduced a novel hybrid imaging modality suitable for clinical applications. Photoacoustic-ultrasound imaging allows for non-invasive, high-resolution, and deep-penetrating imaging, providing a wealth of image information. In recent years, with the deepening research and the expanding biomedical application scenarios of photoacoustic-ultrasound bimodal systems, the immense potential of photoacoustic-ultrasound bimodal imaging in basic research and clinical applications has been demonstrated, with some research achievements already commercialized. In this review, we introduce the principles, technical advantages, and biomedical applications of photoacoustic-ultrasound bimodal imaging techniques, specifically focusing on tomographic, microscopic, and endoscopic imaging modalities. Furthermore, we discuss the future directions of photoacoustic-ultrasound bimodal imaging technology.
Collapse
Affiliation(s)
- Yinshi Yu
- Smart Computational Imaging Laboratory (SCILab), School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu Province 210094, China; Smart Computational Imaging Research Institute (SCIRI) of Nanjing University of Science and Technology, Nanjing, Jiangsu Province 210019, China; Jiangsu Key Laboratory of Spectral Imaging & Intelligent Sense, Nanjing, Jiangsu Province 210094, China
| | - Ting Feng
- Academy for Engineering & Technology, Fudan University, Shanghai 200433,China.
| | - Haixia Qiu
- First Medical Center of PLA General Hospital, Beijing, China
| | - Ying Gu
- First Medical Center of PLA General Hospital, Beijing, China
| | - Qian Chen
- Smart Computational Imaging Laboratory (SCILab), School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu Province 210094, China; Smart Computational Imaging Research Institute (SCIRI) of Nanjing University of Science and Technology, Nanjing, Jiangsu Province 210019, China; Jiangsu Key Laboratory of Spectral Imaging & Intelligent Sense, Nanjing, Jiangsu Province 210094, China
| | - Chao Zuo
- Smart Computational Imaging Laboratory (SCILab), School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu Province 210094, China; Smart Computational Imaging Research Institute (SCIRI) of Nanjing University of Science and Technology, Nanjing, Jiangsu Province 210019, China; Jiangsu Key Laboratory of Spectral Imaging & Intelligent Sense, Nanjing, Jiangsu Province 210094, China.
| | - Haigang Ma
- Smart Computational Imaging Laboratory (SCILab), School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu Province 210094, China; Smart Computational Imaging Research Institute (SCIRI) of Nanjing University of Science and Technology, Nanjing, Jiangsu Province 210019, China; Jiangsu Key Laboratory of Spectral Imaging & Intelligent Sense, Nanjing, Jiangsu Province 210094, China.
| |
Collapse
|
9
|
Pan Y, Chen J, Zhang Y, Ren Y, Wu Z, Xue Q, Zeng S, Fang C, Zhang H, Zhang L, Liu C, Zeng J. Second Near-Infrared Macrophage-Biomimetic Nanoprobes for Photoacoustic Imaging of Neuroinflammation. Mol Pharm 2024; 21:1804-1816. [PMID: 38466359 DOI: 10.1021/acs.molpharmaceut.3c01115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Neuroinflammation is a significant pathological event involving the neurodegenerative process associated with many neurological disorders. Diagnosis and treatment of neuroinflammation in its early stage are essential for the prevention and management of neurological diseases. Herein, we designed macrophage membrane-coated photoacoustic (PA) probes (MSINPs), with targeting specificities based on naturally existing target-ligand interactions for the early diagnosis of neuroinflammation. The second near-infrared dye, IR1061, was doped into silica as the core and was encapsulated with a macrophage membrane. In vitro as well as in vivo, the MSINPs could target inflammatory cells via the inflammation chemotactic effect. PA imaging was used to trace the MSINPs in a neuroinflammation mouse model and showed a great targeted effect of MSINPs in the prefrontal cortex. Therefore, the biomimetic nanoprobe prepared in this study offers a new strategy for PA molecular imaging of neuroinflammation, which can enhance our understanding of the evolution of neuroinflammation in specific brain regions.
