1
|
Zhang J, Wang Q, Guo TH, Gao W, Yu YM, Wang RF, Yu HL, Chen JJ, Sun LL, Zhang BY, Wang HJ. Computed tomography-based radiomic model for the prediction of neoadjuvant immunochemotherapy response in patients with advanced gastric cancer. World J Gastrointest Oncol 2024; 16:4115-4128. [DOI: 10.4251/wjgo.v16.i10.4115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/18/2024] [Accepted: 08/28/2024] [Indexed: 09/26/2024] Open
Abstract
BACKGROUND Neoadjuvant immunochemotherapy (nICT) has emerged as a popular treatment approach for advanced gastric cancer (AGC) in clinical practice worldwide. However, the response of AGC patients to nICT displays significant heterogeneity, and no existing radiomic model utilizes baseline computed tomography to predict treatment outcomes.
AIM To establish a radiomic model to predict the response of AGC patients to nICT.
METHODS Patients with AGC who received nICT (n = 60) were randomly assigned to a training cohort (n = 42) or a test cohort (n = 18). Various machine learning models were developed using selected radiomic features and clinical risk factors to predict the response of AGC patients to nICT. An individual radiomic nomogram was established based on the chosen radiomic signature and clinical signature. The performance of all the models was assessed through receiver operating characteristic curve analysis, decision curve analysis (DCA) and the Hosmer-Lemeshow goodness-of-fit test.
RESULTS The radiomic nomogram could accurately predict the response of AGC patients to nICT. In the test cohort, the area under curve was 0.893, with a 95% confidence interval of 0.803-0.991. DCA indicated that the clinical application of the radiomic nomogram yielded greater net benefit than alternative models.
CONCLUSION A nomogram combining a radiomic signature and a clinical signature was designed to predict the efficacy of nICT in patients with AGC. This tool can assist clinicians in treatment-related decision-making.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Radiation Oncology, Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong Province, China
| | - Qi Wang
- Department of Radiation Oncology, Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong Province, China
| | - Tian-Hui Guo
- Department of Radiation Oncology, Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong Province, China
| | - Wen Gao
- Department of Radiation Oncology, Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong Province, China
| | - Yi-Miao Yu
- Department of Radiation Oncology, Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong Province, China
| | - Rui-Feng Wang
- Department of Radiation Oncology, Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong Province, China
| | - Hua-Long Yu
- Department of Radiology, Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong Province, China
| | - Jing-Jing Chen
- Department of Radiology, Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong Province, China
| | - Ling-Ling Sun
- Department of Pathology, Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong Province, China
| | - Bi-Yuan Zhang
- Department of Radiation Oncology, Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong Province, China
| | - Hai-Ji Wang
- Department of Radiation Oncology, Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong Province, China
| |
Collapse
|
2
|
Ma J, Nie X, Kong X, Xiao L, Liu H, Shi S, Wu Y, Li N, Hu L, Li X. MRI T2WI-based radiomics combined with KRAS gene mutation constructed models for predicting liver metastasis in rectal cancer. BMC Med Imaging 2024; 24:262. [PMID: 39367333 PMCID: PMC11453062 DOI: 10.1186/s12880-024-01439-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/24/2024] [Indexed: 10/06/2024] Open
Abstract
BACKGROUND The study aimed to identify the optimal model for predicting rectal cancer liver metastasis (RCLM). This involved constructing various prediction models to aid clinicians in early diagnosis and precise decision-making. METHODS A retrospective analysis was conducted on 193 patients diagnosed with rectal adenocarcinoma were randomly divided into training set (n = 136) and validation set (n = 57) at a ratio of 7:3. The predictive performance of three models was internally validated by 10-fold cross-validation in the training set. Delineation of the tumor region of interest (ROI) was performed, followed by the extraction of radiomics features from the ROI. The least absolute shrinkage and selection operator (LASSO) regression algorithm and multivariate Cox analysis were employed to reduce the dimensionality of radiomics features and identify significant features. Logistic regression was employed to construct three prediction models: clinical, radiomics, and combined models (radiomics + clinical). The predictive performance of each model was assessed and compared. RESULTS KRAS mutation emerged as an independent predictor of liver metastasis, yielding an odds ratio (OR) of 8.296 (95%CI: 3.471-19.830; p < 0.001). 5 radiomics features will be used to construct radiomics model. The combined model was built by integrating radiomics model with clinical model. In both the training set (AUC:0.842, 95%CI: 0.778-0.907) and the validation set (AUC: 0.805; 95%CI: 0.692-0.918), the AUCs for the combined model surpassed those of the radiomics and clinical models. CONCLUSIONS Our study reveals that KRAS mutation stands as an independent predictor of RCLM. The radiomics features based on MR play a crucial role in the evaluation of RCLM. The combined model exhibits superior performance in the prediction of liver metastasis. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Jiaqi Ma
- Department of Magnetic Resonance Imaging Diagnostic, The 2nd Affiliated Hospital of Harbin Medical University, Baojian Road, Nangang District, Harbin, 150086, China
| | - Xinsheng Nie
- Medical Imaging Center, the Xinjiang Production and Construction Corps Tenth Division Beitun Hospital, Beitun, 836099, China
| | - Xiangjiang Kong
- Medical Imaging Center, the Xinjiang Production and Construction Corps Tenth Division Beitun Hospital, Beitun, 836099, China
| | - Lingqing Xiao
- Medical Imaging Center, the Xinjiang Production and Construction Corps Tenth Division Beitun Hospital, Beitun, 836099, China
| | - Han Liu
- Department of Magnetic Resonance Imaging Diagnostic, The 2nd Affiliated Hospital of Harbin Medical University, Baojian Road, Nangang District, Harbin, 150086, China
| | - Shengming Shi
- Department of Magnetic Resonance Imaging Diagnostic, The 2nd Affiliated Hospital of Harbin Medical University, Baojian Road, Nangang District, Harbin, 150086, China
| | - Yupeng Wu
- Department of Magnetic Resonance Imaging Diagnostic, The 2nd Affiliated Hospital of Harbin Medical University, Baojian Road, Nangang District, Harbin, 150086, China
| | - Na Li
- Medical Imaging Center, the Xinjiang Production and Construction Corps Tenth Division Beitun Hospital, Beitun, 836099, China
| | - Linlin Hu
- Medical Imaging Center, the Xinjiang Production and Construction Corps Tenth Division Beitun Hospital, Beitun, 836099, China
| | - Xiaofu Li
- Department of Magnetic Resonance Imaging Diagnostic, The 2nd Affiliated Hospital of Harbin Medical University, Baojian Road, Nangang District, Harbin, 150086, China.
| |
Collapse
|
3
|
Tang XL, Xu ZY, Guan J, Yao J, Tang XL, Zhou ZQ, Zhang ZY. Establishment of a neutrophil extracellular trap-related prognostic signature for colorectal cancer liver metastasis and expression validation of CYP4F3. Clin Exp Med 2024; 24:112. [PMID: 38795162 PMCID: PMC11127854 DOI: 10.1007/s10238-024-01378-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/13/2024] [Indexed: 05/27/2024]
Abstract
Liver metastasis stands as the primary contributor to mortality among patients diagnosed with colorectal cancer (CRC). Neutrophil extracellular traps (NETs) emerge as pivotal players in the progression and metastasis of cancer, showcasing promise as prognostic biomarkers. Our objective is to formulate a predictive model grounded in genes associated with neutrophil extracellular traps and identify novel therapeutic targets for combating CRLM. We sourced gene expression profiles from the Gene Expression Omnibus (GEO) database. Neutrophil extracellular trap-related gene set was obtained from relevant literature and cross-referenced with the GEO datasets. Differentially expressed genes (DEGs) were identified through screening via the least absolute shrinkage and selection operator regression and random forest modeling, leading to the establishment of a nomogram and subtype analysis. Subsequently, a thorough analysis of the characteristic gene CYP4F3 was undertaken, and our findings were corroborated through immunohistochemical staining. We identified seven DEGs (ATG7, CTSG, CYP4F3, F3, IL1B, PDE4B, and TNF) and established nomograms for the occurrence and prognosis of CRLM. CYP4F3 is highly expressed in CRC and colorectal liver metastasis (CRLM), exhibiting a negative correlation with CRLM prognosis. It may serve as a potential therapeutic target for CRLM. A novel prognostic signature related to NETs has been developed, with CYP4F3 identified as a risk factor and potential target for CRLM.
Collapse
Affiliation(s)
- Xiao-Li Tang
- Department of Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Zi-Yang Xu
- Department of Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Jiao Guan
- Department of Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Jing Yao
- Department of Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Xiao-Long Tang
- Department of General Surgery, Shanghai Eighth People's Hospital, 8 Caobao Road, Shanghai, 200235, China.
| | - Zun-Qiang Zhou
- Department of Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China.
| | - Zheng-Yun Zhang
- Department of Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China.
| |
Collapse
|
4
|
Yu Y, Guo H, Zhang M, Hou F, Yang S, Huang C, Duan L, Wang H. Multi-institutional validation of a radiomics signature for identification of postoperative progression of soft tissue sarcoma. Cancer Imaging 2024; 24:59. [PMID: 38720384 PMCID: PMC11077743 DOI: 10.1186/s40644-024-00705-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 04/27/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND To develop a magnetic resonance imaging (MRI)-based radiomics signature for evaluating the risk of soft tissue sarcoma (STS) disease progression. METHODS We retrospectively enrolled 335 patients with STS (training, validation, and The Cancer Imaging Archive sets, n = 168, n = 123, and n = 44, respectively) who underwent surgical resection. Regions of interest were manually delineated using two MRI sequences. Among 12 machine learning-predicted signatures, the best signature was selected, and its prediction score was inputted into Cox regression analysis to build the radiomics signature. A nomogram was created by combining the radiomics signature with a clinical model constructed using MRI and clinical features. Progression-free survival was analyzed in all patients. We assessed performance and clinical utility of the models with reference to the time-dependent receiver operating characteristic curve, area under the curve, concordance index, integrated Brier score, decision curve analysis. RESULTS For the combined features subset, the minimum redundancy maximum relevance-least absolute shrinkage and selection operator regression algorithm + decision tree classifier had the best prediction performance. The radiomics signature based on the optimal machine learning-predicted signature, and built using Cox regression analysis, had greater prognostic capability and lower error than the nomogram and clinical model (concordance index, 0.758 and 0.812; area under the curve, 0.724 and 0.757; integrated Brier score, 0.080 and 0.143, in the validation and The Cancer Imaging Archive sets, respectively). The optimal cutoff was - 0.03 and cumulative risk rates were calculated. DATA CONCLUSION To assess the risk of STS progression, the radiomics signature may have better prognostic power than a nomogram/clinical model.
