1
|
Heij J, van der Zwaag W, Knapen T, Caan MWA, Forstman B, Veltman DJ, van Wingen G, Aghajani M. Quantitative MRI at 7-Tesla reveals novel frontocortical myeloarchitecture anomalies in major depressive disorder. Transl Psychiatry 2024; 14:262. [PMID: 38902245 PMCID: PMC11190139 DOI: 10.1038/s41398-024-02976-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 06/22/2024] Open
Abstract
Whereas meta-analytical data highlight abnormal frontocortical macrostructure (thickness/surface area/volume) in Major Depressive Disorder (MDD), the underlying microstructural processes remain uncharted, due to the use of conventional MRI scanners and acquisition techniques. We uniquely combined Ultra-High Field MRI at 7.0 Tesla with Quantitative Imaging to map intracortical myelin (proxied by longitudinal relaxation time T1) and iron concentration (proxied by transverse relaxation time T2*), microstructural processes deemed particularly germane to cortical macrostructure. Informed by meta-analytical evidence, we focused specifically on orbitofrontal and rostral anterior cingulate cortices among adult MDD patients (N = 48) and matched healthy controls (HC; N = 10). Analyses probed the association of MDD diagnosis and clinical profile (severity, medication use, comorbid anxiety disorders, childhood trauma) with aforementioned microstructural properties. MDD diagnosis (p's < 0.05, Cohen's D = 0.55-0.66) and symptom severity (p's < 0.01, r = 0.271-0.267) both related to decreased intracortical myelination (higher T1 values) within the lateral orbitofrontal cortex, a region tightly coupled to processing negative affect and feelings of sadness in MDD. No relations were found with local iron concentrations. These findings allow uniquely fine-grained insights on frontocortical microstructure in MDD, and cautiously point to intracortical demyelination as a possible driver of macroscale cortical disintegrity in MDD.
Collapse
Affiliation(s)
- Jurjen Heij
- Spinoza Centre for Neuroimaging, Amsterdam, The Netherlands
- Department of Computational Cognitive Neuroscience and Neuroimaging, NIN, Amsterdam, The Netherlands
- Department of Experimental and Applied Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Wietske van der Zwaag
- Spinoza Centre for Neuroimaging, Amsterdam, The Netherlands
- Department of Computational Cognitive Neuroscience and Neuroimaging, NIN, Amsterdam, The Netherlands
| | - Tomas Knapen
- Spinoza Centre for Neuroimaging, Amsterdam, The Netherlands
- Department of Computational Cognitive Neuroscience and Neuroimaging, NIN, Amsterdam, The Netherlands
- Department of Experimental and Applied Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Matthan W A Caan
- Department of Biomedical Engineering and Physics, Amsterdam UMC, Location University of Amsterdam, Amsterdam, The Netherlands
| | - Birte Forstman
- Department of Brain & Cognition, University of Amsterdam, Amsterdam, The Netherlands
| | - Dick J Veltman
- Department of Psychiatry, Amsterdam UMC, Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Guido van Wingen
- Department of Psychiatry, Amsterdam UMC, Location University of Amsterdam, Amsterdam, The Netherlands
| | - Moji Aghajani
- Department of Psychiatry, Amsterdam UMC, Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
- Institute of Education and Child Studies, Section Forensic Family & Youth Care, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
2
|
LeVine SM. Exploring Potential Mechanisms Accounting for Iron Accumulation in the Central Nervous System of Patients with Alzheimer's Disease. Cells 2024; 13:689. [PMID: 38667304 PMCID: PMC11049304 DOI: 10.3390/cells13080689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/12/2024] [Accepted: 04/14/2024] [Indexed: 04/28/2024] Open
Abstract
Elevated levels of iron occur in both cortical and subcortical regions of the CNS in patients with Alzheimer's disease. This accumulation is present early in the disease process as well as in more advanced stages. The factors potentially accounting for this increase are numerous, including: (1) Cells increase their uptake of iron and reduce their export of iron, as iron becomes sequestered (trapped within the lysosome, bound to amyloid β or tau, etc.); (2) metabolic disturbances, such as insulin resistance and mitochondrial dysfunction, disrupt cellular iron homeostasis; (3) inflammation, glutamate excitotoxicity, or other pathological disturbances (loss of neuronal interconnections, soluble amyloid β, etc.) trigger cells to acquire iron; and (4) following neurodegeneration, iron becomes trapped within microglia. Some of these mechanisms are also present in other neurological disorders and can also begin early in the disease course, indicating that iron accumulation is a relatively common event in neurological conditions. In response to pathogenic processes, the directed cellular efforts that contribute to iron buildup reflect the importance of correcting a functional iron deficiency to support essential biochemical processes. In other words, cells prioritize correcting an insufficiency of available iron while tolerating deposited iron. An analysis of the mechanisms accounting for iron accumulation in Alzheimer's disease, and in other relevant neurological conditions, is put forward.