Collapse
Affiliation(s)
- Yingying Pan
- Department of Medical Ultrasound, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, China
| | - Jingqin Chen
- Research Center for Biomedical Optics and Molecular Imaging, Key Laboratory of Biomedical Imaging Science and System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yuling Zhang
- Shenzhen Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518116, China
| | - Yaguang Ren
- Research Center for Biomedical Optics and Molecular Imaging, Key Laboratory of Biomedical Imaging Science and System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zhifeng Wu
- Research Center for Biomedical Optics and Molecular Imaging, Key Laboratory of Biomedical Imaging Science and System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Qiang Xue
- Research Center for Biomedical Optics and Molecular Imaging, Key Laboratory of Biomedical Imaging Science and System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Department of Ultrasound, Shenzhen People's Hospital, The Second Clinical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518020, China
| | - Silue Zeng
- Department of Hepatobiliary Surgery I, General Surgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Chihua Fang
- Department of Hepatobiliary Surgery I, General Surgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Hai Zhang
- Department of Ultrasound, Shenzhen People's Hospital, The Second Clinical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518020, China
| | - Lingyan Zhang
- Lab of Molecular Imaging and Medical Intelligence, Department of Radiology, Longgang Central Hospital of Shenzhen, Shenzhen 518116, China
| | - Chengbo Liu
- Research Center for Biomedical Optics and Molecular Imaging, Key Laboratory of Biomedical Imaging Science and System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jie Zeng
- Department of Medical Ultrasound, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, China
| |
Collapse
|
10
|
Tripathi M, Sharma A, Sinharay S, Raichur AM. Effect of PVP Molecular Weights on the Synthesis of Ultrasmall Cus Nanoflakes: Synthesis, Properties, and Potential Application for Phototheranostics. ACS APPLIED BIO MATERIALS 2024; 7:1671-1681. [PMID: 38447193 DOI: 10.1021/acsabm.3c01123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Copper sulfide nanoparticles (CuS) hold tremendous potential for applications in photothermal therapy (PTT) and photoacoustic imaging (PAI). However, the conventional chemical coprecipitation method often leads to particle agglomeration issues. To overcome this challenge, we utilized polyvinylpyrrolidone (PVP) as a stabilizing agent, resulting in the synthesis of small PVP-CuS nanoparticles named PC10, PCK30, and PC40. Our study aimed to investigate how different molecular weights of PVP influence the nanoparticles' crystalline characteristics and essential properties, especially their photoacoustic and photothermal responses. While prior research on PVP-assisted CuS nanoparticles has been conducted, our study delves deeper into this area, providing insights into optical properties. Remarkably, all synthesized nanoparticles exhibited a crystalline structure, were smaller than 10 nm, and featured an absorbance peak at 1020 nm, indicating their robust photoacoustic and photothermal capabilities. Among these nanoparticles, PC10 emerged as the standout performer, displaying superior photoacoustic properties. Our photothermal experiments demonstrated significant temperature increases in all cases, with PC10 achieving an impressive efficiency of 51%. Moreover, cytotoxicity assays revealed the nanoparticles' compatibility with cells, coupled with an enhanced incidence of apoptosis compared to necrosis. These findings underscore the promising potential of PVP-stabilized CuS nanoparticles for advanced cancer theranostics.
Collapse
Affiliation(s)
- Madhavi Tripathi
- Department of Materials Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Ananya Sharma
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Sanhita Sinharay
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Ashok M Raichur
- Department of Materials Engineering, Indian Institute of Science, Bangalore 560012, India
- College of Science, Engineering and Technology, University of South Africa, Florida, Johannesburg 1709, South Africa
| |
Collapse
|
11
|
Tian Y, Carrillo-Malani N, Feng K, Miller J, Busch TM, Sundaram KM, Cheng Z, Amirshaghaghi A, Tsourkas A. Theranostic Phthalocyanine and Naphthalocyanine Nanoparticles for Photoacoustic Imaging and Photothermal Therapy of Tumors. Nanotheranostics 2024; 8:100-111. [PMID: 38164502 PMCID: PMC10750118 DOI: 10.7150/ntno.88892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/02/2023] [Indexed: 01/03/2024] Open
Abstract
Background: Phthalocyanine (PC) and naphthalocyanine (NC) dyes have long garnered interest as theranostic agents for optical imaging and phototherapy due to their near-infrared absorbance, photostability, imaging contrast, and proven safety in clinical trials. Yet, only a small fraction of these dyes has been evaluated as photothermal therapy (PTT) agents for cancer treatment. Methods: Nearly 40 distinct NC and PC dyes were encapsulated within polymeric PEG-PCL micelles via oil-in-water emulsions. The optimal NC/PC-loaded micelle formulations for PTT and photoacoustic (PA) imaging were identified through in vivo and in vitro studies. Results: The most promising candidate, CuNC(Octa)-loaded micelles, demonstrated a strong PA signal with a peak absorbance at ~870 nm, high photothermal efficiency, and photostability. The CuNC(Octa)-loaded micelles exhibited heat generation as good or better than gold nanorods/nanoshells and >10-fold higher photoacoustic signals. Micelle preparation was reproducible/scalable, and the CuNC(Octa)-loaded micelles are highly stable under physiological conditions. The CuNC(Octa)-loaded micelles localize within tumors via enhanced permeability and retention and are readily detectable by PA imaging. In a syngeneic murine tumor model of triple-negative breast cancer, CuNC(Octa)-loaded micelles demonstrate efficient heat generation with PTT, leading to the complete eradication of tumors. Conclusions: CuNC(Octa)-loaded micelles represent a promising theranostic agent for PA imaging and PTT. The ability to utilize conventional ultrasound in combination with PA imaging enables the simultaneous acquisition of information about tumor morphology and micelle accumulation. PTT with CuNC(Octa)-loaded micelles can lead to the complete eradication of highly invasive tumors.
