1
|
Daneshvar A, Nemati P, Azadi A, Amid R, Kadkhodazadeh M. M2 macrophage-derived exosomes for bone regeneration: A systematic review. Arch Oral Biol 2024; 166:106034. [PMID: 38943857 DOI: 10.1016/j.archoralbio.2024.106034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 07/01/2024]
Abstract
OBJECTIVE This systematic review aims to evaluate existing evidence to investigate the therapeutic efficacy of M2 macrophage-derived exosomes in bone regeneration. DESIGN A comprehensive search between 2020 and 2024 across PubMed, Web of Science, and Scopus was conducted using a defined search strategy to identify relevant studies regarding the following question: "What is the impact of M2 macrophage-derived exosomes on bone regeneration?". Controlled in vitro and in vivo studies were included in this study. The SYRCLE tool was used to evaluate the risk of bias in the included animal studies. RESULTS This review included 20 studies published. Seven studies were selected for only in vitro analysis, whereas 13 studies underwent both in vitro and in vivo analyses. The in vivo studies employed animal models, including 163 C57BL6 mice and 73 Sprague-Dawley rats. Exosomes derived from M2 macrophages were discovered to be efficacious in promoting bone regeneration and vascularization in animal models of bone defects. These effects were primarily confirmed through morphological and histological assessments. This remarkable outcome is attributed to the regulation of multiple signaling pathways, as evidenced by the findings of 11 studies investigating the involvement of miRNAs in this intricate process. In addition, in vitro studies observed positive effects on cell proliferation, migration, osteogenesis, and angiogenesis. Heterogeneity in study methods hinders direct comparison of results across studies. CONCLUSION M2 macrophage-derived exosomes demonstrate remarkable potential for promoting bone regeneration. Further research optimizing their application and elucidating the underlying mechanisms can pave the way for clinical translation.
Collapse
Affiliation(s)
- Alireza Daneshvar
- Student Research Committee, Faculty of Dentistry, Islamic Azad University, Tehran, Iran
| | - Parisa Nemati
- Student Research Committee, Faculty of Dentistry, Islamic Azad University, Tehran, Iran
| | - Ali Azadi
- Dentofacial Deformities Research Center, Research Institute for Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Amid
- Department of Periodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Kadkhodazadeh
- Department of Periodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Dental Research Center, Research Institute for Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Hachemi Y, Perrin S, Ethel M, Julien A, Vettese J, Geisler B, Göritz C, Colnot C. Multimodal analyses of immune cells during bone repair identify macrophages as a therapeutic target in musculoskeletal trauma. Bone Res 2024; 12:56. [PMID: 39341816 PMCID: PMC11438896 DOI: 10.1038/s41413-024-00347-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/04/2024] [Accepted: 05/23/2024] [Indexed: 10/01/2024] Open
Abstract
Musculoskeletal traumatic injuries (MTI) involve soft tissue lesions adjacent to a bone fracture leading to fibrous nonunion. The impact of MTI on the inflammatory response to fracture and on the immunomodulation of skeletal stem/progenitor cells (SSPCs) remains unknown. Here, we used single-nucleus transcriptomic analyses to describe the immune cell dynamics after bone fracture and identified distinct macrophage subsets with successive pro-inflammatory, pro-repair and anti-inflammatory profiles. Concurrently, SSPCs transition via a pro- and anti-inflammatory fibrogenic phase of differentiation prior to osteochondrogenic differentiation. In a preclinical MTI mouse model, the injury response of immune cells and SSPCs is disrupted leading to a prolonged pro-inflammatory phase and delayed resolution of inflammation. Macrophage depletion improves bone regeneration in MTI demonstrating macrophage involvement in fibrous nonunion. Finally, pharmacological inhibition of macrophages using the CSF1R inhibitor Pexidartinib ameliorates healing. These findings reveal the coordinated immune response of macrophages and skeletal stem/progenitor cells as a driver of bone healing and as a primary target for the treatment of trauma-associated fibrosis.
Collapse
Affiliation(s)
| | - Simon Perrin
- Univ Paris Est Creteil, INSERM, IMRB, Creteil, France
| | - Maria Ethel
- Univ Paris Est Creteil, INSERM, IMRB, Creteil, France
| | - Anais Julien
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Julia Vettese
- Univ Paris Est Creteil, INSERM, IMRB, Creteil, France
| | | | - Christian Göritz
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Shatin, Hong Kong
| | - Céline Colnot
- Univ Paris Est Creteil, INSERM, IMRB, Creteil, France.