Collapse
Affiliation(s)
- Steven M LeVine
- Department of Cell Biology and Physiology, University of Kansas Medical Center, 3901 Rainbow Blvd., Mail Stop 3043, Kansas City, KS 66160, USA
| |
Collapse
|
3
|
Bian B, Hou L, Chai Y, Jiang Y, Pan X, Sun Y, Wang H, Qiu D, Yu Z, Zhao H, Zhang H, Meng F, Zhang L. Visualizing the Habenula Using 3T High-Resolution MP2RAGE and QSM: A Preliminary Study. AJNR Am J Neuroradiol 2024; 45:504-510. [PMID: 38453416 PMCID: PMC11288573 DOI: 10.3174/ajnr.a8156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 12/18/2023] [Indexed: 03/09/2024]
Abstract
BACKGROUND AND PURPOSE The habenula is a key node in the regulation of emotion-related behavior. Accurate visualization of the habenula and its reliable quantitative analysis is vital for the assessment of psychiatric disorders. To obtain high-contrast habenula images and allow them to be compatible with clinical applications, this preliminary study compared 3T MP2RAGE and quantitative susceptibility mapping with MPRAGE by evaluating the habenula segmentation performance. MATERIALS AND METHODS Ten healthy volunteers were scanned twice with 3T MPRAGE and MP2RAGE and once with quantitative susceptibility mapping. Image quality and visibility of habenula anatomic features were analyzed by 3 radiologists using a 5-point scale. Contrast assessments of the habenula and thalamus were also performed. The reproducibility of the habenula volume from MPRAGE and MP2RAGE was evaluated by manual segmentation and the Multiple Automatically Generated Template brain segmentation algorithm (MAGeTbrain). T1 values and susceptibility were measured in the whole habenula and habenula geometric subregion using MP2RAGE T1-mapping and quantitative susceptibility mapping. RESULTS The 3T MP2RAGE and quantitative susceptibility mapping demonstrated clear boundaries and anatomic features of the habenula compared with MPRAGE, with a higher SNR and contrast-to-noise ratio (all P < .05). Additionally, 3T MP2RAGE provided reliable habenula manual and MAGeTbrain segmentation volume estimates with greater reproducibility. T1-mapping derived from MP2RAGE was highly reliable, and susceptibility contrast was highly nonuniform within the habenula. CONCLUSIONS We identified an optimized sequence combination (3T MP2RAGE combined with quantitative susceptibility mapping) that may be useful for enhancing habenula visualization and yielding more reliable quantitative data.
Collapse
Affiliation(s)
- BingYang Bian
- From the Department of Radiology (B.B., L.H., Y.C., X.P., Y.S., H.W., D.Q., H. Zhang, F.M., L.Z.), Jilin Provincial Key Laboratory of Medical Imaging and Big Data, Radiology and Technology Innovation Center of Jilin Province, Jilin Provincial International Joint Research Center of Medical Artificial Intelligence, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Lin Hou
- From the Department of Radiology (B.B., L.H., Y.C., X.P., Y.S., H.W., D.Q., H. Zhang, F.M., L.Z.), Jilin Provincial Key Laboratory of Medical Imaging and Big Data, Radiology and Technology Innovation Center of Jilin Province, Jilin Provincial International Joint Research Center of Medical Artificial Intelligence, The First Hospital of Jilin University, Changchun, Jilin, China
| | - YaTing Chai
- From the Department of Radiology (B.B., L.H., Y.C., X.P., Y.S., H.W., D.Q., H. Zhang, F.M., L.Z.), Jilin Provincial Key Laboratory of Medical Imaging and Big Data, Radiology and Technology Innovation Center of Jilin Province, Jilin Provincial International Joint Research Center of Medical Artificial Intelligence, The First Hospital of Jilin University, Changchun, Jilin, China
| | - YueLuan Jiang
- MR Scientific Marketing, Diagnostic Imaging (Y.J.), Siemens Healthineers Ltd, Beijing, China
| | - XingChen Pan
- From the Department of Radiology (B.B., L.H., Y.C., X.P., Y.S., H.W., D.Q., H. Zhang, F.M., L.Z.), Jilin Provincial Key Laboratory of Medical Imaging and Big Data, Radiology and Technology Innovation Center of Jilin Province, Jilin Provincial International Joint Research Center of Medical Artificial Intelligence, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yang Sun
- From the Department of Radiology (B.B., L.H., Y.C., X.P., Y.S., H.W., D.Q., H. Zhang, F.M., L.Z.), Jilin Provincial Key Laboratory of Medical Imaging and Big Data, Radiology and Technology Innovation Center of Jilin Province, Jilin Provincial International Joint Research Center of Medical Artificial Intelligence, The First Hospital of Jilin University, Changchun, Jilin, China