Collapse
Affiliation(s)
- Yiran Tian
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Kailin Feng
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joann Miller
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Theresa M. Busch
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Karthik M. Sundaram
- Department of Radiology, Hospital of University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zhiliang Cheng
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ahmad Amirshaghaghi
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Andrew Tsourkas
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
12
|
Chato L, Regentova E. Survey of Transfer Learning Approaches in the Machine Learning of Digital Health Sensing Data. J Pers Med 2023; 13:1703. [PMID: 38138930 PMCID: PMC10744730 DOI: 10.3390/jpm13121703] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/01/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
Machine learning and digital health sensing data have led to numerous research achievements aimed at improving digital health technology. However, using machine learning in digital health poses challenges related to data availability, such as incomplete, unstructured, and fragmented data, as well as issues related to data privacy, security, and data format standardization. Furthermore, there is a risk of bias and discrimination in machine learning models. Thus, developing an accurate prediction model from scratch can be an expensive and complicated task that often requires extensive experiments and complex computations. Transfer learning methods have emerged as a feasible solution to address these issues by transferring knowledge from a previously trained task to develop high-performance prediction models for a new task. This survey paper provides a comprehensive study of the effectiveness of transfer learning for digital health applications to enhance the accuracy and efficiency of diagnoses and prognoses, as well as to improve healthcare services. The first part of this survey paper presents and discusses the most common digital health sensing technologies as valuable data resources for machine learning applications, including transfer learning. The second part discusses the meaning of transfer learning, clarifying the categories and types of knowledge transfer. It also explains transfer learning methods and strategies, and their role in addressing the challenges in developing accurate machine learning models, specifically on digital health sensing data. These methods include feature extraction, fine-tuning, domain adaptation, multitask learning, federated learning, and few-/single-/zero-shot learning. This survey paper highlights the key features of each transfer learning method and strategy, and discusses the limitations and challenges of using transfer learning for digital health applications. Overall, this paper is a comprehensive survey of transfer learning methods on digital health sensing data which aims to inspire researchers to gain knowledge of transfer learning approaches and their applications in digital health, enhance the current transfer learning approaches in digital health, develop new transfer learning strategies to overcome the current limitations, and apply them to a variety of digital health technologies.
Collapse
Affiliation(s)
- Lina Chato
- Department of Electrical and Computer Engineering, University of Nevada, Las Vegas, NV 89154, USA;
| | | |
Collapse
|
13
|
He M, Cao Y, Chi C, Zhao J, Chong E, Chin KXC, Tan NZV, Dmitry K, Yang G, Yang X, Hu K, Enikeev M. Unleashing novel horizons in advanced prostate cancer treatment: investigating the potential of prostate specific membrane antigen-targeted nanomedicine-based combination therapy. Front Immunol 2023; 14:1265751. [PMID: 37795091 PMCID: PMC10545965 DOI: 10.3389/fimmu.2023.1265751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 09/04/2023] [Indexed: 10/06/2023] Open
Abstract
Prostate cancer (PCa) is a prevalent malignancy with increasing incidence in middle-aged and older men. Despite various treatment options, advanced metastatic PCa remains challenging with poor prognosis and limited effective therapies. Nanomedicine, with its targeted drug delivery capabilities, has emerged as a promising approach to enhance treatment efficacy and reduce adverse effects. Prostate-specific membrane antigen (PSMA) stands as one of the most distinctive and highly selective biomarkers for PCa, exhibiting robust expression in PCa cells. In this review, we explore the applications of PSMA-targeted nanomedicines in advanced PCa management. Our primary objective is to bridge the gap between cutting-edge nanomedicine research and clinical practice, making it accessible to the medical community. We discuss mainstream treatment strategies for advanced PCa, including chemotherapy, radiotherapy, and immunotherapy, in the context of PSMA-targeted nanomedicines. Additionally, we elucidate novel treatment concepts such as photodynamic and photothermal therapies, along with nano-theragnostics. We present the content in a clear and accessible manner, appealing to general physicians, including those with limited backgrounds in biochemistry and bioengineering. The review emphasizes the potential benefits of PSMA-targeted nanomedicines in enhancing treatment efficiency and improving patient outcomes. While the use of PSMA-targeted nano-drug delivery has demonstrated promising results, further investigation is required to comprehend the precise mechanisms of action, pharmacotoxicity, and long-term outcomes. By meticulous optimization of the combination of nanomedicines and PSMA ligands, a novel horizon of PSMA-targeted nanomedicine-based combination therapy could bring renewed hope for patients with advanced PCa.
