1
|
Randall Harrell C, Djonov V, Volarevic A, Arsenijevic A, Volarevic V. Mesenchymal Stem Cell-Sourced Exosomes as Potentially Novel Remedies for Severe Dry Eye Disease. J Ophthalmol 2025; 2025:5552374. [PMID: 39839752 PMCID: PMC11748739 DOI: 10.1155/joph/5552374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 12/21/2024] [Accepted: 01/02/2025] [Indexed: 01/23/2025] Open
Abstract
Severe dry eye disease (DED) is an inflammatory condition characterized by a lack of sufficient moisture or lubrication on the surface of the eye, significantly impacting the quality of life and visual function. Since detrimental immune response is crucially responsible for the development and aggravation of DED, therapeutic agents which modulate phenotype and function of eye-infiltrated inflammatory immune cells could be used for the treatment of severe DED. Due to their potent immunomodulatory properties, mesenchymal stem cells (MSCs) represent potentially new remedies for the treatment of inflammatory eye diseases. The majority of MSC-sourced bioactive factors are contained within MSC-derived exosomes (MSC-Exos), nano-sized extracellular vesicles which, due to their nanosize dimension and lipid envelope, easily by pass all biological barriers in the body and deliver their cargo directly into the target immune cells. MSC-Exos contain a variety of bioactive proteins (growth factors, immunoregulatory molecules, cytokines, and chemokines) lipids, and microRNAs (miRNAs) which affect viability, proliferation, phenotype, and function of eye-infiltrated immune cells. Accordingly, MSC-Exos may modulate the progression of inflammatory eye diseases, including DED. Therefore, in this review article, we summarized the current knowledge regarding molecular and cellular mechanisms which were responsible for trophic, anti-inflammatory, immunoregulatory, and regenerative properties of MSC-Exos in the treatment of severe DED. For this purpose, an extensive literature review was carried out in February 2024 across several databases (Medline, Embase, and Google Scholar), from 2000 to the present. Eligible studies delineated molecular and cellular mechanisms responsible for the MSC-Exos-based modulation of immune cell-driven eye inflammation in DED, and their findings were analyzed in this review. Results obtained in these studies demonstrated beneficial effects of MSC-Exos in the treatment of severe DED, paving the way for their future clinical use in ophthalmology. Trial Registration: ClinicalTrials.gov identifier: NCT04213248, NCT06475027, NCT06543667, NCT05738629.
Collapse
Affiliation(s)
- Carl Randall Harrell
- Department of Molecular Biology, Regenerative Processing Plant, LLC, 34176 US Highway 19 N, Palm Harbor, Florida, USA
| | - Valentin Djonov
- Department of Anatomy, Institute of Anatomy, University of Bern, Baltzerstrasse 2, Bern 3012, Switzerland
| | - Ana Volarevic
- Departments of Psychology, Center for Research on Harmful Effects of Biological and Chemical Hazards, Faculty of Medical Sciences University of Kragujevac, 69 Svetozara Markovica Street, Kragujevac 34000, Serbia
| | - Aleksandar Arsenijevic
- Departments of Genetics, Microbiology and Immunology, Center for Research on Harmful Effects of Biological and Chemical Hazards, Faculty of Medical Sciences University of Kragujevac, 69 Svetozara Markovica Street, Kragujevac 34000, Serbia
| | - Vladislav Volarevic
- Departments of Genetics, Microbiology and Immunology, Center for Research on Harmful Effects of Biological and Chemical Hazards, Faculty of Medical Sciences University of Kragujevac, 69 Svetozara Markovica Street, Kragujevac 34000, Serbia
- Department of Biology, Faculty of Pharmacy Novi Sad, Trg Mladenaca 5, Novi Sad 21000, Serbia
| |
Collapse
|
2
|
Al-Sherief S, El-Hadidy A, Hamed S, El-Hawwary A, Mazroa S. Bone marrow mesenchymal stem cells (BM-MSCs) modulate MMP9 expression and promote articular cartilage regeneration in knee joint of a model of arthritis induced in adult rat: histological and immunohistochemical study. J Mol Histol 2024; 56:38. [PMID: 39661261 DOI: 10.1007/s10735-024-10284-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 10/31/2024] [Indexed: 12/12/2024]
Abstract
Arthritis is characterized by the progressive degeneration of articular cartilage, and the avascular nature of cartilage limits its capacity for self-repair. Stem cells are considered a promising treatment option due to their multipotent differentiation potential. The aim of this work was to investigate the structural changes in the hyaline articular cartilage of the knee joint in a model of arthritis induced by complete Freund's adjuvant, and to assess intra-articular injection of bone marrow mesenchymal stem cells (BM-MSCs) through both histological and immunohistochemical study. Adult male albino rats were divided into four groups: group 0 (donor group), group I (control group), group II (arthritis group) and group III (BM-MSCs treated arthritis group). Samples were collected 2, 6 and 10 weeks after the onset of the experiment. Sections were stained with; hematoxylin and eosin, Safranin O fast green stain, Masson's trichrome stain and anti-MMP9 antibody. In Group II (arthritis group), the articular cartilage showed signs of degeneration, including chondrocyte extensive proliferation, fibrillations, fissuring, and denudation, with fibrous tissue covering the exposed surface. There was a significant decrease in cartilage thickness, collagen content, and proteoglycan levels. The integrated density of MMP9 in the cartilage was significantly increased compared to Group I (control group). In contrast, Group III (BM-MSCs-treated arthritis group) exhibited a continuous cartilage surface with no cracks or fissures. There was a significant increase in cartilage thickness, collagen content, and proteoglycan levels, while the integrated density of MMP9 was significantly decreased compared to Group II (arthritis group).