| | - HongChao Wang
- From the Department of Radiology (B.B., L.H., Y.C., X.P., Y.S., H.W., D.Q., H. Zhang, F.M., L.Z.), Jilin Provincial Key Laboratory of Medical Imaging and Big Data, Radiology and Technology Innovation Center of Jilin Province, Jilin Provincial International Joint Research Center of Medical Artificial Intelligence, The First Hospital of Jilin University, Changchun, Jilin, China
| | - DongDong Qiu
- From the Department of Radiology (B.B., L.H., Y.C., X.P., Y.S., H.W., D.Q., H. Zhang, F.M., L.Z.), Jilin Provincial Key Laboratory of Medical Imaging and Big Data, Radiology and Technology Innovation Center of Jilin Province, Jilin Provincial International Joint Research Center of Medical Artificial Intelligence, The First Hospital of Jilin University, Changchun, Jilin, China
| | - ZeChen Yu
- Siemens Healthineers Digital Technology (Shanghai) Co Ltd (Z.Y.), Shanghai, China
| | - Hua Zhao
- Department of Physiology (H. Zhao), College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - HuiMao Zhang
- From the Department of Radiology (B.B., L.H., Y.C., X.P., Y.S., H.W., D.Q., H. Zhang, F.M., L.Z.), Jilin Provincial Key Laboratory of Medical Imaging and Big Data, Radiology and Technology Innovation Center of Jilin Province, Jilin Provincial International Joint Research Center of Medical Artificial Intelligence, The First Hospital of Jilin University, Changchun, Jilin, China
| | - FanYang Meng
- From the Department of Radiology (B.B., L.H., Y.C., X.P., Y.S., H.W., D.Q., H. Zhang, F.M., L.Z.), Jilin Provincial Key Laboratory of Medical Imaging and Big Data, Radiology and Technology Innovation Center of Jilin Province, Jilin Provincial International Joint Research Center of Medical Artificial Intelligence, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Lei Zhang
- From the Department of Radiology (B.B., L.H., Y.C., X.P., Y.S., H.W., D.Q., H. Zhang, F.M., L.Z.), Jilin Provincial Key Laboratory of Medical Imaging and Big Data, Radiology and Technology Innovation Center of Jilin Province, Jilin Provincial International Joint Research Center of Medical Artificial Intelligence, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
4
|
Su T, Chen B, Yang M, Wang Q, Zhou H, Zhang M, Wu Z, Lin G, Wang D, Li Y, Zhong X, Ning Y. Disrupted functional connectivity of the habenula links psychomotor retardation and deficit of verbal fluency and working memory in late-life depression. CNS Neurosci Ther 2024; 30:e14490. [PMID: 37804094 PMCID: PMC11017447 DOI: 10.1111/cns.14490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/02/2023] [Accepted: 09/23/2023] [Indexed: 10/08/2023] Open
Abstract
BACKGROUND Functional abnormalities of the habenula in patients with depression have been demonstrated in an increasing number of studies, and the habenula is involved in cognitive processing. However, whether patients with late-life depression (LLD) exhibit disrupted habenular functional connectivity (FC) and whether habenular FC mediates the relationship between depressive symptoms and cognitive impairment remain unclear. METHODS Overall, 127 patients with LLD and 75 healthy controls were recruited. The static and dynamic FC between the habenula and the whole brain was compared between LLD patients and healthy controls, and the relationships of habenular FC with depressive symptoms and cognitive impairment were explored by correlation and mediation analyses. RESULTS Compared with the controls, patients with LLD exhibited decreased static FC between the right habenula and bilateral inferior frontal gyrus (IFG); there was no significant difference in dynamic FC of the habenula between the two groups. Additionally, the decreased static FC between the right habenula and IFG was associated with more severe depressive symptoms (especially psychomotor retardation) and cognitive impairment (language, memory, and visuospatial skills). Last, static FC between the right habenula and left IFG partially mediated the relationship between depressive symptoms (especially psychomotor retardation) and cognitive impairment (verbal fluency and working memory). CONCLUSIONS Patients with LLD exhibited decreased static FC between the habenula and IFG but intact dynamic FC of the habenula. This decreased static FC mediated the relationship between depressive symptoms and cognitive impairment.