Collapse
Affiliation(s)
- Yuan Yu
- Department of Radiology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, Shandong, China
| | - Hongwei Guo
- Department of Operation Center, Women and Children's Hospital, Qingdao University, Shandong, China
| | - Meng Zhang
- Department of Radiology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, Shandong, China
| | - Feng Hou
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Shifeng Yang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Chencui Huang
- Department of Research Collaboration, Research and Development (R&D) center, Beijing Deepwise & League of Philosophy Doctor (PHD) Technology Co., Ltd, Beijing, China
| | - Lisha Duan
- Department of Radiology, The Third Hospital of Hebei Medical University, Hebei, China.
| | - Hexiang Wang
- Department of Radiology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, Shandong, China.
| |
Collapse
|
5
|
Su Q, Wang N, Wang B, Wang Y, Dai Z, Zhao X, Li X, Li Q, Yang G, Nie P. Ct-based intratumoral and peritumoral radiomics for predicting prognosis in osteosarcoma: A multicenter study. Eur J Radiol 2024; 172:111350. [PMID: 38309216 DOI: 10.1016/j.ejrad.2024.111350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 01/09/2024] [Accepted: 01/25/2024] [Indexed: 02/05/2024]
Abstract
PURPOSE To evaluate the performance of CT-based intratumoral, peritumoral and combined radiomics signatures in predicting prognosis in patients with osteosarcoma. METHODS The data of 202 patients (training cohort:102, testing cohort:100) with osteosarcoma admitted to the two hospitals from August 2008 to February 2022 were retrospectively analyzed. Progression free survival (PFS) and overall survival (OS) were used as the end points. The radiomics features were extracted from CT images, three radiomics signatures(RSintratumoral, RSperitumoral, RScombined)were constructed based on intratumoral, peritumoral and combined radiomics features, respectively, and the radiomics score (Rad-score) were calculated. Kaplan-Meier survival analysis was used to evaluate the relationship between the Rad-score with PFS and OS, the Harrell's concordance index (C-index) was used to evaluate the predictive performance of the radiomics signatures. RESULTS Finally, 8, 6, and 21 features were selected for the establishment of RSintratumoral, RSperitumoral, and RScombined, respectively. Kaplan-Meier survival analysis confirmed that the Rad-scores of the three RSs were significantly correlated with the PFS and OS of patients with osteosarcoma. Among the three radiomics signatures, RScombined had better predictive performance, the C-index of PSF prediction was 0.833 in the training cohort and 0.814 in the testing cohort, the C-index of OS prediction was 0.796 in the training cohort and 0.764 in the testing cohort. CONCLUSIONS CT-based intratumoral, peritumoral and combined radiomics signatures can predict the prognosis of patients with osteosarcoma, which may assist in individualized treatment and improving the prognosis of osteosarcoma patients.
Collapse
Affiliation(s)
- Qiushi Su
- Department of Radiology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Ning Wang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Bingyan Wang
- Department of Ultrasound, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | | | - Zhengjun Dai
- Scientific Research Department, Huiying Medical Technology Co., Ltd, Beijing, China
| | - Xia Zhao
- Department of Radiology, the Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Xiaoli Li
- Department of Radiology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Qiyuan Li
- Department of Radiology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Guangjie Yang
- Department of Nuclear Medicine, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.
| | - Pei Nie
- Department of Radiology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.
| |
Collapse
|
6
|
Li S, Su X, Peng J, Chen N, Liu Y, Zhang S, Shao H, Tan Q, Yang X, Liu Y, Gong Q, Yue Q. Development and External Validation of an MRI-based Radiomics Nomogram to Distinguish Circumscribed Astrocytic Gliomas and Diffuse Gliomas: A Multicenter Study. Acad Radiol 2024; 31:639-647. [PMID: 37507329 DOI: 10.1016/j.acra.2023.06.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023]
Abstract
RATIONALE AND OBJECTIVES The 5th edition of the World Health Organization classification of tumors of the Central Nervous System (WHO CNS) has introduced the term "diffuse" and its counterpart "circumscribed" to the category of gliomas. This study aimed to develop and validate models for distinguishing circumscribed astrocytic gliomas (CAGs) from diffuse gliomas (DGs). MATERIALS AND METHODS We retrospectively analyzed magnetic resonance imaging (MRI) data from patients with CAGs and DGs across three institutions. After tumor segmentation, three volume of interest (VOI) types were obtained: VOItumor and peritumor, VOIwhole, and VOIinterface. Clinical and combined models (incorporating radiomics and clinical features) were also established. To address imbalances in training dataset, Synthetic Minority Oversampling Technique was employed. RESULTS A total of 475 patients (DGs: n = 338, CAGs: n = 137) were analyzed. The VOIinterface model demonstrated the best performance for differentiating CAGs from DGs, achieving an area under the curve (AUC) of 0.806 and area under the precision-recall curve (PRAUC)of 0.894 in the cross-validation set. Using analysis of variance (ANOVA) feature selector and Support Vector Machine (SVM) classifier, seven features were selected. The model achieved an AUC and AUPRC of 0.912 and 0.972 in the internal validation dataset, and 0.897 and 0.930 in the external validation dataset. The combined model, incorporating interface radiomics and clinical features, showed improved performance in the external validation set, with an AUC of 0.94 and PRAUC of 0.959. CONCLUSION Radiomics models incorporating the peritumoral area demonstrate greater potential for distinguishing CAGs from DGs compared to intratumoral models. These findings may hold promise for evaluating tumor nature before surgery and improving clinical management of glioma patients.
Collapse
Affiliation(s)
- Shuang Li
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China (S.L., X.S., S.Z., H.S., Q.T., Q.G.); Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China (S.L.); Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan, China (S.L.)
| | - Xiaorui Su
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China (S.L., X.S., S.Z., H.S., Q.T., Q.G.)
| | - Juan Peng
- Department of Radiology, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China (J.P.)
| | - Ni Chen
- Department of Pathology, West China Hospital of Sichuan University, Chengdu, Sichuan, China (N.C.)
| | - Yanhui Liu
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, Sichuan, China (Y.L.)
| | - Simin Zhang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China (S.L., X.S., S.Z., H.S., Q.T., Q.G.)
| | - Hanbing Shao
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China (S.L., X.S., S.Z., H.S., Q.T., Q.G.)
| | - Qiaoyue Tan
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China (S.L., X.S., S.Z., H.S., Q.T., Q.G.); Division of Radiation Physics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China (Q.T.)
| | - Xibiao Yang
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China (X.Y., Q.Y.)
| | - Yaou Liu
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China (Y.L.)
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China (S.L., X.S., S.Z., H.S., Q.T., Q.G.); Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, Fujian, China (Q.G.)
| | - Qiang Yue
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China (X.Y., Q.Y.).
| |
Collapse
|
7
|
Mou M, Gao R, Wu Y, Lin P, Yin H, Chen F, Huang F, Wen R, Yang H, He Y. Endoscopic Rectal Ultrasound-Based Radiomics Analysis for the Prediction of Synchronous Liver Metastasis in Patients With Primary Rectal Cancer. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2024; 43:361-373. [PMID: 37950599 DOI: 10.1002/jum.16369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 09/26/2023] [Accepted: 10/22/2023] [Indexed: 11/12/2023]
Abstract
OBJECTIVES To develop and validate an ultrasound-based radiomics model to predict synchronous liver metastases (SLM) in rectal cancer (RC) patients preoperatively. METHODS Two hundred and thirty-nine RC patients were included in this study and randomly divided into training and validation cohorts. A total of 5936 radiomics features were calculated on the basis of ultrasound images to build a radiomic model and obtain a radiomics score (Rad-score) using logistic regression. Meanwhile, clinical characteristics were collected to construct a clinical model. The radiomics-clinical model was developed and validated by integrating the radiomics features with the selected clinical characteristics. The performances of three models were evaluated and compared through their discrimination, calibration, and clinical usefulness. RESULTS The radiomics model was developed based on 13 radiomic features. The radiomics-clinical model, which incorporated Rad-score, CEA, and CA199, exhibited favorable discrimination and calibration with areas under the receiver operating characteristic curve (AUC) of 0.920 (95% CI: 0.874-0.965) in the training cohorts and 0.855 (95% CI: 0.759-0.951) in the validation cohorts. And the AUC of the radiomics-clinical model was 0.849 (95% CI: 0.771-0.927) for the training cohorts and 0.780 (95% CI: 0.655-0.905) for the validation cohorts, the clinical model was 0.811 (95% CI: 0.718-0.905) for the training cohorts and 0.805 (95% CI: 0.645-0.965) for the validation cohorts. Moreover, decision curve analysis (DCA) further confirmed the clinical utility of the radiomics-clinical model. CONCLUSIONS The radiomics-clinical model performed satisfactory predictive performance, which can help improve clinical diagnosis performance and outcome prediction for SLM in RC patients.
Collapse
Affiliation(s)
- Meiyan Mou
- Department of Medical Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Department of Medical Ultrasound, Yulin No. 1 People's Hospital of Guangxi Zhuang Autonomous Region, Yulin, China
| | - Ruizhi Gao
- Department of Medical Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yuquan Wu
- Department of Medical Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Peng Lin
- Department of Medical Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Hongxia Yin
- Department of Medical Ultrasound, Yulin No. 1 People's Hospital of Guangxi Zhuang Autonomous Region, Yulin, China
| | - Fenghuan Chen
- Department of Medical Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Fen Huang
- Department of Medical Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Rong Wen
- Department of Medical Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Hong Yang
- Department of Medical Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yun He
- Department of Medical Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
8
|
Li Q, Wang N, Wang Y, Li X, Su Q, Zhang J, Zhao X, Dai Z, Wang Y, Sun L, Xing X, Yang G, Gao C, Nie P. Intratumoral and peritumoral CT radiomics in predicting prognosis in patients with chondrosarcoma: a multicenter study. Insights Imaging 2024; 15:9. [PMID: 38228977 DOI: 10.1186/s13244-023-01582-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 11/29/2023] [Indexed: 01/18/2024] Open
Abstract
OBJECTIVE To evaluate the efficacy of the CT-based intratumoral, peritumoral, and combined radiomics signatures in predicting progression-free survival (PFS) of patients with chondrosarcoma (CS). METHODS In this study, patients diagnosed with CS between January 2009 and January 2022 were retrospectively screened, and 214 patients with CS from two centers were respectively enrolled into the training cohorts (institution 1, n = 113) and test cohorts (institution 2, n = 101). The intratumoral and peritumoral radiomics features were extracted from CT images. The intratumoral, peritumoral, and combined radiomics signatures were constructed respectively, and their radiomics scores (Rad-score) were calculated. The performance of intratumoral, peritumoral, and combined radiomics signatures in PFS prediction in patients with CS was evaluated by C-index, time-dependent area under the receiver operating characteristics curve (time-AUC), and time-dependent C-index (time C-index). RESULTS Eleven, 7, and 16 features were used to construct the intratumoral, peritumoral, and combined radiomics signatures, respectively. The combined radiomics signature showed the best prediction ability in the training cohort (C-index, 0.835; 95%; confidence interval [CI], 0.764-0.905) and the test cohort (C-index, 0.800; 95% CI, 0.681-0.920). Time-AUC and time C-index showed that the combined signature outperformed the intratumoral and peritumoral radiomics signatures in the prediction of PFS. CONCLUSION The CT-based combined signature incorporating intratumoral and peritumoral radiomics features can predict PFS in patients with CS, which might assist clinicians in selecting individualized surveillance and treatment plans for CS patients. CRITICAL RELEVANCE STATEMENT Develop and validate CT-based intratumoral, peritumoral, and combined radiomics signatures to evaluate the efficacy in predicting prognosis of patients with CS. KEY POINTS • Reliable prognostic models for preoperative chondrosarcoma are lacking. • Combined radiomics signature incorporating intratumoral and peritumoral features can predict progression-free survival in patients with chondrosarcoma. • Combined radiomics signature may facilitate individualized stratification and management of patients with chondrosarcoma.