Collapse
Affiliation(s)
- Mingze He
- Institute for Urology and Reproductive Health, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Yu Cao
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Changliang Chi
- Department of Urology, First Hospital of Jilin University, Changchun, China
| | - Jiang Zhao
- Department of Urology, Xi’an First Hospital, Xi’an, China
| | - Eunice Chong
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Ke Xin Casey Chin
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Nicole Zian Vi Tan
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Korolev Dmitry
- Institute for Urology and Reproductive Health, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Guodong Yang
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Xinyi Yang
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Kebang Hu
- Department of Urology, First Hospital of Jilin University, Changchun, China
| | - Mikhail Enikeev
- Institute for Urology and Reproductive Health, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| |
Collapse
|
14
|
He M, Cao Y, Chi C, Zhao J, Chong E, Chin KXC, Tan NZV, Dmitry K, Yang G, Yang X, Hu K, Enikeev M. Unleashing novel horizons in advanced prostate cancer treatment: investigating the potential of prostate specific membrane antigen-targeted nanomedicine-based combination therapy. Front Immunol 2023; 14. [DOI: https:/doi.org/10.3389/fimmu.2023.1265751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2024] Open
Abstract
Prostate cancer (PCa) is a prevalent malignancy with increasing incidence in middle-aged and older men. Despite various treatment options, advanced metastatic PCa remains challenging with poor prognosis and limited effective therapies. Nanomedicine, with its targeted drug delivery capabilities, has emerged as a promising approach to enhance treatment efficacy and reduce adverse effects. Prostate-specific membrane antigen (PSMA) stands as one of the most distinctive and highly selective biomarkers for PCa, exhibiting robust expression in PCa cells. In this review, we explore the applications of PSMA-targeted nanomedicines in advanced PCa management. Our primary objective is to bridge the gap between cutting-edge nanomedicine research and clinical practice, making it accessible to the medical community. We discuss mainstream treatment strategies for advanced PCa, including chemotherapy, radiotherapy, and immunotherapy, in the context of PSMA-targeted nanomedicines. Additionally, we elucidate novel treatment concepts such as photodynamic and photothermal therapies, along with nano-theragnostics. We present the content in a clear and accessible manner, appealing to general physicians, including those with limited backgrounds in biochemistry and bioengineering. The review emphasizes the potential benefits of PSMA-targeted nanomedicines in enhancing treatment efficiency and improving patient outcomes. While the use of PSMA-targeted nano-drug delivery has demonstrated promising results, further investigation is required to comprehend the precise mechanisms of action, pharmacotoxicity, and long-term outcomes. By meticulous optimization of the combination of nanomedicines and PSMA ligands, a novel horizon of PSMA-targeted nanomedicine-based combination therapy could bring renewed hope for patients with advanced PCa.
Collapse
|
15
|
Optimizing Axial and Peripheral Substitutions in Si-Centered Naphthalocyanine Dyes for Enhancing Aqueous Solubility and Photoacoustic Signal Intensity. Int J Mol Sci 2023; 24:ijms24032241. [PMID: 36768560 PMCID: PMC9916426 DOI: 10.3390/ijms24032241] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/19/2023] [Accepted: 01/19/2023] [Indexed: 01/25/2023] Open
Abstract
Photoacoustic imaging using external contrast agents is emerging as a powerful modality for real-time molecular imaging of deep-seated tumors. There are several chromophores, such as indocyanine green and IRDye800, that can potentially be used for photoacoustic imaging; however, their use is limited due to several drawbacks, particularly photostability. There is, therefore, an urgent need to design agents to enhance contrast in photoacoustic imaging. Naphthalocyanine dyes have been demonstrated for their use as photoacoustic contrast agents; however, their low solubility in aqueous solvents and high aggregation propensity limit their application. In this study, we report the synthesis and characterization of silicon-centered naphthalocyanine dyes with high aqueous solubility and near infra-red (NIR) absorption in the range of 850-920 nm which make them ideal candidates for photoacoustic imaging. A series of Silicon-centered naphthalocyanine dyes were developed with varying axial and peripheral substitutions, all in an attempt to enhance their aqueous solubility and improve photophysical properties. We demonstrate that axial incorporation of charged ammonium mesylate group enhances water solubility. Moreover, the incorporation of peripheral 2-methoxyethoxy groups at the α-position modulates the electronic properties by altering the π-electron delocalization and enhancing photoacoustic signal amplitude. In addition, all the dyes were synthesized to incorporate an N-hydroxysuccinimidyl group to enable further bioconjugation. In summary, we report the synthesis of water-soluble silicon-centered naphthalocyanine dyes with a high photoacoustic signal amplitude that can potentially be used as contrast agents for molecular photoacoustic imaging.