Collapse
Affiliation(s)
- Ting Su
- Department of RadiologyThe Affiliated Brain Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Ben Chen
- Geriatric Neuroscience CenterThe Affiliated Brain Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Mingfeng Yang
- Geriatric Neuroscience CenterThe Affiliated Brain Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Qiang Wang
- Geriatric Neuroscience CenterThe Affiliated Brain Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Huarong Zhou
- Geriatric Neuroscience CenterThe Affiliated Brain Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Min Zhang
- Geriatric Neuroscience CenterThe Affiliated Brain Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Zhangying Wu
- Geriatric Neuroscience CenterThe Affiliated Brain Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Gaohong Lin
- Geriatric Neuroscience CenterThe Affiliated Brain Hospital of Guangzhou Medical UniversityGuangzhouChina
| | | | - Yue Li
- Guangzhou Medical UniversityGuangzhouChina
| | - Xiaomei Zhong
- Geriatric Neuroscience CenterThe Affiliated Brain Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Yuping Ning
- Geriatric Neuroscience CenterThe Affiliated Brain Hospital of Guangzhou Medical UniversityGuangzhouChina
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China Guangzhou Medical UniversityGuangzhouChina
- The First School of Clinical MedicineSouthern Medical UniversityGuangzhouChina
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental DisordersGuangzhouChina
| |
Collapse
|
5
|
Liang L, Wang LL, Jiang XD, Chen DJ, Huang TA, Ding WB. Hippocampal volume and resting-state functional connectivity on magnetic resonance imaging in patients with Parkinson and depression. Quant Imaging Med Surg 2024; 14:824-836. [PMID: 38223081 PMCID: PMC10784022 DOI: 10.21037/qims-23-919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 11/07/2023] [Indexed: 01/16/2024]
Abstract
Background Recent structural and functional imaging studies of depression in Parkinson disease (DPD) have failed to reveal the relevant mechanism, and relatively few studies have been conducted on limbic systems such as the hippocampus. This study thus aimed to gain new insights into the pathogenesis of DPD by detecting the changes in the hippocampal structure and the resting-state functional connectivity (FC) of patients with DPD. Methods This study included 30 patients with DPD (DPD group), 30 patients with nondepressed Parkinson disease (NDPD; NDPD group), and 30 normal controls (NCs; NC group) with no significant age or gender differences with the DPD group. The Hamilton Depression Rating Scale (HAMD) and three-dimensional T1-weighted imaging and blood oxygen level-dependent imaging data of all patients were collected. The hippocampal volumes were measured using MATLAB software (MathWorks). The correlation between hippocampal volume and the HAMD score in the DPD group was analyzed with Pearson correlation coefficient. The bilateral hippocampi were used as the regions of interest and as the seed points for FC. FC analysis was performed between the preprocessed functional data of the whole brain and the two seed points with Data Processing Assistant for Resting-State and Statistical Parametric Mapping 8 software, respectively. The correlation between FC and HAMD scores in the patients with DPD was determined using partial correlation analysis. Results Compared with those in the NC group and the NDPD group, the bilateral hippocampal volumes in the DPD group were significantly decreased (P<0.05). There was a negative correlation between the bilateral hippocampal volume and the HAMD score in the DPD group (P<0.05). Compared with that of the NDPD group, the FC of the right hippocampus with the right occipital lobe and left precuneus was reduced in the DPD group. In the DPD group, the FC values of the right hippocampus, right occipital lobe, and left anterior cuneiform lobe were negatively correlated with HAMD scores. Conclusions The volume of bilateral hippocampi in patients with DPD is significantly decreased and negatively correlated with the severity of depressive disorder. The weakened FC of the right hippocampus to the right occipital lobe and the left precuneus may play an important role in the neurological basis of DPD.