Collapse
Affiliation(s)
- Qiyuan Li
- Department of Radiology, The Affiliated Hospital of Qingdao University, No. 16, Jiangsu Road, Qingdao, 266003, Shandong, China
| | - Ning Wang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yanmei Wang
- GE Healthcare China, Pudong New Town, Shanghai, China
| | - Xiaoli Li
- Department of Radiology, The Affiliated Hospital of Qingdao University, No. 16, Jiangsu Road, Qingdao, 266003, Shandong, China
| | - Qiushi Su
- Department of Radiology, The Affiliated Hospital of Qingdao University, No. 16, Jiangsu Road, Qingdao, 266003, Shandong, China
| | - Jing Zhang
- Department of Radiology, The Affiliated Hospital of Qingdao University, No. 16, Jiangsu Road, Qingdao, 266003, Shandong, China
| | - Xia Zhao
- Department of Radiology, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Zhengjun Dai
- Scientific Research Department, Huiying Medical Technology Co., Ltd, Beijing, China
| | - Yao Wang
- Department of Radiology, The Affiliated Hospital of Qingdao University, No. 16, Jiangsu Road, Qingdao, 266003, Shandong, China
| | - Li Sun
- Department of Radiology, The Affiliated Hospital of Qingdao University, No. 16, Jiangsu Road, Qingdao, 266003, Shandong, China
| | - Xuxiao Xing
- Department of Radiology, The First Hospital of Xingtai, No. 376, Shunde Road, Xingtai, Hebei, China
| | - Guangjie Yang
- Department of Nuclear Medicine, The Affiliated Hospital of Qingdao University, No. 59, Haier Road, Qingdao, 266061, Shandong, China.
| | - Chuanping Gao
- Department of Radiology, The Affiliated Hospital of Qingdao University, No. 16, Jiangsu Road, Qingdao, 266003, Shandong, China.
| | - Pei Nie
- Department of Radiology, The Affiliated Hospital of Qingdao University, No. 16, Jiangsu Road, Qingdao, 266003, Shandong, China.
| |
Collapse
|
9
|
Lei X, Song X, Fan Y, Chen Z, Zhang L. The Role and Potential Mechanism of Complement Factor D in Fibromyalgia Development. J Pain Res 2023; 16:4337-4351. [PMID: 38145036 PMCID: PMC10748666 DOI: 10.2147/jpr.s439689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/04/2023] [Indexed: 12/26/2023] Open
Abstract
Purpose Fibromyalgia (FM) is a syndrome characterized by chronic musculoskeletal pain. Its clinical symptoms include both somatic and psychiatric symptoms, making the treatment of FM extremely challenging. The cause of FM is still unknown, and some patients do not improve their symptoms even after long-term active treatment. Thus, the development of new targeted therapies is important to reduce pain and improve quality of life for FM patients. Methods In this study, we screened genes and secreted factors that play key roles in FM through bioinformatics and big data analysis. Furthermore, we performed CCK-8, qRT-PCR, glucose, ATP and lactate content testing, dual luciferase reporter gene assay to investigate the potential mechanism of complement factor D in fibromyalgia development. Results In bioinformatics and big data analysis, we identified CFD was negatively correlated with the pro-inflammatory factor IL-6 and positively correlated with the anti-inflammatory factor IL-4, which suggested that CFD may be an anti-inflammatory factor. Through cellular assays, we verified that CFD reversed the decrease in IL-4 expression and the increase in IL-6 expression in BV2 cells caused by ATP. Conclusion In summary, based on bioinformatic methods and big data mining we obtained a new target CFD for FM, and further experiments verified that CFD has significant inhibition of ATP-induced neuropathic pain. These findings provide a new theoretical basis for the clinical translation of CFD.
Collapse
Affiliation(s)
- Xinhuan Lei
- Department of Orthopedics, Taizhou Hospital of Zhejiang Province, Zhejiang University, Taizhou, Zhejiang, People’s Republic of China
| | - Xiaoting Song
- Department of Orthopedics, Taizhou Hospital of Zhejiang Province, Zhejiang University, Taizhou, Zhejiang, People’s Republic of China
| | - Yongyong Fan
- Department of Orthopedics, Taizhou Hospital of Zhejiang Province, Zhejiang University, Taizhou, Zhejiang, People’s Republic of China
| | - Zhen Chen
- Department of Orthopedics, Taizhou Hospital of Zhejiang Province, Zhejiang University, Taizhou, Zhejiang, People’s Republic of China
| | - Liwei Zhang
- Department of Orthopedics, Taizhou Hospital of Zhejiang Province, Zhejiang University, Taizhou, Zhejiang, People’s Republic of China
- Bone Metabolism and Development Research Center, Taizhou Hospital of Zhejiang Province, Zhejiang University, Taizhou, Zhejiang, People’s Republic of China
| |
Collapse
|
10
|
Granata V, Fusco R, De Muzio F, Brunese MC, Setola SV, Ottaiano A, Cardone C, Avallone A, Patrone R, Pradella S, Miele V, Tatangelo F, Cutolo C, Maggialetti N, Caruso D, Izzo F, Petrillo A. Radiomics and machine learning analysis by computed tomography and magnetic resonance imaging in colorectal liver metastases prognostic assessment. LA RADIOLOGIA MEDICA 2023; 128:1310-1332. [PMID: 37697033 DOI: 10.1007/s11547-023-01710-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 08/22/2023] [Indexed: 09/13/2023]
Abstract
OBJECTIVE The aim of this study was the evaluation radiomics analysis efficacy performed using computed tomography (CT) and magnetic resonance imaging in the prediction of colorectal liver metastases patterns linked to patient prognosis: tumor growth front; grade; tumor budding; mucinous type. Moreover, the prediction of liver recurrence was also evaluated. METHODS The retrospective study included an internal and validation dataset; the first was composed by 119 liver metastases from 49 patients while the second consisted to 28 patients with single lesion. Radiomic features were extracted using PyRadiomics. Univariate and multivariate approaches including machine learning algorithms were employed. RESULTS The best predictor to identify tumor growth was the Wavelet_HLH_glcm_MaximumProbability with an accuracy of 84% and to detect recurrence the best predictor was wavelet_HLH_ngtdm_Complexity with an accuracy of 90%, both extracted by T1-weigthed arterial phase sequence. The best predictor to detect tumor budding was the wavelet_LLH_glcm_Imc1 with an accuracy of 88% and to identify mucinous type was wavelet_LLH_glcm_JointEntropy with an accuracy of 92%, both calculated on T2-weigthed sequence. An increase statistically significant of accuracy (90%) was obtained using a linear weighted combination of 15 predictors extracted by T2-weigthed images to detect tumor front growth. An increase statistically significant of accuracy at 93% was obtained using a linear weighted combination of 11 predictors by the T1-weigthed arterial phase sequence to classify tumor budding. An increase statistically significant of accuracy at 97% was obtained using a linear weighted combination of 16 predictors extracted on CT to detect recurrence. An increase statistically significant of accuracy was obtained in the tumor budding identification considering a K-nearest neighbors and the 11 significant features extracted T1-weigthed arterial phase sequence. CONCLUSIONS The results confirmed the Radiomics capacity to recognize clinical and histopathological prognostic features that should influence the choice of treatments in colorectal liver metastases patients to obtain a more personalized therapy.
Collapse
Affiliation(s)
- Vincenza Granata
- Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli, Naples, Italy.
| | | | - Federica De Muzio
- Department of Medicine and Health Sciences V. Tiberio, University of Molise, 86100, Campobasso, Italy
| | - Maria Chiara Brunese
- Department of Medicine and Health Sciences V. Tiberio, University of Molise, 86100, Campobasso, Italy
| | - Sergio Venanzio Setola
- Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli, Naples, Italy
| | - Alessandro Ottaiano
- Clinical Experimental Abdominal Oncology Unit, Istituto Nazionale Tumori, IRCCS Fondazione G. Pascale, 80131, Naples, Italy
| | - Claudia Cardone
- Clinical Experimental Abdominal Oncology Unit, Istituto Nazionale Tumori, IRCCS Fondazione G. Pascale, 80131, Naples, Italy
| | - Antonio Avallone
- Clinical Experimental Abdominal Oncology Unit, Istituto Nazionale Tumori, IRCCS Fondazione G. Pascale, 80131, Naples, Italy
| | - Renato Patrone
- Division of Hepatobiliary Surgical Oncology, Istituto Nazionale Tumori IRCCS Fondazione Pascale-IRCCS di Napoli, 80131, Naples, Italy
| | - Silvia Pradella
- Department of Radiology, Careggi University Hospital, Largo Brambilla 3, 50134, Florence, Italy
- SIRM Foundation, Italian Society of Medical and Interventional Radiology (SIRM), 20122, Milan, Italy
| | - Vittorio Miele
- Department of Radiology, Careggi University Hospital, Largo Brambilla 3, 50134, Florence, Italy
- SIRM Foundation, Italian Society of Medical and Interventional Radiology (SIRM), 20122, Milan, Italy
| | - Fabiana Tatangelo
- Division of Pathological Anatomy and Cytopathology, Istituto Nazionale Tumori IRCCS Fondazione Pascale-IRCCS di Napoli, 80131, Naples, Italy
| | - Carmen Cutolo
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84084, Salerno, Italy
| | - Nicola Maggialetti
- Department of Medical Science, Neuroscience and Sensory Organs (DSMBNOS), University of Bari "Aldo Moro", 70124, Bari, Italy
| | - Damiano Caruso
- Department of Medical Surgical Sciences and Translational Medicine, Radiology Unit-Sant'Andrea University Hospital, Sapienza-University of Rome, 00189, Rome, Italy
| | - Francesco Izzo
- Division of Hepatobiliary Surgical Oncology, Istituto Nazionale Tumori IRCCS Fondazione Pascale-IRCCS di Napoli, 80131, Naples, Italy
| | - Antonella Petrillo
- Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli, Naples, Italy
| |
Collapse
|
11
|
Avella P, Cappuccio M, Cappuccio T, Rotondo M, Fumarulo D, Guerra G, Sciaudone G, Santone A, Cammilleri F, Bianco P, Brunese MC. Artificial Intelligence to Early Predict Liver Metastases in Patients with Colorectal Cancer: Current Status and Future Prospectives. Life (Basel) 2023; 13:2027. [PMID: 37895409 PMCID: PMC10608483 DOI: 10.3390/life13102027] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/05/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Artificial Intelligence (AI)-based analysis represents an evolving medical field. In the last few decades, several studies have reported the diagnostic efficiency of AI applied to Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) to early detect liver metastases (LM), mainly from colorectal cancer. Despite the increase in information and the development of different procedures in several radiological fields, an accurate method of predicting LM has not yet been found. This review aims to compare the diagnostic efficiency of different AI methods in the literature according to accuracy, sensibility, precision, and recall to identify early LM. METHODS A narrative review of the literature was conducted on PubMed. A total of 336 studies were screened. RESULTS We selected 17 studies from 2012 to 2022. In total, 14,475 patients were included, and more than 95% were affected by colorectal cancer. The most frequently used imaging tool to early detect LM was found to be CT (58%), while MRI was used in three cases. Four different AI analyses were used: deep learning, radiomics, machine learning, and fuzzy systems in seven (41.18%), five (29.41%), four (23.53%), and one (5.88%) cases, respectively. Four studies achieved an accuracy of more than 90% after MRI and CT scan acquisition, while just two reported a recall rate ≥90% (one method using MRI and CT and one CT). CONCLUSIONS Routinely acquired radiological images could be used for AI-based analysis to early detect LM. Simultaneous use of radiomics and machine learning analysis applied to MRI or CT images should be an effective method considering the better results achieved in the clinical scenario.