Collapse
|
16
|
Jo S, Sun IC, Ahn CH, Lee S, Kim K. Recent Trend of Ultrasound-Mediated Nanoparticle Delivery for Brain Imaging and Treatment. ACS APPLIED MATERIALS & INTERFACES 2023; 15:120-137. [PMID: 35184560 DOI: 10.1021/acsami.1c22803] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In view of the fact that the blood-brain barrier (BBB) prevents the transport of imaging probes and therapeutic agents to the brain and thus hinders the diagnosis and treatment of brain-related disorders, methods of circumventing this problem (e.g., ultrasound-mediated nanoparticle delivery) have drawn much attention. Among the related techniques, focused ultrasound (FUS) is a favorite means of enhancing drug delivery via transient BBB opening. Photoacoustic brain imaging relies on the conversion of light into heat and the detection of ultrasound signals from contrast agents, offering the benefits of high resolution and large penetration depth. The extensive versatility and adjustable physicochemical properties of nanoparticles make them promising therapeutic agents and imaging probes, allowing for successful brain imaging and treatment through the combined action of ultrasound and nanoparticulate agents. FUS-induced BBB opening enables nanoparticle-based drug delivery systems to efficiently access the brain. Moreover, photoacoustic brain imaging using nanoparticle-based contrast agents effectively visualizes brain morphologies or diseases. Herein, we review the progress in the simultaneous use of nanoparticles and ultrasound in brain research, revealing the potential of ultrasound-mediated nanoparticle delivery for the effective diagnosis and treatment of brain disorders.
Collapse
Affiliation(s)
- SeongHoon Jo
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, 5, Hwarang-ro, Seongbuk-gu, Seoul 02792, Republic of Korea
- Research Institute of Advanced Materials (RIAM), Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul08826, Republic of Korea
| | - In-Cheol Sun
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, 5, Hwarang-ro, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Cheol-Hee Ahn
- Research Institute of Advanced Materials (RIAM), Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul08826, Republic of Korea
| | - Sangmin Lee
- Department of Pharmacy, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul02447, Korea
| | - Kwangmeyung Kim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, 5, Hwarang-ro, Seongbuk-gu, Seoul 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| |
Collapse
|
17
|
Wu M, Xiao K, Liu X, Yang Y, Song G, Xiao G, Liu Q, Yuan J, Liu B. Organic Small Molecule Contrast Agent for Targeted Photoacoustic Imaging of Patient-Derived Brain Tumors. Adv Healthc Mater 2022; 11:e2201640. [PMID: 36050894 DOI: 10.1002/adhm.202201640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/17/2022] [Indexed: 01/28/2023]
Abstract
Traditional glioblastoma (GBM) cell lines do not maintain the heterogeneity of the original tumor, cell interactions, and therapy response, thus limiting their investigation in GBM theranostics. Herein, a kind of GBM tumor-targeting nanoparticles (NPs) TCFNP@iRGD are designed and constructed, which are generated by photoacoustic (PA) contrast agent 2-(3-cyano-4,5,5-trimethylfuran-2(5H)-ylidene) malononitrile (TCF)-OH through facile nanoprecipitation and decorated with an active targeting ligand iRGD. Their potential in GBM detection via PA imaging on glioma patient-derived cells intracranial xenograft models is evaluated for the first time. Excellent tumor-specific PA mapping performance of GBM is realized by TCFNP@iRGD, demonstrating its promising potential in the clinical diagnosis of GBM.