Collapse
Affiliation(s)
- Sara Al-Sherief
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt.
| | - Azza El-Hadidy
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Shereen Hamed
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Amany El-Hawwary
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Shireen Mazroa
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
3
|
Chu CH, Lee RP, Wu WT, Chen IH, Yeh KT, Wang CC. Advancing Osteoarthritis Treatment: The Therapeutic Potential of Mesenchymal Stem Cell-Derived Exosomes and Biomaterial Integration. Biomedicines 2024; 12:2478. [PMID: 39595044 PMCID: PMC11591758 DOI: 10.3390/biomedicines12112478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/22/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Osteoarthritis (OA) is a prevalent and debilitating joint disorder characterized by progressive cartilage degradation and inflammation, for which traditional treatments offer only symptomatic relief without halting disease progression. Exosomes, cell-free vesicles derived from mesenchymal stem cells, have emerged as a promising alternative therapy owing to their regenerative and anti-inflammatory properties. METHODS This review synthesizes findings from recent studies (2017-2023) on the therapeutic potential of exosomes in OA treatment, highlighting their ability to modulate the joint microenvironment, reduce inflammation, and promote cartilage repair by delivering bioactive molecules such as cytokines, growth factors, and regulatory ribonucleic acids. RESULTS We explore the integration of exosomes with biomaterials, such as hydrogels and scaffolds, to enhance their delivery and therapeutic efficacy, and we address the critical challenges associated with their clinical application, including standardization of isolation and characterization methods, scalability of production, mechanistic understanding, and long-term safety. Despite these challenges, exosome-based therapies offer several advantages over traditional and cell-based treatments, including lower immunogenicity, ease of handling, and targeted delivery of therapeutic agents to damaged tissues. CONCLUSIONS We provide an analytical perspective on the current state of exosome research in OA, emphasizing the need for standardized production methods, deeper mechanistic insights, and rigorous long-term safety assessments. Future directions should focus on optimizing delivery systems, exploring personalized medicine approaches, and conducting comparative effectiveness studies to fully realize the potential of exosome therapies for OA treatment. Addressing these gaps will be crucial for translating exosome therapies from bench to bedside and achieving a transformative impact on OA management.
Collapse
Affiliation(s)
- Chung-Hua Chu
- Department of Orthopedic Surgery, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231016, Taiwan;
- Department of Biomedical Engineering, National Taiwan University, Taipei 106216, Taiwan
| | - Ru-Ping Lee
- Institute of Medical Sciences, Tzu Chi University, Hualien 970374, Taiwan; (R.-P.L.); (W.-T.W.)
| | - Wen-Tien Wu
- Institute of Medical Sciences, Tzu Chi University, Hualien 970374, Taiwan; (R.-P.L.); (W.-T.W.)
- Department of Orthopedics, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970473, Taiwan;
- School of Medicine, Tzu Chi University, Hualien 970374, Taiwan
| | - Ing-Ho Chen
- Department of Orthopedics, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970473, Taiwan;
- School of Medicine, Tzu Chi University, Hualien 970374, Taiwan
| | - Kuang-Ting Yeh
- Institute of Medical Sciences, Tzu Chi University, Hualien 970374, Taiwan; (R.-P.L.); (W.-T.W.)
- Department of Orthopedics, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970473, Taiwan;
- School of Medicine, Tzu Chi University, Hualien 970374, Taiwan
- Graduate Institute of Clinical Pharmacy, Tzu Chi University, Hualien 970374, Taiwan
| | - Chen-Chie Wang
- Department of Orthopedic Surgery, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231016, Taiwan;
- School of Medicine, Tzu Chi University, Hualien 970374, Taiwan
| |
Collapse
|
4
|
Tati V, Mitra S, Basu S, Shukla S. Bone marrow mesenchymal stem cell-derived extracellular vesicles promote corneal epithelial repair and suppress apoptosis via modulation of Caspase-3 in vitro. FEBS Open Bio 2024; 14:968-982. [PMID: 38684330 PMCID: PMC11494918 DOI: 10.1002/2211-5463.13804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/21/2024] [Accepted: 04/10/2024] [Indexed: 05/02/2024] Open
Abstract
Corneal injuries are the major cause of blindness and visual impairment. Available treatments are limited by their efficacy and side effects. Mesenchymal stem cell-derived extracellular vesicles are presumed as functional equivalents and potential candidates for cell-free therapy. This study reports isolation and characterization of extracellular vesicles from human bone marrow mesenchymal stem cells and evaluates their role in mediating epithelial repair and apoptosis in cultured corneal epithelial cells through scratch assay, PCR, immunofluorescence, and flow cytometry in vitro. The isolated extracellular vesicles were spherical, < 150 nm in diameter, and characterized as CD9+, CD63+, CD81+, TSG101+, and Calnexin-. Further, these vesicles promoted corneal epithelial repair by enhancing proliferation and suppressed apoptosis by regulating the expression of BAD, P53, BCL-2, and cleaved CASPASE-3. Thus, our results suggest that BM-MSC-EVs might have the potential to be used for the treatment of injury-induced corneal epithelial defects. Clinical translation of this work would require further investigations.