Collapse
Affiliation(s)
- Pasquale Avella
- HPB Surgery Unit, Pineta Grande Hospital, Castel Volturno, 81030 Caserta, Italy;
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy
| | - Micaela Cappuccio
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy
| | - Teresa Cappuccio
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy; (T.C.); (M.R.); (D.F.); (G.G.); (G.S.); (A.S.); (M.C.B.)
| | - Marco Rotondo
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy; (T.C.); (M.R.); (D.F.); (G.G.); (G.S.); (A.S.); (M.C.B.)
| | - Daniela Fumarulo
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy; (T.C.); (M.R.); (D.F.); (G.G.); (G.S.); (A.S.); (M.C.B.)
| | - Germano Guerra
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy; (T.C.); (M.R.); (D.F.); (G.G.); (G.S.); (A.S.); (M.C.B.)
| | - Guido Sciaudone
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy; (T.C.); (M.R.); (D.F.); (G.G.); (G.S.); (A.S.); (M.C.B.)
| | - Antonella Santone
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy; (T.C.); (M.R.); (D.F.); (G.G.); (G.S.); (A.S.); (M.C.B.)
| | | | - Paolo Bianco
- HPB Surgery Unit, Pineta Grande Hospital, Castel Volturno, 81030 Caserta, Italy;
| | - Maria Chiara Brunese
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy; (T.C.); (M.R.); (D.F.); (G.G.); (G.S.); (A.S.); (M.C.B.)
| |
Collapse
|
12
|
Chen K, Shi Y, Zhu H. Analysis of the role of glucose metabolism-related genes in dilated cardiomyopathy based on bioinformatics. J Thorac Dis 2023; 15:3870-3884. [PMID: 37559624 PMCID: PMC10407475 DOI: 10.21037/jtd-23-906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/12/2023] [Indexed: 08/11/2023]
Abstract
BACKGROUND Dilated cardiomyopathy (DCM) is a prevalent condition with diverse etiologies, including viral infection, autoimmune response, and genetic factors. Despite the crucial role of energy metabolism in cardiac function, therapeutic targets for key genes in DCM's energy metabolism remain scarce. METHODS Our study employed the GSE79962 and GSE42955 datasets from the Gene Expression Omnibus (GEO) database for myocardial tissue sample collection and target gene identification via differential gene expression screening. Using various R packages, GSEA software, and the STRING database, we conducted data analysis, gene set enrichment, and protein-protein interaction predictions. The least absolute shrinkage and selection operator (LASSO) and Support Vector Machine (SVM) algorithms aided in feature gene selection, while the predictive model's efficiency was evaluated via the receiver operating characteristic (ROC) curve analysis. We used the non-negative matrix factorization (NMF) method for molecular typing and the cell-type identification by estimating relative subsets of RNA transcripts (CIBERSORT) algorithm for predicting immune cell infiltration. RESULTS The DLAT and LDHA genes may regulate the immune microenvironment of DCM by influencing activated dendritic cells, activated mast cells, and M0 macrophages, respectively. The BPGM, DLAT, PGM2, ADH1A, ADH1C, LDHA, and PFKM genes may regulate m6A methylation in DCM by affecting the ZC3H13, ALKBH5, RBMX, HNRNPC, METTL3, and YTHDC1 genes. Further regulatory mechanism analysis suggested that PFKM, DLAT, PKLR, PGM2, LDHA, BPGM, ADH1A, and ADH1C could be involved in the development of cardiomyopathy by regulating the Toll-like receptor signaling pathway. CONCLUSIONS PFKM, DLAT, PKLR, PGM2, LDHA, BPGM, ADH1A, and ADH1C may serve as potential targets for guiding the diagnosis, treatment, and follow-up of DCM.
Collapse
Affiliation(s)
- Keping Chen
- Department of Emergency, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Yan Shi
- Operating Room, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Haijie Zhu
- Department of Emergency, Affiliated Hospital of Jiangnan University, Wuxi, China
| |
Collapse
|
13
|
Lu HF, Ding W, Ma X, Wei GJ. Safety and efficacy of cold endoscopic mucosal resection vs conventional endoscopic mucosal resection for treatment of 10-19 mm colorectal polyps. Shijie Huaren Xiaohua Zazhi 2023; 31:555-561. [DOI: 10.11569/wcjd.v31.i13.555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/24/2023] [Accepted: 06/21/2023] [Indexed: 07/08/2023] Open
Abstract
BACKGROUND Colorectal polyps are important precancerous lesions in colorectal cancer, which require timely endoscopic treatment. For different extents of polyps, different therapies have different efficacy and safety. This study explored the efficacy and safety of two different methods for treating 10-19 mm colorectal polyps, with an aim to provide guidance for clinical treatment of colorectal polyps.
AIM To compare the safety and efficacy of cold endoscopic mucosal resection (C-EMR) and conventional endoscopic mucosal resection (EMR) in the treatment of 10-19 mm colorectal polyps.
METHODS A total of 192 patients with 371 colorectal polyps measuring 10-19 mm, who were hospitalized at the First Affiliated Hospital of Huzhou University from January 2021 to December 2022, were included in this study. The patients underwent either C-EMR or conventional EMR for the colorectal polyps. Age, gender, intestinal preparation score, polyp diameter, location, Paris endoscopic classification, histopathological type, complete resection rate, complete histological resection rate, incidence of complications, resection time, number of hemostatic clips used, and postoperative recurrence were compared between the two groups of patients.
RESULTS There was no significant difference in age, sex, intestinal preparation score, Paris endoscopic classification, histopathological classification, size, location, complete resection rate, or complete histological resection rate between the two groups (P > 0.05). Immediate intraoperative bleeding occurred in 5.5% (10/181) of polyps and 7.4% (7/95) of patients in the C-EMR group, and the corres-ponding percentages in the EMR group were 2.6% (5/190) and 3.1% (3/97); the difference was not statistically significant between the two groups (P > 0.05). Postoperative delayed bleeding occurred in 0.6% (1/181) of polyps and 1.1% (1/95) of patients in the C-EMR group, and the corresponding percentages in the EMR group were 5.8% (11/190) and 7.2% (7/97); the difference was statistically significant between the two groups (P < 0.05). There was no occurrence of delayed perforation during or after surgery in either group. The average resection time was significantly shorter in the C-EMR group than that of the conventional EMR group [(3.15 ± 0.61) min vs (3.46 ± 0.42) min, P < 0.05]. The average number of hemostatic clips used in the C-EMR group was (1.31 ± 0.88), which was significantly less than that of the conventional EMR group (1.65 ± 0.61; P < 0.05). A total of 164 polyps were followed for 9 to 23 mo in the two groups of patients. The total recurrence rate after resection was 2.44%, and the recurrence rate of C-EMR (2.53%) was higher than that of the conventional EMR group (2.35%), but with no statistical significance (P > 0.05).
CONCLUSION C-EMR and conventional EMR have similar therapeutic effects in the treatment of 10-19 mm colorectal polyps, but C-EMR has a shorter treatment time, lower incidence of delayed bleeding, and higher safety and economic benefit ratio.
Collapse
Affiliation(s)
- Hui-Fei Lu
- Department of Gastroenterology, The First Affiliated Hospital of Huzhou University, Huzhou 313000, Zhejiang Province, China
| | - Wen Ding
- Department of Gastroenterology, The First Affiliated Hospital of Huzhou University, Huzhou 313000, Zhejiang Province, China
| | - Xin Ma
- Department of Gastroenterology, The First Affiliated Hospital of Huzhou University, Huzhou 313000, Zhejiang Province, China
| | - Gui-Jun Wei
- Department of Gastroenterology, The First Affiliated Hospital of Huzhou University, Huzhou 313000, Zhejiang Province, China
| |
Collapse
|
14
|
Granata V, Fusco R, Setola SV, Galdiero R, Maggialetti N, Patrone R, Ottaiano A, Nasti G, Silvestro L, Cassata A, Grassi F, Avallone A, Izzo F, Petrillo A. Colorectal liver metastases patients prognostic assessment: prospects and limits of radiomics and radiogenomics. Infect Agent Cancer 2023; 18:18. [PMID: 36927442 PMCID: PMC10018963 DOI: 10.1186/s13027-023-00495-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/07/2023] [Indexed: 03/18/2023] Open
Abstract
In this narrative review, we reported un up-to-date on the role of radiomics to assess prognostic features, which can impact on the liver metastases patient treatment choice. In the liver metastases patients, the possibility to assess mutational status (RAS or MSI), the tumor growth pattern and the histological subtype (NOS or mucinous) allows a better treatment selection to avoid unnecessary therapies. However, today, the detection of these features require an invasive approach. Recently, radiomics analysis application has improved rapidly, with a consequent growing interest in the oncological field. Radiomics analysis allows the textural characteristics assessment, which are correlated to biological data. This approach is captivating since it should allow to extract biological data from the radiological images, without invasive approach, so that to reduce costs and time, avoiding any risk for the patients. Several studies showed the ability of Radiomics to identify mutational status, tumor growth pattern and histological type in colorectal liver metastases. Although, radiomics analysis in a non-invasive and repeatable way, however features as the poor standardization and generalization of clinical studies results limit the translation of this analysis into clinical practice. Clear limits are data-quality control, reproducibility, repeatability, generalizability of results, and issues related to model overfitting.