Collapse
Affiliation(s)
- Min Wu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, P. R. China
| | - Kai Xiao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China
| | - Xingang Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Yudan Yang
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Gousheng Song
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Gelei Xiao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China
| | - Qing Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China
| | - Jian Yuan
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, P. R. China
| |
Collapse
|
18
|
Ren Y, Zhang Y, He H, Liu L, Wu X, Song L, Liu C. Optical fiber-based handheld polarized photoacoustic computed tomography for detecting anisotropy of tissues. Quant Imaging Med Surg 2022; 12:2238-2246. [PMID: 35371963 PMCID: PMC8923867 DOI: 10.21037/qims-21-658] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 12/14/2021] [Indexed: 01/26/2024]
Abstract
BACKGROUND Photoacoustic computed tomography (PACT) is a fast-developing biomedical imaging modality and has immense potential for clinical translation. It utilizes laser excitation and acoustic detection to achieve high spatial resolution and considerable imaging depth in biological tissues. Current PACT primarily treats the absorption coefficient of tissues as a scalar variable while reconstructing the image, which limits its use for anisotropic evaluation of the tissues. Thus, by incorporating polarized imaging methods to evaluate anisotropy, applications of PACT can be further enhanced. So far, dichroism-sensitive PACT has been suggested for polarization detection of biological tissues. However, this approach is unsuitable for intraoperative imaging, since high-power spatial light is needed for excitation, which is dangerous and inconvenient to operate. Thus, there is a need to develop a polarized PACT system suitable for clinical use. METHODS Herein, we have proposed a specially designed handheld polarized PACT (HP-PACT) system, which was designed to promote intraoperative anisotropy detection of biological tissues. Excitation light was delivered by an optical fiber and reshaped by a compact set of lenses at the output end of the optical fiber. A polarizer was applied to generate linearly polarized light, and the polarization direction was adjusted by simply rotating the half-wave plate. Photoacoustic imaging (PAI) using excitation with several different polarization directions was carried out. Optical axes and the structure of the anisotropic objects were obtained using the principle of polarization detection with the PAI. RESULTS We experimentally demonstrated the performance of HP-PACT by imaging both the polarized and unpolarized plastic films. The results showed that HP-PACT can successfully detect the direction of the optical axes of polarized plastic films and has the ability to image at different depths. When linearly polarized light with different polarization directions was used as excitation, PAI studies on a highly anisotropic bovine tendon and relatively low anisotropic mouse leg showed the structural differences between the 2 tissues. The quantified degrees of anisotropy of the bovine tendon and mouse legs were 0.6 and 0.3, respectively. CONCLUSIONS The proposed HP-PACT is able to determine the anisotropic substances' optical axes and distinguish anisotropic substances from isotropic ones. Thus, HP-PACT has the potential for intraoperative diagnosis and treatment of anisotropic tissues, including nerves and tendons.
Collapse
Affiliation(s)
- Yaguang Ren
- Research Laboratory for Biomedical Optics and Molecular Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Ying Zhang
- Research Laboratory for Biomedical Optics and Molecular Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- School of Mechanical and Electrical Engineering, Xi'an University of Architecture and Technology, Xi’an, China
| | - Honghui He
- Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Institute of Optical Imaging and Sensing, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Liangjian Liu
- Research Laboratory for Biomedical Optics and Molecular Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xiaojun Wu
- School of Mechanical and Electrical Engineering, Xi'an University of Architecture and Technology, Xi’an, China
| | - Liang Song
- Research Laboratory for Biomedical Optics and Molecular Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Chengbo Liu
- Research Laboratory for Biomedical Optics and Molecular Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
19
|
Oxygen saturation and blood volume analysis by Photoacoustic imaging to identify pre and post-PDT vascular changes. Saudi J Biol Sci 2022; 29:103304. [PMID: 35574285 PMCID: PMC9092990 DOI: 10.1016/j.sjbs.2022.103304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/07/2022] [Accepted: 04/17/2022] [Indexed: 11/22/2022] Open
Abstract
In this study, the blood volume and oxygen saturation of tumors were measured after photoacoustic imaging (PAI) under conditions of pre-photodynamic therapy (PDT), post-PDT, and 4 hrs, and 24 hrs post-PDT. PDTs with aminolevulinic acid (ALA) and low and high doses of benzoporphyrin derivative (BPD) were conducted to observe oxygen saturation changes, and the rapid oxygen consumption in the blood detected due to the action of BPD at the vascular level resulted in the recovery of PDT completion. Likewise, blood volume changes followed by ALA-PDT and BPD-PDT at low and high doses depicted a fast expansion of the blood volume after treatment. The tumor subjected to a high dose of ALA-PDT showed a partial alteration of Hb-pO2 in the first 24 hrs, as did the tumors treated with two ALA- and BPD-mediated PDTs. The Hb-pO2 started reducing immediately post-PDT and was less than 30% after 4 hrs until 24 hrs post-PDT. Reduced vascular demand was possibly due to tumor necrosis, as shown by the permanent damage in the cancer cells' bioluminescence signal. The ALA-mediated PDT-subjected tumor showed a 50% drop in BV at 24 hrs post-PDT, which is suggestive of vascular pruning. The studied data of blood volume against BLI showed the blood volume and oxygenation variations validating the cells' metabolic activity, including cell death.