Collapse
Affiliation(s)
- Vasudeva Tati
- Prof. Brien Holden Eye Research Centre, Hyderabad Eye Research FoundationL V Prasad Eye InstituteHyderabadIndia
- Sudhakar and Sreekanth Ravi Stem Cell Biology Laboratory, Centre for Ocular RegenerationL V Prasad Eye InstituteHyderabadIndia
| | - Sreya Mitra
- Prof. Brien Holden Eye Research Centre, Hyderabad Eye Research FoundationL V Prasad Eye InstituteHyderabadIndia
- Sudhakar and Sreekanth Ravi Stem Cell Biology Laboratory, Centre for Ocular RegenerationL V Prasad Eye InstituteHyderabadIndia
| | - Sayan Basu
- Prof. Brien Holden Eye Research Centre, Hyderabad Eye Research FoundationL V Prasad Eye InstituteHyderabadIndia
- Sudhakar and Sreekanth Ravi Stem Cell Biology Laboratory, Centre for Ocular RegenerationL V Prasad Eye InstituteHyderabadIndia
- Shantilal Shanghvi Cornea Institute, L V Prasad Eye InstituteHyderabadIndia
| | - Sachin Shukla
- Prof. Brien Holden Eye Research Centre, Hyderabad Eye Research FoundationL V Prasad Eye InstituteHyderabadIndia
- Sudhakar and Sreekanth Ravi Stem Cell Biology Laboratory, Centre for Ocular RegenerationL V Prasad Eye InstituteHyderabadIndia
| |
Collapse
|
5
|
Chi A, Yang B, Dai H, Li X, Mo J, Gao Y, Chen Z, Feng X, Ma M, Li Y, Yang C, Liu J, Liu H, Wang Z, Gao F, Liao Y, Shi X, Deng C, Zhang M. Stem Leydig cells support macrophage immunological homeostasis through mitochondrial transfer in mice. Nat Commun 2024; 15:2120. [PMID: 38459012 PMCID: PMC10924100 DOI: 10.1038/s41467-024-46190-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 02/16/2024] [Indexed: 03/10/2024] Open
Abstract
As testicular mesenchymal stromal cells, stem Leydig cells (SLCs) show great promise in the treatment of male hypogonadism. The therapeutic functions of mesenchymal stromal cells are largely determined by their reciprocal regulation by immune responses. However, the immunoregulatory properties of SLCs remain unclear. Here, we observe that SLCs transplantation restore male fertility and testosterone production in an ischemia‒reperfusion injury mouse model. SLCs prevent inflammatory cascades through mitochondrial transfer to macrophages. Reactive oxygen species (ROS) released from activated macrophages inducing mitochondrial transfer from SLCs to macrophages in a transient receptor potential cation channel subfamily member 7 (TRPM7)-mediated manner. Notably, knockdown of TRPM7 in transplanted SLCs compromised therapeutic outcomes in both testicular ischemia‒reperfusion and testicular aging mouse models. These findings reveal a new mechanism of SLCs transplantation that may contribute to preserve testis function in male patients with hypogonadism related to immune disorders.
Collapse
Affiliation(s)
- Ani Chi
- Department of Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Bicheng Yang
- Department of Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Hao Dai
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Xinyu Li
- Department of Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jiahui Mo
- Department of Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yong Gao
- Reproductive Medicine Center, The Key Laboratory for Reproductive Medicine of Guangdong Province, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Zhihong Chen
- Department of Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xin Feng
- Department of Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Menghui Ma
- Center of Reproductive Medicine, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
| | - Yanqing Li
- Center of Reproductive Medicine, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
| | - Chao Yang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Jie Liu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Hanchao Liu
- Department of Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Zhenqing Wang
- Department of Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Feng Gao
- Department of Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- Reproductive Medicine Center, The Key Laboratory for Reproductive Medicine of Guangdong Province, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Yan Liao
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Xuetao Shi
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China.
- National Engineering Research Centre for Tissue Restoration and Reconstruction and Key Laboratory of Biomedical Engineering of Guangdong Province South China University of Technology, Guangzhou, 510640, China.