Collapse
Affiliation(s)
- Vincenza Granata
- Division of Radiology, "Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli", Naples, Italy.
| | - Roberta Fusco
- Medical Oncology Division, Igea SpA, Napoli, Italy.,Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Via della Signora 2, Milan, 20122, Italy
| | - Sergio Venanzio Setola
- Division of Radiology, "Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli", Naples, Italy
| | - Roberta Galdiero
- Division of Radiology, "Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli", Naples, Italy
| | - Nicola Maggialetti
- Department of Medical Science, Neuroscience and Sensory Organs (DSMBNOS), University of Bari "Aldo Moro", Bari, 70124, Italy
| | - Renato Patrone
- Division of Epatobiliary Surgical Oncology, Istituto Nazionale Tumori IRCCS Fondazione Pascale-IRCCS di Napoli, Naples, 80131, Italy
| | - Alessandro Ottaiano
- Clinical Sperimental Abdominal Oncology Unit, Istituto Nazionale Tumori, IRCCS Fondazione G. Pascale, Napoli, 80131, Italy
| | - Guglielmo Nasti
- Clinical Sperimental Abdominal Oncology Unit, Istituto Nazionale Tumori, IRCCS Fondazione G. Pascale, Napoli, 80131, Italy
| | - Lucrezia Silvestro
- Clinical Sperimental Abdominal Oncology Unit, Istituto Nazionale Tumori, IRCCS Fondazione G. Pascale, Napoli, 80131, Italy
| | - Antonio Cassata
- Clinical Sperimental Abdominal Oncology Unit, Istituto Nazionale Tumori, IRCCS Fondazione G. Pascale, Napoli, 80131, Italy
| | - Francesca Grassi
- Division of Radiology, "Università degli Studi della Campania Luigi Vanvitelli", Naples, 80138, Italy
| | - Antonio Avallone
- Clinical Sperimental Abdominal Oncology Unit, Istituto Nazionale Tumori, IRCCS Fondazione G. Pascale, Napoli, 80131, Italy
| | - Francesco Izzo
- Division of Epatobiliary Surgical Oncology, Istituto Nazionale Tumori IRCCS Fondazione Pascale-IRCCS di Napoli, Naples, 80131, Italy
| | - Antonella Petrillo
- Division of Radiology, "Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli", Naples, Italy
| |
Collapse
|
15
|
Qu H, Zhai H, Zhang S, Chen W, Zhong H, Cui X. Dynamic radiomics for predicting the efficacy of antiangiogenic therapy in colorectal liver metastases. Front Oncol 2023; 13:992096. [PMID: 36814812 PMCID: PMC9939899 DOI: 10.3389/fonc.2023.992096] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 01/12/2023] [Indexed: 02/08/2023] Open
Abstract
Background and objective For patients with advanced colorectal liver metastases (CRLMs) receiving first-line anti-angiogenic therapy, an accurate, rapid and noninvasive indicator is urgently needed to predict its efficacy. In previous studies, dynamic radiomics predicted more accurately than conventional radiomics. Therefore, it is necessary to establish a dynamic radiomics efficacy prediction model for antiangiogenic therapy to provide more accurate guidance for clinical diagnosis and treatment decisions. Methods In this study, we use dynamic radiomics feature extraction method that extracts static features using tomographic images of different sequences of the same patient and then quantifies them into new dynamic features for the prediction of treatmentefficacy. In this retrospective study, we collected 76 patients who were diagnosed with unresectable CRLM between June 2016 and June 2021 in the First Hospital of China Medical University. All patients received standard treatment regimen of bevacizumab combined with chemotherapy in the first-line treatment, and contrast-enhanced abdominal CT (CECT) scans were performed before treatment. Patients with multiple primary lesions as well as missing clinical or imaging information were excluded. Area Under Curve (AUC) and accuracy were used to evaluate model performance. Regions of interest (ROIs) were independently delineated by two radiologists to extract radiomics features. Three machine learning algorithms were used to construct two scores based on the best response and progression-free survival (PFS). Results For the task that predict the best response patients will achieve after treatment, by using ROC curve analysis, it can be seen that the relative change rate (RCR) feature performed best among all features and best in linear discriminantanalysis (AUC: 0.945 and accuracy: 0.855). In terms of predicting PFS, the Kaplan-Meier plots suggested that the score constructed using the RCR features could significantly distinguish patients with good response from those with poor response (Two-sided P<0.0001 for survival analysis). Conclusions This study demonstrates that the application of dynamic radiomics features can better predict the efficacy of CRLM patients receiving antiangiogenic therapy compared with conventional radiomics features. It allows patients to have a more accurate assessment of the effect of medical treatment before receiving treatment, and this assessment method is noninvasive, rapid, and less expensive. Dynamic radiomics model provides stronger guidance for the selection of treatment options and precision medicine.
Collapse
Affiliation(s)
- Hui Qu
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, Liaoning, P.R, China
| | - Huan Zhai
- Department of Interventional Radiology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China,Key Laboratory of Diagnostic Imaging and Interventional Radiology of Liaoning Province, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Shuairan Zhang
- Department of Gastroenterology, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Wenjuan Chen
- Department of Medical Oncology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Hongshan Zhong
- Department of Interventional Radiology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China,Key Laboratory of Diagnostic Imaging and Interventional Radiology of Liaoning Province, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China,*Correspondence: Xiaoyu Cui, ; Hongshan Zhong,
| | - Xiaoyu Cui
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, Liaoning, P.R, China,Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Shenyang, China,*Correspondence: Xiaoyu Cui, ; Hongshan Zhong,
| |
Collapse
|
16
|
Li L, Li M, Chen Z, Lu F, Zhao M, Zhang H, Tong D. Prognostic value of radiomics-based hyperdense middle cerebral artery sign for patients with acute ischemic stroke after thrombectomy strategy. Front Neurol 2023; 13:1037204. [PMID: 36712442 PMCID: PMC9880054 DOI: 10.3389/fneur.2022.1037204] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/23/2022] [Indexed: 01/15/2023] Open
Abstract
Background and purpose The purpose of this study was to evaluate the prognostic value of radiomics-based hyperdense middle cerebral artery sign (HMCAS) for patients with acute ischemic stroke (AIS) after mechanical thrombectomy (MT) and to establish prediction models to identify patients who may benefit more from MT. Methods In this retrospective study, a total of 102 consecutive patients who presented with HMCAS on non-contrast computed tomography (NCCT) at admission and underwent MT in our hospital between January 2019 and December 2020 were recruited. Among them, 46 experienced favorable outcomes (modified Rankin Scale [mRS] ≤ 2) at 3 months of follow-up. All patients were categorized into two sets, namely, the training set (n = 81) and the test set (n = 21). Radiomics features (RFs) and clinical features (CFs) in the training set were selected by statistical analysis to create models. The models' discriminative ability was quantified using the area under the curve (AUC) and confirmed by decision curve analyses. Results The prediction model established using CFs before MT includes baseline National Institutes of Health Stroke Scale (NIHSS) and neutrophil-to-lymphocyte ratio (NLR) [AUC [95% confidence interval (CI)] = 0.596 (0.312-0.881)]. A total of 1,389 RFs were extracted from each hyperdense territory and 8 RFs were left to build the radiomics model [RM; AUC (95%CI) = 0.798 (0.598-0.998)]. The model using preoperative CFs and RFs showed good performance [AUC (95%CI) = 0.817 (0.625-1.000)]. The models using post-operative CFs alone [AUC (95%CI) = 0.856 (0.685-1.000)] or post-operative CFs with RFs [AUC (95%CI) = 0.894 (0.757-1.000)] also showed good discrimination. Conclusion The radiomics-based HMCAS might be a promising tool to predict the prognoses of patients with AIS after MT.
Collapse
Affiliation(s)
- Linna Li
- Department of Radiology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Mingyang Li
- Department of Radiology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Zhongping Chen
- Department of Radiology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Fei Lu
- Department of Radiology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Min Zhao
- Pharmaceutical Diagnostics, GE Healthcare, Beijing, China
| | - Huimao Zhang
- Department of Radiology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Dan Tong
- Department of Radiology, The First Hospital of Jilin University, Changchun, Jilin, China,*Correspondence: Dan Tong ✉
| |
Collapse
|
17
|
Urinary PCA3 a Superior Diagnostic Biomarker for Prostate Cancer among Ghanaian Men. DISEASE MARKERS 2022; 2022:1686991. [PMID: 36246565 PMCID: PMC9568348 DOI: 10.1155/2022/1686991] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 09/19/2022] [Indexed: 11/17/2022]
Abstract
Introduction. Prostate cancer is one of the most commonly diagnosed cancers in men. Prostate-specific antigen (PSA) has been the biomarker of choice for screening and diagnosis of prostate cancer. However, inefficiencies exist with its diagnostic capabilities. This study thus evaluated the diagnostic and prognostic potential of urinary PCA3 as an alternative biomarker for prostate cancer in the Ghanaian population. Methods. A hospital-based cross-sectional study was conducted at the Urology Department of the 37 Military Hospital, Accra, Ghana. A total of 237 participants aged 40 years and above with any form of suspected prostate disorder were recruited into the study after written informed consent was obtained. Total serum PSA levels was measured using the electrochemiluminescence method and transrectal ultrasound-guided systematic core needle biopsies were obtained from each study participant. Receiver operating characteristic curve (ROC) analysis was used to evaluate the diagnostic accuracies of serum PSA, DRE, and PCA3 as diagnostic tools for prostate cancer. These three diagnostic tools were also evaluated in various combinations to ascertain the combinations with the best diagnostic accuracy. Results. Prostate cancer was diagnosed in 26.6% of the participants. Benign prostate hyperplasia and prostatitis were diagnosed in 48.5% and 24.9% participants, respectively. DRE had a sensitivity of 93.7% and a specificity of 12.1%. PSA had a sensitivity of 92.1% and a specificity of 16.1%. PCA3 had a sensitivity of 57.1% and a specificity of 85.6% and showed a better accuracy (
) compared to PSA (
) and DRE (
) as individual diagnostic tools. The combination of DRE+PCA3 score had the best diagnostic accuracy (
) with a sensitivity and specificity of 60.3% and 80.5%, respectively. Conclusion. The urinary PCA3 assay showed a better diagnostic performance compared to serum PSA and DRE. PCA3 as a stand-alone and in combination with DRE could be a suitable complimentary marker in diagnosis and management of prostate cancer.
Collapse
|
18
|
Wang H, Xu Z, Zhang H, Huang J, Peng H, Zhang Y, Liang C, Zhao K, Liu Z. The value of magnetic resonance imaging-based tumor shape features for assessing microsatellite instability status in endometrial cancer. Quant Imaging Med Surg 2022; 12:4402-4413. [PMID: 36060586 PMCID: PMC9403574 DOI: 10.21037/qims-22-77] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/06/2022] [Indexed: 02/05/2023]
Abstract
BACKGROUND Microsatellite instability (MSI) status can be used for the classification and risk stratification of endometrial cancer (EC). This study aimed to investigate whether magnetic resonance imaging (MRI)-based tumor shape features can help assess MSI status in EC before surgery. METHODS The medical records of 88 EC patients with MSI status were retrospectively reviewed. Quantitative and subjective shape features based on MRI were used to assess MSI status. Variables were compared using the Student's t-test, χ2 test, or Wilcoxon rank-sum test where appropriate. Univariate and multivariate analyses were performed by the logistic regression model. The area under the curve (AUC) was used to estimate the discrimination performance of variables. RESULTS There were 23 patients with MSI, and 65 patients with microsatellite stability (MSS) in this study. Eccentricity and shape type showed significant differences between MSI and MSS (P=0.039 and P=0.033, respectively). The AUC values of eccentricity, shape type, and the combination of 2 features for assessing MSI were 0.662 [95% confidence interval (CI): 0.554-0.770], 0.627 (95% CI: 0.512-0.743), and 0.727 (95% CI: 0.613-0.842), respectively. Considering the International Federation of Gynecology and Obstetrics (FIGO) staging, eccentricity maintained a significant difference in stages I-II (P=0.039), while there was no statistical difference in stages III-IV (P=0.601). CONCLUSIONS It is possible that MRI-based tumor shape features, including eccentricity and shape type, could be promising markers for assessing MSI status. The features may aid in the preliminary screening of EC patients with MSI.