Collapse
|
20
|
Liang S, Zhou J, Yang W, Chen SL. Cerebrovascular imaging in vivo by non-contact photoacoustic microscopy based on photoacoustic remote sensing with a laser diode for interrogation. OPTICS LETTERS 2022; 47:18-21. [PMID: 34951872 DOI: 10.1364/ol.446787] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 11/16/2021] [Indexed: 06/14/2023]
Abstract
Photoacoustic microscopy (PAM) is a unique tool for biomedical applications because it can visualize optical absorption contrast in vivo. Recently, non-contact PAM based on non-interferometric photoacoustic remote sensing (PARS), termed PARS microscopy, has shown promise for selected imaging applications. A variety of superluminescent diodes (SLDs) have been employed in the PARS microscopy system as the interrogation light source. Here, we investigate the use of a low-cost laser diode (LD) as the interrogation light source in PARS microscopy, termed PARS-LD. A side-by-side comparison of PARS-LD and a PARS microscopy system using an SLD was conducted that showed comparable performance in terms of resolution and signal-to-noise ratio. More importantly, for the first time to our knowledge, in vivo PAM imaging of mouse brain vessels was conducted in a non-contact manner, and the results show that PARS-LD provides great performance.
Collapse
|
21
|
Wang Z, Yang F, Cheng Z, Zhang W, Xiong K, Shen T, Yang S. Quantitative multilayered assessment of skin lightening by photoacoustic microscopy. Quant Imaging Med Surg 2022; 12:470-480. [PMID: 34993094 PMCID: PMC8666735 DOI: 10.21037/qims-21-335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 07/08/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND With the emergence of various new skin-lightening products, there is an urgent need to scientifically evaluate the efficacy and toxicology of these products, and provide scientific guidance for their use based on physiological differences between individuals. Visualized imaging methods and quantitative evaluation criteria play key roles in evaluating the efficacy of skin-lightening products. In order to quantify the changes in the multilayered morphology and endogenous components of human skin before and after the use of lightening products, high-resolution three-dimensional (3D) imaging of human skin is required. METHODS In this study, photoacoustic microscopy (PAM; SSPM-532, Guangdong Photoacoustic Medical Technology Co., Ltd.) was used to capture the morphological structures of human skin and reveal skin components quantitatively. The efficacy and safety of skin-lightening products were evaluated by measuring skin melanin concentration and observing skin morphology. The melanin concentration in the epidermis was obtained by examining the linear relationship between photoacoustic (PA) signals. Further, the epidermal thickness and the melanin distribution were obtained in the cross-sectional (x-z) and lateral (x-y) images. Finally, the efficacy of skin-lightening products was evaluated according to the concentration and distribution of melanin in the epidermis, and the safety of cosmetics was assessed by observing the vascular morphology in the dermis. RESULTS PAM noninvasively could assess the multilayered morphological structures of human skin, which allowed for quantification of epidermal thickness and melanin concentration of different skin sites. Based on this, the efficacy and safety of skin-lightening products in multilayer structures were quantitatively evaluated. CONCLUSIONS As a quantitative imaging method, PAM, has the potential to accurately evaluate the use of skin-lightening products. The method can also be extended to assessments within the larger field of aesthetic medicine.
Collapse
Affiliation(s)
- Zhiyang Wang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Fei Yang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Zhongwen Cheng
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Wuyu Zhang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Kedi Xiong
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Tianding Shen
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Sihua Yang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| |
Collapse
|
22
|
Guo X, Liu J, Jiang L, Gong W, Wu H, He Q. Sulourea-coordinated Pd nanocubes for NIR-responsive photothermal/H 2S therapy of cancer. J Nanobiotechnology 2021; 19:321. [PMID: 34649589 PMCID: PMC8515682 DOI: 10.1186/s12951-021-01042-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/14/2021] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Photothermal therapy (PTT) frequently cause thermal resistance in tumor cells by inducing the heat shock response, limiting its therapeutic effect. Hydrogen sulfide (H2S) with appropriate concentration can reverse the Warburg effect in cancer cells. The combination of PTT with H2S gas therapy is expected to achieve synergistic tumor treatment. METHODS Here, sulourea (Su) is developed as a thermosensitive/hydrolysable H2S donor to be loaded into Pd nanocubes through in-depth coordination for construction of the Pd-Su nanomedicine for the first time to achieve photo-controlled H2S release, realizing the effective combination of photothermal therapy and H2S gas therapy. RESULTS The Pd-Su nanomedicine shows a high Su loading capacity (85 mg g-1), a high near-infrared (NIR) photothermal conversion efficiency (69.4%), and NIR-controlled H2S release by the photothermal-triggered hydrolysis of Su. The combination of photothermal heating and H2S produces a strong synergetic effect by H2S-induced inhibition of heat shock response, thereby effectively inhibiting tumor growth. Moreover, high intratumoral accumulation of the Pd-Su nanomedicine after intravenous injection also enables photothermal/photoacoustic dual-mode imaging-guided tumor treatment. CONCLUSIONS The proposed NIR-responsive heat/H2S release strategy provides a new approach for effective cancer therapy.