- Shenzhen Beike Biotechnology Co., Ltd., Shenzhen, 518054, China.
| | - Chunhua Deng
- Department of Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Min Zhang
- Department of Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
6
|
Liu Y, Xiong W, Li J, Feng H, Jing S, Liu Y, Zhou H, Li D, Fu D, Xu C, He Y, Ye Q. Application of dental pulp stem cells for bone regeneration. Front Med (Lausanne) 2024; 11:1339573. [PMID: 38487022 PMCID: PMC10938947 DOI: 10.3389/fmed.2024.1339573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/15/2024] [Indexed: 03/17/2024] Open
Abstract
Bone defects resulting from severe trauma, tumors, inflammation, and other factors are increasingly prevalent. Stem cell-based therapies have emerged as a promising alternative. Dental pulp stem cells (DPSCs), sourced from dental pulp, have garnered significant attention owing to their ready accessibility and minimal collection-associated risks. Ongoing investigations into DPSCs have revealed their potential to undergo osteogenic differentiation and their capacity to secrete a diverse array of ontogenetic components, such as extracellular vesicles and cell lysates. This comprehensive review article aims to provide an in-depth analysis of DPSCs and their secretory components, emphasizing extraction techniques and utilization while elucidating the intricate mechanisms governing bone regeneration. Furthermore, we explore the merits and demerits of cell and cell-free therapeutic modalities, as well as discuss the potential prospects, opportunities, and inherent challenges associated with DPSC therapy and cell-free therapies in the context of bone regeneration.
Collapse
Affiliation(s)
- Ye Liu
- Center of Regenerative Medicine, Department of Stomatology Renmin Hospital of Wuhan University, Wuhan, China
| | - Wei Xiong
- Center of Regenerative Medicine, Department of Stomatology Renmin Hospital of Wuhan University, Wuhan, China
| | - Junyi Li
- Center of Regenerative Medicine, Department of Stomatology Renmin Hospital of Wuhan University, Wuhan, China
| | - Huixian Feng
- Center of Regenerative Medicine, Department of Stomatology Renmin Hospital of Wuhan University, Wuhan, China
| | - Shuili Jing
- Center of Regenerative Medicine, Department of Stomatology Renmin Hospital of Wuhan University, Wuhan, China
| | - Yonghao Liu
- Center of Regenerative Medicine, Department of Stomatology Renmin Hospital of Wuhan University, Wuhan, China
| | - Heng Zhou
- Center of Regenerative Medicine, Department of Stomatology Renmin Hospital of Wuhan University, Wuhan, China
| | - Duan Li
- Center of Regenerative Medicine, Department of Stomatology Renmin Hospital of Wuhan University, Wuhan, China
| | - Dehao Fu
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chun Xu
- Sydney Dental School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Yan He
- Institute of Regenerative and Translational Medicine, Tianyou Hospital of Wuhan University of Science and Technology, Wuhan, China
- Department of Oral and Maxillofacial Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Qingsong Ye
- Center of Regenerative Medicine, Department of Stomatology Renmin Hospital of Wuhan University, Wuhan, China
- Department of Oral and Maxillofacial Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
7
|
Ivan A, Cristea MI, Telea A, Oprean C, Galuscan A, Tatu CA, Paunescu V. Stem Cells Derived from Human Exfoliated Deciduous Teeth Functional Assessment: Exploring the Changes of Free Fatty Acids Composition during Cultivation. Int J Mol Sci 2023; 24:17249. [PMID: 38139076 PMCID: PMC10743411 DOI: 10.3390/ijms242417249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
The metabolic regulation of stemness is widely recognized as a crucial factor in determining the fate of stem cells. When transferred to a stimulating and nutrient-rich environment, mesenchymal stem cells (MSCs) undergo rapid proliferation, accompanied by a change in protein expression and a significant reconfiguration of central energy metabolism. This metabolic shift, from quiescence to metabolically active cells, can lead to an increase in the proportion of senescent cells and limit their regenerative potential. In this study, MSCs from human exfoliated deciduous teeth (SHEDs) were isolated and expanded in vitro for up to 10 passages. Immunophenotypic analysis, growth kinetics, in vitro plasticity, fatty acid content, and autophagic capacity were assessed throughout cultivation to evaluate the functional characteristics of SHEDs. Our findings revealed that SHEDs exhibit distinctive patterns of cell surface marker expression, possess high self-renewal capacity, and have a unique potential for neurogenic differentiation. Aged SHEDs exhibited lower proliferation rates, reduced potential for chondrogenic and osteogenic differentiation, an increasing capacity for adipogenic differentiation, and decreased autophagic potential. Prolonged cultivation of SHEDs resulted in changes in fatty acid composition, signaling a transition from anti-inflammatory to proinflammatory pathways. This underscores the intricate connection between metabolic regulation, stemness, and aging, crucial for optimizing therapeutic applications.
Collapse
Affiliation(s)
- Alexandra Ivan
- Department of Immunology and Allergology, Biology, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (C.A.T.); (V.P.)
- Center for Gene and Cellular Therapies in the Treatment of Cancer—Oncogen Center, Clinical County Hospital “Pius Brînzeu”, 300723 Timisoara, Romania; (M.I.C.); (A.T.); (C.O.)
| | - Mirabela I. Cristea
- Center for Gene and Cellular Therapies in the Treatment of Cancer—Oncogen Center, Clinical County Hospital “Pius Brînzeu”, 300723 Timisoara, Romania; (M.I.C.); (A.T.); (C.O.)
| | - Ada Telea
- Center for Gene and Cellular Therapies in the Treatment of Cancer—Oncogen Center, Clinical County Hospital “Pius Brînzeu”, 300723 Timisoara, Romania; (M.I.C.); (A.T.); (C.O.)
| | - Camelia Oprean
- Center for Gene and Cellular Therapies in the Treatment of Cancer—Oncogen Center, Clinical County Hospital “Pius Brînzeu”, 300723 Timisoara, Romania; (M.I.C.); (A.T.); (C.O.)