Collapse
Affiliation(s)
- Li Liang
- Department of Intervention, Nantong First People’s Hospital, Nantong, China
| | - Ling-Ling Wang
- Clinical Laboratory, Nantong First People’s Hospital, Nantong, China
- Department of Medical Immunology, Nantong University, Nantong, China
| | - Xiao-Dong Jiang
- Department of Intervention, Nantong First People’s Hospital, Nantong, China
| | - Dong-Jian Chen
- Department of Intervention, Nantong First People’s Hospital, Nantong, China
| | - Tian-An Huang
- Department of Intervention, Nantong First People’s Hospital, Nantong, China
| | - Wen-Bin Ding
- Department of Intervention, Nantong First People’s Hospital, Nantong, China
| |
Collapse
|
6
|
Yan Y, Wang Z, Wei W, Yang Z, Guo L, Wang Z, Wei X. Correlation of brain iron deposition and freezing of gait in Parkinson's disease: a cross-sectional study. Quant Imaging Med Surg 2023; 13:7961-7972. [PMID: 38106290 PMCID: PMC10721991 DOI: 10.21037/qims-23-267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 09/07/2023] [Indexed: 12/19/2023]
Abstract
Background Quantitative susceptibility mapping (QSM) is a novel imaging method for detecting iron content in the brain. The study aimed determine whether the iron deposition in the brains of people with Parkinson's disease (PD) is correlated with freezing of gait (FOG). Methods We retrospectively collected the data of 24 patients with PD from the Movement Disorders Program and 36 healthy controls (HCs) from January 2021 to December 2021. Clinical assessments included mental intelligence scales, Parkinson rating scales, motor-related scales, and clinical gait assessments. All exercise scales and gait assessments were performed in the "ON" and "OFF" states. Magnetic resonance imaging (MRI) data were collected using 3-dimensional fast low-angle shot sequences. We chose the bilateral red nucleus, substantia nigra, thalamus, putamen, caudate nucleus, and globus pallidus as regions of interest for QSM analysis. Results The iron deposition in the substantia nigra of the PD group was significantly higher than that of the HC group (P<0.01). In the PD group, the iron deposition in the substantia nigra of patients with FOG was significantly higher than that in patients without FOG (P=0.04). The iron deposition in the substantia nigra was positively correlated with the New Freezing of Gait Questionnaire (P=0.03). The scores for depression and anxiety of the PD group were significantly higher than those of the HC group, while the Berg balance scale score was significantly lower (P<0.01). Conclusions The iron deposition in the substantia nigra of patients with PD is increased compared with that of controls and is associated with FOG. QSM can be used to detect brain iron deposition in patients with PD, which would help to explore the mechanism of abnormal neurobiological activity in FOG.
Collapse
Affiliation(s)
- Ying Yan
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zheng Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Wei Wei
- Division of Science and Technology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhenghan Yang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Lingfei Guo
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zhenchang Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xuan Wei
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
7
|
Wu Q, Ren Q, Meng J, Gao WJ, Chang YZ. Brain Iron Homeostasis and Mental Disorders. Antioxidants (Basel) 2023; 12:1997. [PMID: 38001850 PMCID: PMC10669508 DOI: 10.3390/antiox12111997] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/30/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Iron plays an essential role in various physiological processes. A disruption in iron homeostasis can lead to severe consequences, including impaired neurodevelopment, neurodegenerative disorders, stroke, and cancer. Interestingly, the link between mental health disorders and iron homeostasis has not received significant attention. Therefore, our understanding of iron metabolism in the context of psychological diseases is incomplete. In this review, we aim to discuss the pathologies and potential mechanisms that relate to iron homeostasis in associated mental disorders. We propose the hypothesis that maintaining brain iron homeostasis can support neuronal physiological functions by impacting key enzymatic activities during neurotransmission, redox balance, and myelination. In conclusion, our review highlights the importance of investigating the relationship between trace element nutrition and the pathological process of mental disorders, focusing on iron. This nutritional perspective can offer valuable insights for the clinical treatment of mental disorders.