Collapse
Affiliation(s)
- Huihui Wang
- Department of Radiology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Shantou University Medical College, Shantou, China
| | - Zeyan Xu
- Department of Radiology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Haochen Zhang
- Department of Radiology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Jia Huang
- Department of Radiology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Haien Peng
- Department of Radiology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yuan Zhang
- Department of Radiology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Changhong Liang
- Department of Radiology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Ke Zhao
- Department of Radiology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zaiyi Liu
- Department of Radiology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
19
|
Zhou J, Li T, Xiao Y, Lin J, Chen X, Peng S, Huang M, Shi X, Cai L, Huang P, Huang M. Development and external validation of prognostic nomograms for liver disease-free and overall survival in locally advanced rectal cancer with neoadjuvant therapy: a post cohort study based on the FOWARC trial. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:694. [PMID: 35845530 PMCID: PMC9279784 DOI: 10.21037/atm-22-2790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/20/2022] [Indexed: 11/06/2022]
Abstract
Background There is still a lack of nomograms that can accurately predict liver metastasis and poor prognosis after neoadjuvant therapy for locally advanced rectal cancer (LARC). Effective nomograms may help clinicians better identify LARC patients with potential high-risk risks, so as to carry out more targeted monitoring, treatment and follow-up. Methods The nomograms were based on the FOWARC trial (NCT01211210), which included 302 LARC patients who underwent neoadjuvant treatment before surgery at the Sixth Affiliated Hospital of Sun Yat-sen University from 2011 to 2014. The predictive accuracy and discriminative ability of the nomograms were determined by the concordance index (C-index) and calibration curve. The results were validated using bootstrap resampling and a prospective study on 100 patients in 2017. Results The 3-year liver disease-free survival (LDFS) rate after neoadjuvant treatment for LARC was 91.65% (training cohort 92.22%, validation cohort 90.01%). Factors associated with LDFS were hepatitis B virus (HBV) infection, anemia, lymph node number, postoperative T stage and tumor nodule, which were all included in the nomogram for LDFS. The C-indies of the nomogram for LDFS were 0.828 and 0.845 in the training and validation cohorts. The 3-year overall survival (OS) rate was 94.14% (training cohort 94.13%, validation cohort 94.05%). Factors in the nomogram for OS were mesorectal fascia involvement (MRF), postoperative N stage, pathological differentiation, tumor nodule and neural invasion. The C-indies of the nomogram for predicting OS were 0.73 and 0.774 in the training and validation cohorts. The calibration curve for the survival probability showed good agreement between the nomogram predictions and the actual observations. Conclusions The nomograms established in this study can effectively predict LDFS and has good clinical application potential for OS in LARC patients treated with neoadjuvant therapy.
Collapse
Affiliation(s)
- Jiaming Zhou
- Department of Colon and Rectum Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Tuoyang Li
- Department of Colon and Rectum Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yuanlv Xiao
- Department of General Surgery, Panyu Central Hospital, Guangzhou, China
| | - Jinxin Lin
- Department of Colon and Rectum Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaoqiong Chen
- Department of Colon and Rectum Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shaoyong Peng
- Department of Colon and Rectum Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Mingzhe Huang
- Department of Colon and Rectum Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xuebin Shi
- Department of Colon and Rectum Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Linbin Cai
- Department of Colon and Rectum Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Pinzhu Huang
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Meijin Huang
- Department of Colon and Rectum Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
20
|
Liu L, Tang C, Li L, Chen P, Tan Y, Hu X, Chen K, Shang Y, Liu D, Liu H, Liu H, Nie F, Tian J, Zhao M, He W, Guo Y. Deep learning radiomics for focal liver lesions diagnosis on long-range contrast-enhanced ultrasound and clinical factors. Quant Imaging Med Surg 2022; 12:3213-3226. [PMID: 35655832 PMCID: PMC9131334 DOI: 10.21037/qims-21-1004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 03/18/2022] [Indexed: 11/15/2023]
Abstract
BACKGROUND Routine clinical factors play an important role in the clinical diagnosis of focal liver lesions (FLLs); however, they are rarely used in computer-assisted diagnosis. Therefore, we developed a deep learning (DL) radiomics model, and investigated its effectiveness in diagnosing FLLs using long-range contrast-enhanced ultrasound (CEUS) cines and clinical factors. METHODS Herein, 303 patients with pathologically confirmed FLLs after surgery at three hospitals were retrospectively enrolled and divided into a training cohort (n=203), internal validation (IV) cohort (n=50) from one hospital with the ratio of 4:1, and external validation (EV) cohort (n=50) from the other two hospitals. Four DL radiomics models, namely Four Stream 3D convolutional neural network (FS3DU) (trained with CEUS cines only), FS3DU+A (trained with CEUS cines and alpha fetoprotein), FS3DU+H (trained with CEUS cines and hepatitis), and FS3DU+A+H (trained with CEUS cines, alpha fetoprotein, and hepatitis), were formed based on 3D convolutional neural networks (CNNs). They used approximately 20-s preoperative CEUS cines and/or clinical factors to extract spatiotemporal features for the classification of FLLs and the location of the region of interest. The area under curve of the receiver operating characteristic and diagnosis speed were calculated to evaluate the models in the IV and EV cohorts, and they were compared with those of two radiologists. Two-sided Delong tests were used to calculate the statistical differences between the models and radiologists. RESULTS FS3DU+A+H, which incorporated CEUS cines, hepatitis, and alpha fetoprotein, achieved the highest area under curve of 0.969 (95% CI: 0.901-1.000) and 0.957 (95% CI: 0.894-1.000) among radiologists and other models in IV and EV cohorts, respectively. A significant difference was observed when comparing FS3DU and radiologist 2 (all P<0.05). The diagnosis speed of all the models was the same (10.76 s per patient), and it was two times faster than those of the radiologists (radiologist 1: 23.74 and 27.75 s; radiologist 2: 25.95 and 29.50 s in IV and EV cohorts, respectively). CONCLUSIONS The proposed DL radiomics demonstrated excellent performance on the benign and malignant diagnosis of FLLs by combining CEUS cines and clinical factors. It could help the individualized characterization of FLLs, and enhance the accuracy of diagnosis in the future.
Collapse
Affiliation(s)
- Li Liu
- Department of Ultrasound, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Department of Digital Medicine, School of Biomedical Engineering and Medical Imaging, Third Military Medical University (Army Medical University), Chongqing, China
| | - Chunlin Tang
- Department of Ultrasound, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Lu Li
- CHISON Medical Technologies Co., LTD, Wuxi, China
| | - Ping Chen
- Department of Ultrasound, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Ying Tan
- Department of Ultrasound, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xiaofei Hu
- Department of Radiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Kaixuan Chen
- Department of Ultrasound, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yongning Shang
- Department of Ultrasound, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Deng Liu
- Department of Ultrasound, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - He Liu
- Department of Radiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Hongjun Liu
- Department of Digital Medicine, School of Biomedical Engineering and Medical Imaging, Third Military Medical University (Army Medical University), Chongqing, China
| | - Fang Nie
- Department of Ultrasound, Lanzhou University Second Hospital, Lanzhou, China
| | - Jiawei Tian
- Department of Ultrasound, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | | | - Wen He
- Department of Ultrasound, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yanli Guo
- Department of Ultrasound, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
21
|
Ma J, Guo D, Miao W, Wang Y, Yan L, Wu F, Zhang C, Zhang R, Zuo P, Yang G, Wang Z. The value of 18F-FDG PET/CT-based radiomics in predicting perineural invasion and outcome in non-metastatic colorectal cancer. Abdom Radiol (NY) 2022; 47:1244-1254. [PMID: 35218381 DOI: 10.1007/s00261-022-03453-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 02/13/2022] [Accepted: 02/14/2022] [Indexed: 11/26/2022]
Abstract
PURPOSE Perineural invasion (PNI) has been recognized as an important prognosis factor in patients with colorectal cancer (CRC). The purpose of this retrospective study was to investigate the value of 18F-FDG PET/CT-based radiomics integrating clinical information, PET/CT features, and metabolic parameters for preoperatively predicting PNI and outcome in non-metastatic CRC and establish an easy-to-use nomogram. METHODS A total of 131 patients with non-metastatic CRC who undergo PET/CT scan were retrospectively enrolled. Univariate analysis was used to compare the differences between PNI-present and PNI-absent groups. Multivariate logistic regression was performed to select the independent predictors for PNI status. Akaike information criterion (AIC) was used to select the best prediction models for PNI status. CT radiomics signatures (RSs) and PET-RSs were selected by maximum relevance minimum redundancy (mRMR) and the least absolute shrinkage and selection operator algorithm (LASSO) regression and radiomics scores (Rad-scores) were calculated for each patient. The prediction models with or without Rad-score were established. According to the nomogram, nomogram scores (Nomo-scores) were calculated for each patient. The performance of different models was assessed with the area under the curve (AUC), specificity, and sensitivity. The clinical usefulness was assessed by decision curve (DCA). Multivariate Cox regression was used to selected independent predictors of progression-free survival (PFS). RESULTS Among all the clinical information, PET/CT features, and metabolic parameters, CEA, lymph node metastatic on PET/CT (N stage), and total lesion glycolysis (TLG) were independent predictors for PNI (p < 0.05). Six CT-RSs and 12 PET-RSs were selected as the most valuable factors to predict PNI. The Rad-score calculated with these RSs was significantly different between PNI-present and PNI-absent groups (p < 0.001). The AUC of the constructed model was 0.90 (95%CI: 0.83-0.97) in the training cohort and 0.80 (95%CI: 0.65-0.95) in the test cohort. The nomogram's predicting sensitivity was 0.84 and the specificity was 0.83 in the training cohort. The clinical model's predicting sensitivity and specificity were 0.66 and 0.85 in the training cohort, respectively. Besides, DCA showed that patients with non-metastatic CRC could get more benefit with our model. The results also indicated that N stage, PNI status, and the Nomo-score were independent predictors of PFS in patients with non-metastatic CRC. CONCLUSION The nomogram, integrating clinical data, PET/CT features, metabolic parameters, and radiomics, performs well in predicting PNI status and is associated with the outcome in patients with non-metastatic CRC.
Collapse
Affiliation(s)
- Jie Ma
- Department of Nuclear Medicine, The Affiliated Hospital of Qingdao University, No. 59 Hair Road, Qingdao, Shandong, China
| | - Dong Guo
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Wenjie Miao
- Department of Nuclear Medicine, The Affiliated Hospital of Qingdao University, No. 59 Hair Road, Qingdao, Shandong, China
| | - Yangyang Wang
- Department of Nuclear Medicine, The Affiliated Hospital of Qingdao University, No. 59 Hair Road, Qingdao, Shandong, China
| | - Lei Yan
- Department of Nuclear Medicine, The Affiliated Hospital of Qingdao University, No. 59 Hair Road, Qingdao, Shandong, China
| | - Fengyu Wu
- Department of Nuclear Medicine, The Affiliated Hospital of Qingdao University, No. 59 Hair Road, Qingdao, Shandong, China
| | - Chuantao Zhang
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Ran Zhang
- Huiying Medical Technology Co.Ltd, Beijing, China
| | - Panli Zuo
- Huiying Medical Technology Co.Ltd, Beijing, China
| | - Guangjie Yang
- Department of Nuclear Medicine, The Affiliated Hospital of Qingdao University, No. 59 Hair Road, Qingdao, Shandong, China.
| | - Zhenguang Wang
- Department of Nuclear Medicine, The Affiliated Hospital of Qingdao University, No. 59 Hair Road, Qingdao, Shandong, China.
| |
Collapse
|
22
|
Automatic Detection and Segmentation of Colorectal Cancer with Deep Residual Convolutional Neural Network. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3415603. [PMID: 35341149 PMCID: PMC8947925 DOI: 10.1155/2022/3415603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/07/2022] [Indexed: 11/22/2022]
Abstract
Early and automatic detection of colorectal tumors is essential for cancer analysis, and the same is implemented using computer-aided diagnosis (CAD). A computerized tomography (CT) image of the colon is being used to identify colorectal carcinoma. Digital imaging and communication in medicine (DICOM) is a standard medical imaging format to process and analyze images digitally. Accurate detection of tumor cells in the complex digestive tract is necessary for optimal treatment. The proposed work is divided into two phases. The first phase involves the segmentation, and the second phase is the extraction of the colon lesions with the observed segmentation parameters. A deep convolutional neural network (DCNN) based residual network approach for the colon and polyps' segmentation from the CT images is applied over the 2D CT images. The residual stack block is being added to the hidden layers with short skip nuance, which helps to retain spatial information. ResNet-enabled CNN is employed in the current work to achieve complete boundary segmentation of the colon cancer region. The results obtained through segmentation serve as features for further extraction and classification of benign as well as malignant colon cancer. Performance evaluation metrics indicate that the proposed network model has effectively segmented and classified colorectal tumors with dice scores of 91.57% (on average), sensitivity = 98.28, specificity = 98.68, and accuracy = 98.82.