- Department of Drug analysis, Chemistry of the Environment and Food, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Atena Galuscan
- Translational and Experimental Clinical Research Centre in Oral Health, Department of Preventive, Community Dentistry and Oral Health, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Calin A. Tatu
- Department of Immunology and Allergology, Biology, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (C.A.T.); (V.P.)
- Center for Gene and Cellular Therapies in the Treatment of Cancer—Oncogen Center, Clinical County Hospital “Pius Brînzeu”, 300723 Timisoara, Romania; (M.I.C.); (A.T.); (C.O.)
| | - Virgil Paunescu
- Department of Immunology and Allergology, Biology, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (C.A.T.); (V.P.)
- Center for Gene and Cellular Therapies in the Treatment of Cancer—Oncogen Center, Clinical County Hospital “Pius Brînzeu”, 300723 Timisoara, Romania; (M.I.C.); (A.T.); (C.O.)
| |
Collapse
|
8
|
Giallongo S, Duminuco A, Dulcamare I, Zuppelli T, La Spina E, Scandura G, Santisi A, Romano A, Di Raimondo F, Tibullo D, Palumbo GA, Giallongo C. Engagement of Mesenchymal Stromal Cells in the Remodeling of the Bone Marrow Microenvironment in Hematological Cancers. Biomolecules 2023; 13:1701. [PMID: 38136573 PMCID: PMC10741414 DOI: 10.3390/biom13121701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) are a subset of heterogeneous, non-hematopoietic fibroblast-like cells which play important roles in tissue repair, inflammation, and immune modulation. MSCs residing in the bone marrow microenvironment (BMME) functionally interact with hematopoietic stem progenitor cells regulating hematopoiesis. However, MSCs have also emerged in recent years as key regulators of the tumor microenvironment. Indeed, they are now considered active players in the pathophysiology of hematologic malignancies rather than passive bystanders in the hematopoietic microenvironment. Once a malignant event occurs, the BMME acquires cellular, molecular, and epigenetic abnormalities affecting tumor growth and progression. In this context, MSC behavior is affected by signals coming from cancer cells. Furthermore, it has been shown that stromal cells themselves play a major role in several hematological malignancies' pathogenesis. This bidirectional crosstalk creates a functional tumor niche unit wherein tumor cells acquire a selective advantage over their normal counterparts and are protected from drug treatment. It is therefore of critical importance to unveil the underlying mechanisms which activate a protumor phenotype of MSCs for defining the unmasked vulnerabilities of hematological cancer cells which could be pharmacologically exploited to disrupt tumor/MSC coupling. The present review focuses on the current knowledge about MSC dysfunction mechanisms in the BMME of hematological cancers, sustaining tumor growth, immune escape, and cancer progression.
Collapse
Affiliation(s)
- Sebastiano Giallongo
- Department of Medical, Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy; (S.G.); (G.A.P.); (C.G.)
| | - Andrea Duminuco
- Division of Hematology, AOU Policlinico, 95123 Catania, Italy; (A.D.); (A.S.)
| | - Ilaria Dulcamare
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy;
| | - Tatiana Zuppelli
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (T.Z.); (E.L.S.)
| | - Enrico La Spina
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (T.Z.); (E.L.S.)
| | - Grazia Scandura
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, 95123 Catania, Italy; (G.S.); (A.R.); (F.D.R.)
| | - Annalisa Santisi
- Division of Hematology, AOU Policlinico, 95123 Catania, Italy; (A.D.); (A.S.)
| | - Alessandra Romano
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, 95123 Catania, Italy; (G.S.); (A.R.); (F.D.R.)
| | - Francesco Di Raimondo
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, 95123 Catania, Italy; (G.S.); (A.R.); (F.D.R.)
| | - Daniele Tibullo
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (T.Z.); (E.L.S.)
| | - Giuseppe A. Palumbo
- Department of Medical, Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy; (S.G.); (G.A.P.); (C.G.)
| | - Cesarina Giallongo
- Department of Medical, Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy; (S.G.); (G.A.P.); (C.G.)
| |
Collapse
|
9
|
Princen K, Marien N, Guedens W, Graulus GJ, Adriaensens P. Hydrogels with Reversible Crosslinks for Improved Localised Stem Cell Retention: A Review. Chembiochem 2023; 24:e202300149. [PMID: 37220343 DOI: 10.1002/cbic.202300149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/21/2023] [Accepted: 05/23/2023] [Indexed: 05/25/2023]
Abstract
Successful stem cell applications could have a significant impact on the medical field, where many lives are at stake. However, the translation of stem cells to the clinic could be improved by overcoming challenges in stem cell transplantation and in vivo retention at the site of tissue damage. This review aims to showcase the most recent insights into developing hydrogels that can deliver, retain, and accommodate stem cells for tissue repair. Hydrogels can be used for tissue engineering, as their flexibility and water content makes them excellent substitutes for the native extracellular matrix. Moreover, the mechanical properties of hydrogels are highly tuneable, and recognition moieties to control cell behaviour and fate can quickly be introduced. This review covers the parameters necessary for the physicochemical design of adaptable hydrogels, the variety of (bio)materials that can be used in such hydrogels, their application in stem cell delivery and some recently developed chemistries for reversible crosslinking. Implementing physical and dynamic covalent chemistry has resulted in adaptable hydrogels that can mimic the dynamic nature of the extracellular matrix.