Collapse
Affiliation(s)
- Qiong Wu
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Hebei University of Chinese Medicine, Shijiazhuang 050200, China;
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, No. 20 Nan’erhuan Eastern Road, Shijiazhuang 050024, China; (Q.R.); (J.M.)
| | - Qiuyang Ren
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, No. 20 Nan’erhuan Eastern Road, Shijiazhuang 050024, China; (Q.R.); (J.M.)
| | - Jingsi Meng
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, No. 20 Nan’erhuan Eastern Road, Shijiazhuang 050024, China; (Q.R.); (J.M.)
| | - Wei-Juan Gao
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Hebei University of Chinese Medicine, Shijiazhuang 050200, China;
| | - Yan-Zhong Chang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, No. 20 Nan’erhuan Eastern Road, Shijiazhuang 050024, China; (Q.R.); (J.M.)
| |
Collapse
|
8
|
Kontoghiorghes GJ. Iron Load Toxicity in Medicine: From Molecular and Cellular Aspects to Clinical Implications. Int J Mol Sci 2023; 24:12928. [PMID: 37629109 PMCID: PMC10454416 DOI: 10.3390/ijms241612928] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/12/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Iron is essential for all organisms and cells. Diseases of iron imbalance affect billions of patients, including those with iron overload and other forms of iron toxicity. Excess iron load is an adverse prognostic factor for all diseases and can cause serious organ damage and fatalities following chronic red blood cell transfusions in patients of many conditions, including hemoglobinopathies, myelodyspasia, and hematopoietic stem cell transplantation. Similar toxicity of excess body iron load but at a slower rate of disease progression is found in idiopathic haemochromatosis patients. Excess iron deposition in different regions of the brain with suspected toxicity has been identified by MRI T2* and similar methods in many neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease. Based on its role as the major biological catalyst of free radical reactions and the Fenton reaction, iron has also been implicated in all diseases associated with free radical pathology and tissue damage. Furthermore, the recent discovery of ferroptosis, which is a cell death program based on free radical generation by iron and cell membrane lipid oxidation, sparked thousands of investigations and the association of iron with cardiac, kidney, liver, and many other diseases, including cancer and infections. The toxicity implications of iron in a labile, non-protein bound form and its complexes with dietary molecules such as vitamin C and drugs such as doxorubicin and other xenobiotic molecules in relation to carcinogenesis and other forms of toxicity are also discussed. In each case and form of iron toxicity, the mechanistic insights, diagnostic criteria, and molecular interactions are essential for the design of new and effective therapeutic interventions and of future targeted therapeutic strategies. In particular, this approach has been successful for the treatment of most iron loading conditions and especially for the transition of thalassemia from a fatal to a chronic disease due to new therapeutic protocols resulting in the complete elimination of iron overload and of iron toxicity.
Collapse
Affiliation(s)
- George J Kontoghiorghes
- Postgraduate Research Institute of Science, Technology, Environment and Medicine, 3, Ammochostou Street, Limassol 3021, Cyprus
| |
Collapse
|
9
|
Quan Z, Li H, Quan Z, Qing H. Appropriate Macronutrients or Mineral Elements Are Beneficial to Improve Depression and Reduce the Risk of Depression. Int J Mol Sci 2023; 24:7098. [PMID: 37108261 PMCID: PMC10138658 DOI: 10.3390/ijms24087098] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/06/2023] [Accepted: 04/09/2023] [Indexed: 04/29/2023] Open
Abstract
Depression is a common mental disorder that seriously affects the quality of life and leads to an increasing global suicide rate. Macro, micro, and trace elements are the main components that maintain normal physiological functions of the brain. Depression is manifested in abnormal brain functions, which are considered to be tightly related to the imbalance of elements. Elements associated with depression include glucose, fatty acids, amino acids, and mineral elements such as lithium, zinc, magnesium, copper, iron, and selenium. To explore the relationship between these elements and depression, the main literature in the last decade was mainly searched and summarized on PubMed, Google Scholar, Scopus, Web of Science, and other electronic databases with the keywords "depression, sugar, fat, protein, lithium, zinc, magnesium, copper, iron, and selenium". These elements aggravate or alleviate depression by regulating a series of physiological processes, including the transmission of neural signals, inflammation, oxidative stress, neurogenesis, and synaptic plasticity, which thus affect the expression or activity of physiological components such as neurotransmitters, neurotrophic factors, receptors, cytokines, and ion-binding proteins in the body. For example, excessive fat intake can lead to depression, with possible mechanisms including inflammation, increased oxidative stress, reduced synaptic plasticity, and decreased expression of 5-Hydroxytryptamine (5-HT), Brain Derived Neurotrophic Factor (BDNF), Postsynaptic density protein 95(PSD-95), etc. Supplementing mineral elements, such as selenium, zinc, magnesium, or lithium as a psychotropic medication is mostly used as an auxiliary method to improve depression with other antidepressants. In general, appropriate nutritional elements are essential to treat depression and prevent the risk of depression.
Collapse
Affiliation(s)
| | | | - Zhenzhen Quan
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Hong Qing
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|