Collapse
|
23
|
Liu ET, Zhou S, Li Y, Zhang S, Ma Z, Guo J, Guo L, Zhang Y, Guo Q, Xu L. Development and validation of an MRI-based nomogram for the preoperative prediction of tumor mutational burden in lower-grade gliomas. Quant Imaging Med Surg 2022; 12:1684-1697. [PMID: 35284257 PMCID: PMC8899970 DOI: 10.21037/qims-21-300] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 08/30/2021] [Indexed: 09/25/2023]
Abstract
BACKGROUND High tumor mutational burden (TMB) is an emerging biomarker of sensitivity to immune checkpoint inhibitors. In this study, we aimed to determine the value of magnetic resonance (MR)-based preoperative nomogram in predicting TMB status in lower-grade glioma (LGG) patients. METHODS Overall survival (OS) data were derived from The Cancer Genome Atlas (TCGA) and then analyzed by using the Kaplan-Meier method and time-dependent receiver operating characteristic (tdROC) analysis. The magnetic resonance imaging (MRI) data of 168 subjects obtained from The Cancer Imaging Archive (TCIA) were retrospectively analyzed. The correlation was explored by univariate and multivariate regression analyses. Finally, we performed tenfold cross validation. TMB values were retrieved from the supplementary information of a previously published article. RESULTS The high TMB subtype was associated with the shortest median OS (high vs. low: 50.9 vs. 95.6 months, P<0.05). The tdROC for the high-TMB tumors was 74% (95% CI: 61-86%) for survival at 12 months, and 71% (95% CI: 60-82%) for survival at 24 months. Multivariate logistic regression analysis confirmed that three risk factors [extranodular growth: odds ratio (OR): 8.367, 95% CI: 3.153-22.199, P<0.01; length-width ratio ≥ median: OR: 1.947, 95% CI: 1.025-3.697, P<0.05; frontal lobe: OR: 0.455, 95% CI: 0.229-0.903, P<0.05] were significant independent predictors of high-TMB tumors. The nomogram showed good calibration and discrimination. This model had an area under the curve (AUC) of 0.736 (95% CI: 0.655-0.817). Decision curve analysis (DCA) demonstrated that the nomogram was clinically useful. The average accuracy of the tenfold cross validation was 71.6% for high-TMB tumors. CONCLUSIONS Our results indicated that a distinct OS disadvantage was associated with the high TMB group. In addition, extranodular growth, nonfrontal lobe tumors and length-width ratio ≥ median can be conveniently used to facilitate the prediction of high-TMB tumors.
Collapse
Affiliation(s)
- En-Tao Liu
- WeiLun PET Center, Department of Nuclear Medicine, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Shuqin Zhou
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine and Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Yingwen Li
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine and Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Siwei Zhang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine and Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Zelan Ma
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine and Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Junbiao Guo
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine and Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Lei Guo
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine and Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Yue Zhang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine and Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Quanlai Guo
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine and Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Li Xu
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine and Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| |
Collapse
|
24
|
Li Y, Gong J, Shen X, Li M, Zhang H, Feng F, Tong T. Assessment of Primary Colorectal Cancer CT Radiomics to Predict Metachronous Liver Metastasis. Front Oncol 2022; 12:861892. [PMID: 35296011 PMCID: PMC8919043 DOI: 10.3389/fonc.2022.861892] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 02/07/2022] [Indexed: 12/18/2022] Open
Abstract
ObjectivesTo establish and validate a machine learning-based CT radiomics model to predict metachronous liver metastasis (MLM) in patients with colorectal cancer.MethodsIn total, 323 patients were retrospectively recruited from two independent institutions to develop and evaluate the CT radiomics model. Then, 1288 radiomics features were extracted to decode the imaging phenotypes of colorectal cancer on CT images. The optimal radiomics features were selected using a recursive feature elimination selector configured by a support vector machine. To reduce the bias caused by an unbalanced dataset, the synthetic minority oversampling technique was applied to resample the minority samples in the datasets. Then, both radiomics and clinical features were used to train the multilayer perceptron classifier to develop two classification models. Finally, a score-level fusion model was developed to further improve the model performance.ResultsThe area under the curve (AUC) was 0.78 ± 0.07 for the tumour feature model and 0.79 ± 0.08 for the clinical feature model. The fusion model achieved the best performance, with AUCs of 0.79 ± 0.08 and 0.72 ± 0.07 in the internal and external validation cohorts.ConclusionsRadiomics models based on baseline colorectal contrast-enhanced CT have high potential for MLM prediction. The fusion model combining radiomics and clinical features can provide valuable biomarkers to identify patients with a high risk of colorectal liver metastases.
Collapse
Affiliation(s)
- Yue Li
- Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jing Gong
- Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xigang Shen
- Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Menglei Li
- Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Huan Zhang
- Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Feng Feng
- Department of Radiology, Affiliated Tumor Hospital of Nantong University, Nantong, China
- *Correspondence: Feng Feng, ; Tong Tong,
| | - Tong Tong
- Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- *Correspondence: Feng Feng, ; Tong Tong,
| |
Collapse
|
25
|
Liu Y, Wang Y, Zhang H, Zheng M, Wang C, Hu Z, Wang Y, Xiong H, Hu H, Tang Q, Wang G. Nomogram for predicting occurrence of synchronous liver metastasis in colorectal cancer: a single-center retrospective study based on pathological factors. World J Surg Oncol 2022; 20:39. [PMID: 35183207 PMCID: PMC8857813 DOI: 10.1186/s12957-022-02516-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 02/10/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Purpose
The purpose of this study was to explore the risk factors for synchronous liver metastasis (LM) of colorectal cancer (CRC) and to construct a nomogram for predicting the occurrence of synchronous LM based on baseline and pathological information.
Methods
The baseline and pathological information of 3190 CRC patients were enrolled in the study from the Department of Colorectal Surgery, the Second Affiliated Hospital of Harbin Medical University between 2012 and 2020. All patients were divided into development and validation cohorts with the 1:1 ratio. The characters of LM and none-LM patients in newly diagnosed colorectal cancer were utilized to explore the risk factors for synchronous LM with the univariate and multivariate logistic regression analyses. A predictive nomogram was constructed by using an R tool. In addition, receiver operating characteristic (ROC) curves was calculated to describe the discriminability of the nomogram. A calibration curve was plotted to compare the predicted and observed results of the nomogram. Decision-making curve analysis (DCA) was used to evaluate the clinical effect of nomogram.
Results
The nomogram consisted of six features including tumor site, vascular invasion (VI), T stage, N stage, preoperative CEA, and CA-199 level. ROC curves for the LM nomogram indicated good discrimination in the development (AUC = 0.885, 95% CI 0.854–0.916) and validation cohort (AUC = 0.857, 95% CI 0.821–0.893). The calibration curve showed that the prediction results of the nomogram were in good agreement with the actual observation results. Moreover, the DCA curves determined the clinical application value of predictive nomogram.
Conclusions
The pathologic-based nomogram could help clinicians to predict the occurrence of synchronous LM in postoperative CRC patients and provide a reference to perform appropriate metastatic screening plans and rational therapeutic options for the special population.
Collapse
|
26
|
Wu H, Wang Z, Liang Y, Tan C, Wei X, Zhang W, Yang R, Mo L, Jiang X. A Computed Tomography Nomogram for Assessing the Malignancy Risk of Focal Liver Lesions in Patients With Cirrhosis: A Preliminary Study. Front Oncol 2022; 11:681489. [PMID: 35127463 PMCID: PMC8814623 DOI: 10.3389/fonc.2021.681489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 12/27/2021] [Indexed: 11/13/2022] Open
Abstract
Purpose The detection and characterization of focal liver lesions (FLLs) in patients with cirrhosis is challenging. Accurate information about FLLs is key to their management, which can range from conservative methods to surgical excision. We sought to develop a nomogram that incorporates clinical risk factors, blood indicators, and enhanced computed tomography (CT) imaging findings to predict the nature of FLLs in cirrhotic livers. Method A total of 348 surgically confirmed FLLs were included. CT findings and clinical data were assessed. All factors with P < 0.05 in univariate analysis were included in multivariate analysis. ROC analysis was performed, and a nomogram was constructed based on the multivariate logistic regression analysis results. Results The FLLs were either benign (n = 79) or malignant (n = 269). Logistic regression evaluated independent factors that positively affected malignancy. AFP (OR = 10.547), arterial phase hyperenhancement (APHE) (OR = 740.876), washout (OR = 0.028), satellite lesions (OR = 15.164), ascites (OR = 156.241), and nodule-in-nodule architecture (OR =27.401) were independent predictors of malignancy. The combined predictors had excellent performance in differentiating benign and malignant lesions, with an AUC of 0.959, a sensitivity of 95.24%, and a specificity of 87.5% in the training cohort and AUC of 0.981, sensitivity of 94.74%, and specificity of 93.33% in the test cohort. The C-index was 96.80%, and calibration curves showed good agreement between the nomogram predictions and the actual data. Conclusions The nomogram showed excellent discrimination and calibration for malignancy risk prediction, and it may aid in making FLLs treatment decisions.