Collapse
Affiliation(s)
- Ken Princen
- Biomolecule Design Group, Institute for Materials Research (IMO-IMOMEC), Hasselt University, Agoralaan-Building D, 3590, Diepenbeek, Belgium
| | - Neeve Marien
- Biomolecule Design Group, Institute for Materials Research (IMO-IMOMEC), Hasselt University, Agoralaan-Building D, 3590, Diepenbeek, Belgium
| | - Wanda Guedens
- Biomolecule Design Group, Institute for Materials Research (IMO-IMOMEC), Hasselt University, Agoralaan-Building D, 3590, Diepenbeek, Belgium
| | - Geert-Jan Graulus
- Biomolecule Design Group, Institute for Materials Research (IMO-IMOMEC), Hasselt University, Agoralaan-Building D, 3590, Diepenbeek, Belgium
| | - Peter Adriaensens
- Biomolecule Design Group, Institute for Materials Research (IMO-IMOMEC), Hasselt University, Agoralaan-Building D, 3590, Diepenbeek, Belgium
| |
Collapse
|
10
|
Wang T, Yu T, Tsai CY, Hong ZY, Chao WH, Su YS, Subbiah SK, Renuka RR, Hsu ST, Wu GJ, Higuchi A. Xeno-free culture and proliferation of hPSCs on 2D biomaterials. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 199:63-107. [PMID: 37678982 DOI: 10.1016/bs.pmbts.2023.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Human pluripotent stem cells (human embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs)) have unlimited proliferative potential, whereas adult stem cells such as bone marrow-derived stem cells and adipose-derived stem cells have problems with aging. When hPSCs are intended to be cultured on feeder-free or xeno-free conditions without utilizing mouse embryonic fibroblasts or human fibroblasts, they cannot be cultured on conventional tissue culture polystyrene dishes, as adult stem cells can be cultured but should be cultivated on material surfaces grafted or coated with (a) natural or recombinant extracellular matrix (ECM) proteins, (b) ECM protein-derived peptides and specific synthetic polymer surfaces in xeno-free and/or chemically defined conditions. This review describes current developing cell culture biomaterials for the proliferation of hPSCs while maintaining the pluripotency and differentiation potential of the cells into 3 germ layers. Biomaterials for the cultivation of hPSCs without utilizing a feeder layer are essential to decrease the risk of xenogenic molecules, which contributes to the potential clinical usage of hPSCs. ECM proteins such as human recombinant vitronectin, laminin-511 and laminin-521 have been utilized instead of Matrigel for the feeder-free cultivation of hPSCs. The following biomaterials are also discussed for hPSC cultivation: (a) decellularized ECM, (b) peptide-grafted biomaterials derived from ECM proteins, (c) recombinant E-cadherin-coated surface, (d) polysaccharide-immobilized surface, (e) synthetic polymer surfaces with and without bioactive sites, (f) thermoresponsive polymer surfaces with and without bioactive sites, and (g) synthetic microfibrous scaffolds.
Collapse
Affiliation(s)
- Ting Wang
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Tao Yu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Chang-Yen Tsai
- Department of Chemical and Materials Engineering, National Central University, Jhongli, Taoyuan, Taiwan
| | - Zhao-Yu Hong
- Department of Chemical and Materials Engineering, National Central University, Jhongli, Taoyuan, Taiwan
| | - Wen-Hui Chao
- Department of Chemical and Materials Engineering, National Central University, Jhongli, Taoyuan, Taiwan
| | - Yi-Shuo Su
- Department of Chemical and Materials Engineering, National Central University, Jhongli, Taoyuan, Taiwan
| | - Suresh Kumar Subbiah
- Centre for Materials Engineering and Regenerative Medicine, Bharath Institute of Higher Education and Research, Chennai, India
| | - Remya Rajan Renuka
- Centre for Materials Engineering and Regenerative Medicine, Bharath Institute of Higher Education and Research, Chennai, India
| | - Shih-Tien Hsu
- Department of Internal Medicine, Landseed International Hospital, Pingjen City, Taoyuan, Taiwan
| | - Gwo-Jang Wu
- Graduate Institute of Medical Sciences and Department of Obstetrics & Gynecology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.