Collapse
Affiliation(s)
- Xiaoyang Guo
- The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Jia Liu
- Central Laboratory, Longgang District People's Hospital of Shenzhen & The Third Affiliated Hospital (Provisional) of The Chinese University of Hong Kong, Shenzhen, 518172, Guangdong, China
| | - Lingdong Jiang
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, Guangdong, China
| | - Wanjun Gong
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, Guangdong, China
| | - Huixia Wu
- The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China.
| | - Qianjun He
- Central Laboratory, Longgang District People's Hospital of Shenzhen & The Third Affiliated Hospital (Provisional) of The Chinese University of Hong Kong, Shenzhen, 518172, Guangdong, China.
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, Guangdong, China.
| |
Collapse
|
23
|
Xie N, Hou Y, Wang S, Ai X, Bai J, Lai X, Zhang Y, Meng X, Wang X. Second near-infrared (NIR-II) imaging: a novel diagnostic technique for brain diseases. Rev Neurosci 2021; 33:467-490. [PMID: 34551223 DOI: 10.1515/revneuro-2021-0088] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/02/2021] [Indexed: 12/20/2022]
Abstract
Imaging in the second near-infrared II (NIR-II) window, a kind of biomedical imaging technology with characteristics of high sensitivity, high resolution, and real-time imaging, is commonly used in the diagnosis of brain diseases. Compared with the conventional visible light (400-750 nm) and NIR-I (750-900 nm) imaging, the NIR-II has a longer wavelength of 1000-1700 nm. Notably, the superiorities of NIR-II can minimize the light scattering and autofluorescence of biological tissue with the depth of brain tissue penetration up to 7.4 mm. Herein, we summarized the main principles of NIR-II in animal models of traumatic brain injury, cerebrovascular visualization, brain tumor, inflammation, and stroke. Simultaneously, we encapsulated the in vivo process of NIR-II probes and their in vivo and in vitro toxic effects. We further dissected its limitations and following optimization measures.
Collapse
Affiliation(s)
- Na Xie
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu611137, China
| | - Ya Hou
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu611137, China
| | - Shaohui Wang
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu611137, China
| | - Xiaopeng Ai
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu611137, China
| | - Jinrong Bai
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu611137, China
| | - Xianrong Lai
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu611137, China
| | - Yi Zhang
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu611137, China
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu611137, China
| | - Xiaobo Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu611137, China
| |
Collapse
|
24
|
Qiu T, Lan Y, Wei Z, Zhang Y, Lin Y, Tu C, Mao G, Zhang L, Yang B, Zhang J. In vivo Multi-scale Photoacoustic Imaging Guided Photothermal Therapy of Cervical Cancer based on Customized Laser System and Targeted Nanoparticles. Int J Nanomedicine 2021; 16:2879-2896. [PMID: 33883896 PMCID: PMC8055284 DOI: 10.2147/ijn.s301664] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/26/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Effective treatment strategy for cervical carcinoma is subject to the limitation of its anatomical location and histological characteristics. Comprehensive imaging before cervical carcinoma treatment is of great significance for the patients. Current imaging methods cannot meet the requirements of high resolution, deep imaging depth and non-invasive imaging at the same time. Fortunately, Photoacoustic imaging (PAI) is a novel imaging method that combines rich optical contrast, high ultrasonic spatial resolution, and deep penetration depth in a single modality. Moreover, PAI-guided photothermal therapy (PTT) by aid of targeting nanoparticles is an emerging and effective cancer treatment in recent years. METHODS Here, strong near-infrared region (NIR) absorption-conjugated polymer PIIGDTS (PD) nanoparticles with folic acid (FA) modification (namely, PD-FA) that targeted at Hela cell were specifically designed as cervical tumor imaging contrast agents and photothermal agents. RESULTS The obtained PD-FA nanoparticles exhibited admirable photoacoustic contrast-enhancing ability and desirable PTT behavior with the photothermal conversion efficiency as high as 62.6% in vitro. Furthermore, the PAI performance and PTT efficiency were tested in HeLa tumor-bearing nude mice after injection of PD-FA nanoparticles. In vivo multi-scale, PAI provided B-san and 3D dimension imaging for intuitive and comprehensive information of Hela tumor. Moreover, the Hela tumor can be completely eliminated within 18 days after PTT, with no toxicity and side effects. CONCLUSION In summary, PD-FA injection combined with PAI and PTT systems provides a novel powerful tool for early diagnosis and precise treatment of cervical cancer.
Collapse
Affiliation(s)
- Ting Qiu
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Yintao Lan
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Zuwu Wei
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fujian, 350025, People's Republic of China
| | - Yanfen Zhang
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, Guangdong, People's Republic of China
| | - Yanping Lin
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Chenggong Tu
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Guangjuan Mao
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Lingmin Zhang
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, Guangdong, People's Republic of China
| | - Bin Yang
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Jian Zhang
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| |
Collapse
|