Collapse
Affiliation(s)
- Hongzhen Wu
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou, China.,Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Zihua Wang
- Department of Radiology, Foshan Hospital of Traditional Chinese Medicine, Foshan, China
| | - Yingying Liang
- Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Caihong Tan
- Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Xinhua Wei
- Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Wanli Zhang
- Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Ruimeng Yang
- Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Lei Mo
- Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Xinqing Jiang
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou, China.,Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|
27
|
Rompianesi G, Pegoraro F, Ceresa CDL, Montalti R, Troisi RI. Artificial intelligence in the diagnosis and management of colorectal cancer liver metastases. World J Gastroenterol 2022; 28:108-122. [PMID: 35125822 PMCID: PMC8793013 DOI: 10.3748/wjg.v28.i1.108] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/12/2021] [Accepted: 12/25/2021] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common malignancy worldwide, with approximately 50% of patients developing colorectal cancer liver metastasis (CRLM) during the follow-up period. Management of CRLM is best achieved via a multidisciplinary approach and the diagnostic and therapeutic decision-making process is complex. In order to optimize patients' survival and quality of life, there are several unsolved challenges which must be overcome. These primarily include a timely diagnosis and the identification of reliable prognostic factors. Furthermore, to allow optimal treatment options, a precision-medicine, personalized approach is required. The widespread digitalization of healthcare generates a vast amount of data and together with accessible high-performance computing, artificial intelligence (AI) technologies can be applied. By increasing diagnostic accuracy, reducing timings and costs, the application of AI could help mitigate the current shortcomings in CRLM management. In this review we explore the available evidence of the possible role of AI in all phases of the CRLM natural history. Radiomics analysis and convolutional neural networks (CNN) which combine computed tomography (CT) images with clinical data have been developed to predict CRLM development in CRC patients. AI models have also proven themselves to perform similarly or better than expert radiologists in detecting CRLM on CT and magnetic resonance scans or identifying them from the noninvasive analysis of patients' exhaled air. The application of AI and machine learning (ML) in diagnosing CRLM has also been extended to histopathological examination in order to rapidly and accurately identify CRLM tissue and its different histopathological growth patterns. ML and CNN have shown good accuracy in predicting response to chemotherapy, early local tumor progression after ablation treatment, and patient survival after surgical treatment or chemotherapy. Despite the initial enthusiasm and the accumulating evidence, AI technologies' role in healthcare and CRLM management is not yet fully established. Its limitations mainly concern safety and the lack of regulation and ethical considerations. AI is unlikely to fully replace any human role but could be actively integrated to facilitate physicians in their everyday practice. Moving towards a personalized and evidence-based patient approach and management, further larger, prospective and rigorous studies evaluating AI technologies in patients at risk or affected by CRLM are needed.
Collapse
Affiliation(s)
- Gianluca Rompianesi
- Division of Hepato-Bilio-Pancreatic, Minimally Invasive and Robotic Surgery, Department of Clinical Medicine and Surgery, Federico II University Hospital, Naples 80125, Italy
| | - Francesca Pegoraro
- Division of Hepato-Bilio-Pancreatic, Minimally Invasive and Robotic Surgery, Department of Clinical Medicine and Surgery, Federico II University Hospital, Naples 80125, Italy
| | - Carlo DL Ceresa
- Department of Hepato-Pancreato-Biliary Surgery, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9ES, United Kingdom
| | - Roberto Montalti
- Division of Hepato-Bilio-Pancreatic, Minimally Invasive and Robotic Surgery, Department of Public Health, Federico II University Hospital, Naples 80125, Italy
| | - Roberto Ivan Troisi
- Division of Hepato-Bilio-Pancreatic, Minimally Invasive and Robotic Surgery, Department of Clinical Medicine and Surgery, Federico II University Hospital, Naples 80125, Italy
| |
Collapse
|
28
|
Wang Y, Ma LY, Yin XP, Gao BL. Radiomics and Radiogenomics in Evaluation of Colorectal Cancer Liver Metastasis. Front Oncol 2022; 11:689509. [PMID: 35070948 PMCID: PMC8776634 DOI: 10.3389/fonc.2021.689509] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 12/03/2021] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer is one common digestive malignancy, and the most common approach of blood metastasis of colorectal cancer is through the portal vein system to the liver. Early detection and treatment of liver metastasis is the key to improving the prognosis of the patients. Radiomics and radiogenomics use non-invasive methods to evaluate the biological properties of tumors by deeply mining the texture features of images and quantifying the heterogeneity of metastatic tumors. Radiomics and radiogenomics have been applied widely in the detection, treatment, and prognostic evaluation of colorectal cancer liver metastases. Based on the imaging features of the liver, this paper reviews the current application of radiomics and radiogenomics in the diagnosis, treatment, monitor of disease progression, and prognosis of patients with colorectal cancer liver metastases.
Collapse
Affiliation(s)
| | | | - Xiao-Ping Yin
- CT-MRI Room, Affiliated Hospital of Hebei University, Baoding, China
| | | |
Collapse
|
29
|
Kuai L, Zhang Y, Luo Y, Li W, Li XD, Zhang HP, Liu TY, Yin SY, Li B. Prognostic Nomogram for Liver Metastatic Colon Cancer Based on Histological Type, Tumor Differentiation, and Tumor Deposit: A TRIPOD Compliant Large-Scale Survival Study. Front Oncol 2021; 11:604882. [PMID: 34712601 PMCID: PMC8546254 DOI: 10.3389/fonc.2021.604882] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 09/20/2021] [Indexed: 12/11/2022] Open
Abstract
Objective A proportional hazard model was applied to develop a large-scale prognostic model and nomogram incorporating clinicopathological characteristics, histological type, tumor differentiation grade, and tumor deposit count to provide clinicians and patients diagnosed with colon cancer liver metastases (CLM) a more comprehensive and practical outcome measure. Methods Using the Transparent Reporting of multivariable prediction models for individual Prognosis or Diagnosis (TRIPOD) guidelines, this study identified 14,697 patients diagnosed with CLM from 1975 to 2017 in the Surveillance, Epidemiology, and End Results (SEER) 21 registry database. Patients were divided into a modeling group (n=9800), an internal validation group (n=4897) using computerized randomization. An independent external validation cohort (n=60) was obtained. Univariable and multivariate Cox analyses were performed to identify prognostic predictors for overall survival (OS). Subsequently, the nomogram was constructed, and the verification was undertaken by receiver operating curves (AUC) and calibration curves. Results Histological type, tumor differentiation grade, and tumor deposit count were independent prognostic predictors for CLM. The nomogram consisted of age, sex, primary site, T category, N category, metastasis of bone, brain or lung, surgery, and chemotherapy. The model achieved excellent prediction power on both internal (mean AUC=0.811) and external validation (mean AUC=0.727), respectively, which were significantly higher than the American Joint Committee on Cancer (AJCC) TNM system. Conclusion This study proposes a prognostic nomogram for predicting 1- and 2-year survival based on histopathological and population-based data of CLM patients developed using TRIPOD guidelines. Compared with the TNM stage, our nomogram has better consistency and calibration for predicting the OS of CLM patients.
Collapse
Affiliation(s)
- Le Kuai
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Ying Zhang
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Ying Luo
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Wei Li
- Center for Translational Medicine, Huaihe Hospital of Henan University, Kaifeng, China
| | - Xiao-Dong Li
- Department of Urology Surgery, Huaihe Hospital of Henan University, Kaifeng, China.,Institute of Evidence-Based Medicine and Knowledge Translation, Henan University, Kaifeng, China
| | - Hui-Ping Zhang
- Research and Development Center, Shanghai Applied Protein Technology Co., Ltd., Shanghai, China
| | - Tai-Yi Liu
- Research and Development Center, Shanghai Applied Protein Technology Co., Ltd., Shanghai, China
| | - Shuang-Yi Yin
- Center for Translational Medicine, Huaihe Hospital of Henan University, Kaifeng, China
| | - Bin Li
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China.,Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
30
|
Taghavi M, Trebeschi S, Simões R, Meek DB, Beckers RCJ, Lambregts DMJ, Verhoef C, Houwers JB, van der Heide UA, Beets-Tan RGH, Maas M. Machine learning-based analysis of CT radiomics model for prediction of colorectal metachronous liver metastases. Abdom Radiol (NY) 2021; 46:249-256. [PMID: 32583138 DOI: 10.1007/s00261-020-02624-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE Early identification of patients at risk of developing colorectal liver metastases can help personalizing treatment and improve oncological outcome. The aim of this study was to investigate in patients with colorectal cancer (CRC) whether a machine learning-based radiomics model can predict the occurrence of metachronous metastases. METHODS In this multicentre study, the primary staging portal venous phase CT of 91 CRC patients were retrospectively analysed. Two groups were assessed: patients without liver metastases at primary staging, or during follow-up of ≥ 24 months (n = 67) and patients without liver metastases at primary staging but developed metachronous liver metastases < 24 months after primary staging (n = 24). After liver parenchyma segmentation, 1767 radiomics features were extracted for each patient. Three predictive models were constructed based on (1) radiomics features, (2) clinical features and (3) a combination of clinical and radiomics features. Stability of features across hospitals was assessed by the Kruskal-Wallis test and inter-correlated features were removed if their correlation coefficient was higher than 0.9. Bayesian-optimized random forest with wrapper feature selection was used for prediction models. RESULTS The three predictive models that included radiomics features, clinical features and a combination of radiomics with clinical features resulted in an AUC in the validation cohort of 86% (95%CI 85-87%), 71% (95%CI 69-72%) and 86% (95% CI 85-87%), respectively. CONCLUSION A machine learning-based radiomics analysis of routine clinical CT imaging at primary staging can provide valuable biomarkers to identify patients at high risk for developing colorectal liver metastases.
Collapse
|
31
|
Staal FCR, van der Reijd DJ, Taghavi M, Lambregts DMJ, Beets-Tan RGH, Maas M. Radiomics for the Prediction of Treatment Outcome and Survival in Patients With Colorectal Cancer: A Systematic Review. Clin Colorectal Cancer 2020; 20:52-71. [PMID: 33349519 DOI: 10.1016/j.clcc.2020.11.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 09/03/2020] [Accepted: 11/02/2020] [Indexed: 02/07/2023]
Abstract
Prediction of outcome in patients with colorectal cancer (CRC) is challenging as a result of lack of a robust biomarker and heterogeneity between and within tumors. The aim of this review was to assess the current possibilities and limitations of radiomics (on computed tomography [CT], magnetic resonance imaging [MRI], and positron emission tomography [PET]) for the prediction of treatment outcome and long-term outcome in CRC. Medline/PubMed was searched up to August 2020 for studies that used radiomics for the prediction of response to treatment and survival in patients with CRC (based on pretreatment imaging). The Quality Assessment of Diagnostic Accuracy Studies (QUADAS) tool and Radiomics Quality Score (RQS) were used for quality assessment. A total of 76 studies met the inclusion criteria and were included for further analysis. Radiomics analyses were performed on MRI in 41 studies, on CT in 30 studies, and on 18F-FDG-PET/CT in 10 studies. Heterogeneous results were reported regarding radiomics methods and included features. High-quality studies (n = 13), consisting mainly of MRI-based radiomics to predict response in rectal cancer, were able to predict response with good performance. Radiomics literature in CRC is highly heterogeneous, but it nonetheless holds promise for the prediction of outcome. The most evidence is available for MRI-based radiomics in rectal cancer. Future radiomics research in CRC should focus on independent validation of existing models rather than on developing new models.
Collapse
Affiliation(s)
- Femke C R Staal
- Department of Radiology, Antoni van Leeuwenhoek, The Netherlands Cancer Institute, Amsterdam, The Netherlands; GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Denise J van der Reijd
- Department of Radiology, Antoni van Leeuwenhoek, The Netherlands Cancer Institute, Amsterdam, The Netherlands; GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Marjaneh Taghavi
- Department of Radiology, Antoni van Leeuwenhoek, The Netherlands Cancer Institute, Amsterdam, The Netherlands; GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Doenja M J Lambregts
- Department of Radiology, Antoni van Leeuwenhoek, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Regina G H Beets-Tan
- Department of Radiology, Antoni van Leeuwenhoek, The Netherlands Cancer Institute, Amsterdam, The Netherlands; GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands; Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Monique Maas
- Department of Radiology, Antoni van Leeuwenhoek, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| |
Collapse
|