| | - Akon Higuchi
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China; Graduate Institute of Medical Sciences and Department of Obstetrics & Gynecology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
11
|
Xing Y, Liu C, Zhou L, Li Y, Wu D. Osteogenic effects of rapamycin on bone marrow mesenchymal stem cells via inducing autophagy. J Orthop Surg Res 2023; 18:129. [PMID: 36814286 PMCID: PMC9945701 DOI: 10.1186/s13018-023-03616-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/14/2023] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND While autophagy is essential for stem cells' self-renewal and differentiation, its effect on bone marrow mesenchymal stem cells (BMSCs) remains unclear. This study aimed to investigate the interaction between autophagy and osteogenic differentiation using rapamycin (RAPA), a classical autophagy agonist with osteo-regulatory effects. METHODS Rat BMSC's autophagy was analyzed after osteoinduction (0, 7, 14, and 21 d) by western blotting, immunofluorescence, and real-time quantitative polymerase chain reaction (RT-qPCR). In addition, we evaluated osteogenic differentiation using alizarin red staining, alkaline phosphatase assays, and RT-qPCR/Western blotting quantification of bone sialoprotein, type 1 collagen, alkaline phosphatase, osteopontin, and Runt-related transcription factor 2 mRNA and protein levels. RESULTS The BMSC's basal autophagy level gradually decreased during osteogenic differentiation with a decrease in BECN1 level and the lipidated (LC3-II) to unlipidated (LC3-I) microtubule-associated protein 1 light chain 3 ratio and an increase in the expression of selective autophagic target p62. In contrast, it increased with increasing RAPA concentration. Furthermore, while 2 nM RAPA promoted BMSC osteogenic differentiation on days 7 and 14, 5 nM RAPA inhibited osteogenesis on days 14 and 21. Inhibition of autophagy by the inhibitor 3-methyladenine could impair RAPA's osteogenesis-enhancing effect on BMSCs. CONCLUSIONS The BMSC's basal autophagy level decreased over time during osteogenic differentiation. However, an appropriate RAPA concentration promoted BMSC osteogenic differentiation via autophagy activation.
Collapse
Affiliation(s)
- Yifeng Xing
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Institute of Stomatology & Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Chaowei Liu
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Lin Zhou
- Institute of Stomatology & Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Yan Li
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Institute of Stomatology & Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Dong Wu
- Institute of Stomatology & Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
12
|
Gemayel J, Chaker D, El Hachem G, Mhanna M, Salemeh R, Hanna C, Harb F, Ibrahim A, Chebly A, Khalil C. Mesenchymal stem cells-derived secretome and extracellular vesicles: perspective and challenges in cancer therapy and clinical applications. Clin Transl Oncol 2023:10.1007/s12094-023-03115-7. [PMID: 36808392 DOI: 10.1007/s12094-023-03115-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/07/2023] [Indexed: 02/19/2023]
Abstract
Stem cell-based therapies have been foreshowed as a promising therapeutic approach for the treatment of several diseases. However, in the cancer context, results obtained from clinical studies were found to be quite limited. Deeply implicated in inflammatory cues, Mesenchymal, Neural, and Embryonic Stem Cells have mainly been used in clinical trials as a vehicle to deliver and stimulate signals in tumors niche. Although these stem cells have shown some therapeutical promises, they still face several challenges, including their isolation, immunosuppression potential, and tumorigenicity. In addition, regulatory and ethical concerns limit their use in several countries. Mesenchymal stem cells (MSC) have emerged as a gold standard adult stem cell medicine tool due to their distinctive characteristics, such as self-renewal and potency to differentiate into numerous cell types with lower ethical restrictions. Secreted extracellular vesicles (EVs), secretomes, and exosomes play a crucial role in mediating cell-to-cell communication to maintain physiological homeostasis and influence pathogenesis. Due to their low immunogenicity, biodegradability, low toxicity, and ability to transfer bioactive cargoes across biological barriers, EVs and exosomes were considered an alternative to stem cell therapy through their immunological features. MSCs-derived EVs, exosomes, and secretomes showed regenerative, anti-inflammatory, and immunomodulation properties while treating human diseases. In this review, we provide an overview of the paradigm of MSCs derived exosomes, secretome, and EVs cell-free-based therapies, we will focus on MSCs-derived components in anti-cancer treatment with decreased risk of immunogenicity and toxicity. Astute exploration of MSCs may lead to a new opportunity for efficient therapy for patients with cancer.
Collapse
Affiliation(s)
- Jack Gemayel
- Faculty of Health Sciences, Balamand University, Beirut, Lebanon
| | - Diana Chaker
- INSERM, National Institute of Health and Medical Research, Paris XI, Paris, France
- Reviva Stem Cell Platform for Research and Applications Center, Bsalim, Lebanon
| | - Georges El Hachem
- Balamand University, Faculty of Medicine, Beirut, Lebanon
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Al Kurah, P.O. Box 100, Kalhat, Lebanon
| | - Melissa Mhanna
- Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| | - Rawad Salemeh
- Reviva Stem Cell Platform for Research and Applications Center, Bsalim, Lebanon
| | - Colette Hanna
- Faculty of Medicine, Lebanese American University Medical Center, Rizk Hospital, Beirut, Lebanon
| | - Frederic Harb
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Al Kurah, P.O. Box 100, Kalhat, Lebanon
| | - Ahmad Ibrahim
- Reviva Stem Cell Platform for Research and Applications Center, Bsalim, Lebanon
- Balamand University, Faculty of Medicine, Beirut, Lebanon
| | - Alain Chebly
- Medical Genetics Unit, Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
- Higher Institute of Public Health, Saint Joseph University, Beirut, Lebanon
| | - Charbel Khalil
- Reviva Stem Cell Platform for Research and Applications Center, Bsalim, Lebanon.
- Bone Marrow Transplant Unit, Burjeel Medical City, Abu Dhabi, UAE.
- Stem Cell Institute, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon.
| |
Collapse
|
13
|
Bagheri L, Jafari-Gharabaghlou D, Valizadeh H, Barzegari A, Zarghami N. Design and development of biodegradable POSS-PCL-Zeolite (β) nano-scaffold for potential applications in bone regeneration. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2023:1-20. [PMID: 36680788 DOI: 10.1080/09205063.2023.2170675] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Side effects caused by bone fractures and restrictions on bone regeneration impose an enormous economic burden on the health system of society. To overcome these limitations, tissue engineering and cell-based therapies have been proposed as alternatives to induce and promote bone healing. Still, bone regeneration disadvantages, such as limited and painful surgery, the risk of infection, nerve injury, bleeding, and function damage, have led investigators to find an alternative therapy. In some studies, bone stimulants have prompted scientists to design scaffolds with appropriate physical structure with the possibility of cell adhesion and proliferation, which plays an influential role in the regeneration and repair of bone tissue. PCL nanofiber is an absorbing candidate for the formulation of biocompatible scaffolds used in tissue engineering. To overcome these negative aspects, improve the properties of PCL nanofibers, and based on the biocompatibility and superior mechanical properties of POSS, Polyhedral Oligomeric Silsesquioxane-Polycaprolactone-Zeolite (POSS-PCL-Zeolite) nanocomposite electrospun nanofiber scaffolds were fabricated in the present study. Nanohybrids and nanofibers structures were characterized by FTIR, HNMR, XRD, SEM, EDX, and DSC techniques. We used cellular and molecular assays, including DCFH ROS detection system, gene expression (RUNX-2, Osteocalcin, Nrf2, BAX, VEGF gens), and apoptotic to demonstrate the biocompatibility and induce bone differentiation of formulated POSS-PCL-Zeolite scaffolds. The results showed the biodegradability of POSS-PCL-Zeolite Nano-scaffold and supported the nesting of mesenchymal stem cells (MSCs) and induced bone differentiation by POSS-PCL-Zeolite Nano-scaffold.
Collapse
Affiliation(s)
- Leyla Bagheri
- Department of Chemistry, Faculty of Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran.,Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Davoud Jafari-Gharabaghlou
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hasan Valizadeh
- Department of Chemistry, Faculty of Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Abolfazl Barzegari
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nosratollah Zarghami
- Department of Medical Biochemistry, Faculty of Medicine, Istanbul Aydin University, Istanbul, Turkey
| |
Collapse
|
14
|
Ghuloum FI, Johnson CA, Riobo-Del Galdo NA, Amer MH. From mesenchymal niches to engineered in vitro model systems: Exploring and exploiting biomechanical regulation of vertebrate hedgehog signalling. Mater Today Bio 2022; 17:100502. [PMID: 36457847 PMCID: PMC9707069 DOI: 10.1016/j.mtbio.2022.100502] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/08/2022] [Accepted: 11/20/2022] [Indexed: 11/23/2022] Open
Abstract
Tissue patterning is the result of complex interactions between transcriptional programs and various mechanical cues that modulate cell behaviour and drive morphogenesis. Vertebrate Hedgehog signalling plays key roles in embryogenesis and adult tissue homeostasis, and is central to skeletal development and the osteogenic differentiation of mesenchymal stem cells. The expression of several components of the Hedgehog signalling pathway have been reported to be mechanically regulated in mesodermal tissue patterning and osteogenic differentiation in response to external stimulation. Since a number of bone developmental defects and skeletal diseases, such as osteoporosis, are directly linked to aberrant Hedgehog signalling, a better knowledge of the regulation of Hedgehog signalling in the mechanosensitive bone marrow-residing mesenchymal stromal cells will present novel avenues for modelling these diseases and uncover novel opportunities for extracellular matrix-targeted therapies. In this review, we present a brief overview of the key molecular players involved in Hedgehog signalling and the basic concepts of mechanobiology, with a focus on bone development and regeneration. We also highlight the correlation between the activation of the Hedgehog signalling pathway in response to mechanical cues and osteogenesis in bone marrow-derived mesenchymal stromal cells. Finally, we propose different tissue engineering strategies to apply the expanding knowledge of 3D material-cell interactions in the modulation of Hedgehog signalling in vitro for fundamental and translational research applications.
Collapse
Affiliation(s)
- Fatmah I. Ghuloum
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Department of Biological Sciences, Faculty of Science, Kuwait University, Kuwait City, Kuwait
| | - Colin A. Johnson
- Leeds Institute of Medical Research, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Natalia A. Riobo-Del Galdo
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Leeds Institute of Medical Research, Faculty of Medicine and Health, University of Leeds, Leeds, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, UK
| | - Mahetab H. Amer
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
15
|
Chaplygina AV, Zhdanova DY, Kovalev VI, Poltavtseva RA, Medvinskaya NI, Bobkova NV. Cell Therapy as a Way to Correct Impaired Neurogenesis in the Adult Brain in a Model of Alzheimer’s Disease. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022010112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|