| |
Collapse
|
3
|
Giraldo-Osorno PM, Wirsig K, Asa'ad F, Omar O, Trobos M, Bernhardt A, Palmquist A. Macrophage-to-osteocyte communication: Impact in a 3D in vitro implant-associated infection model. Acta Biomater 2024; 186:141-155. [PMID: 39142531 DOI: 10.1016/j.actbio.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/23/2024] [Accepted: 08/04/2024] [Indexed: 08/16/2024]
Abstract
Macrophages and osteocytes are important regulators of inflammation, osteogenesis and osteoclastogenesis. However, their interactions under adverse conditions, such as biomaterial-associated infection (BAI) are not fully understood. We aimed to elucidate how factors released from macrophages modulate osteocyte responses in an in vitro indirect 3D co-culture model. Human monocyte-derived macrophages were cultured on etched titanium disks and activated with either IL-4 cytokine (anti-inflammatory M2 phenotype) or Staphylococcus aureus secreted virulence factors to simulate BAI (pro-inflammatory M1 phenotype). Primary osteocytes in collagen gels were then stimulated with conditioned media (CM) from these macrophages. The osteocyte response was analyzed by gene expression, protein secretion, and immunostaining. M1 phenotype macrophages were confirmed by IL-1β and TNF-α secretion, and M2 macrophages by ARG-1 and MRC-1.Osteocytes receiving M1 CM revealed bone inhibitory effects, denoted by reduced secretion of bone formation osteocalcin (BGLAP) and increased secretion of the bone inhibitory sclerostin (SOST). These osteocytes also downregulated the pro-mineralization gene PHEX and upregulated the anti-mineralization gene MEPE. Additionally, exhibited pro-osteoclastic potential by upregulating pro-osteoclastic gene RANKL expression. Nonetheless, M1-stimulated osteocytes expressed a higher level of the potent pro-osteogenic factor BMP-2 in parallel with the downregulation of the bone inhibitor genes DKK1 and SOST, suggesting a compensatory feedback mechanisms. Conversely, M2-stimulated osteocytes mainly upregulated anti-osteoclastic gene OPG expression, suggesting an anti-catabolic effect. Altogether, our findings demonstrate a strong communication between M1 macrophages and osteocytes under M1 (BAI)-simulated conditions, suggesting that the BAI adverse effects on osteoblastic and osteoclastic processes in vitro are partly mediated via this communication. STATEMENT OF SIGNIFICANCE: Biomaterial-associated infections are major challenges and the underlying mechanisms in the cellular interactions are missing, especially among the major cells from the inflammatory side (macrophages as the key cell in bacterial clearance) and the regenerative side (osteocyte as main regulator of bone). We evaluated the effect of macrophage polarization driven by the stimulation with bacterial virulence factors on the osteocyte function using an indirect co-culture model, hence mimicking the scenario of a biomaterial-associated infection. The results suggest that at least part of the adverse effects of biomaterial associated infection on osteoblastic and osteoclastic processes in vitro are mediated via macrophage-to-osteocyte communication.
Collapse
Affiliation(s)
- Paula Milena Giraldo-Osorno
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Katharina Wirsig
- Faculty of Medicine, Centre for Translational Bone, Joint and Soft Tissue Research, Technische Universität Dresden, Germany
| | - Farah Asa'ad
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Oral Biochemistry, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Omar Omar
- Department of Biomedical Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Margarita Trobos
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anne Bernhardt
- Faculty of Medicine, Centre for Translational Bone, Joint and Soft Tissue Research, Technische Universität Dresden, Germany.
| | - Anders Palmquist
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
4
|
Nguyen Van Q, Akiba Y, Eguchi K, Akiba N, Uoshima K. Controlling redox state by edaravone at transplantation site enhances bone regeneration. Biomed Pharmacother 2024; 177:117032. [PMID: 38941894 DOI: 10.1016/j.biopha.2024.117032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 06/30/2024] Open
Abstract
In cell-based bone augmentation, transplanted cell dysfunction and apoptosis can occur due to oxidative stress caused by the overproduction of reactive oxygen species (ROS). Edaravone (EDA) is a potent free radical scavenger with potential medical applications. This study aimed to investigate the effect of controlling oxidative stress on bone regeneration using EDA. Bone marrow-derived cells were collected from 4-week-old rats, and EDA effects on cell viability and osteogenic differentiation were evaluated. Collagen gels containing PKH26-prelabeled cells were implanted into the calvarial defects of 12-week-old rats, followed by daily subcutaneous injections of normal saline or 500 μM EDA for 4 d. Bone formation was examined using micro-computed tomography and histological staining. Immunofluorescence staining was performed for markers of oxidative stress, macrophages, osteogenesis, and angiogenesis. EDA suppressed ROS production and hydrogen peroxide-induced apoptosis, recovering cell viability and osteoblast differentiation. EDA treatment in vivo increased new bone formation. EDA induced the transition of the macrophage population toward the M2 phenotype. The EDA group also exhibited stronger immunofluorescence for vascular endothelial growth factor and CD31. In addition, more PKH26-positive and PKH26-osteocalcin-double-positive cells were observed in the EDA group, indicating that transplanted cell survival was prolonged, and they differentiated into bone-forming cells. This could be attributed to oxidative stress suppression at the transplantation site by EDA. Collectively, local administration using EDA facilitates bone regeneration by improving the local environment and angiogenesis, prolonging survival, and enhancing the osteogenic capabilities of transplanted cells.
Collapse
Affiliation(s)
- Quang Nguyen Van
- Division of Bio-Prosthodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, 2-5274, Gakkocho-dori, Chuo-ku, Niigata 951-8514, Japan
| | - Yosuke Akiba
- Division of Bio-Prosthodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, 2-5274, Gakkocho-dori, Chuo-ku, Niigata 951-8514, Japan.
| | - Kaori Eguchi
- Division of Bio-Prosthodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, 2-5274, Gakkocho-dori, Chuo-ku, Niigata 951-8514, Japan
| | - Nami Akiba
- Division of Bio-Prosthodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, 2-5274, Gakkocho-dori, Chuo-ku, Niigata 951-8514, Japan
| | - Katsumi Uoshima
- Division of Bio-Prosthodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, 2-5274, Gakkocho-dori, Chuo-ku, Niigata 951-8514, Japan
| |
Collapse
|
5
|
Cheng CT, Vyas PS, McClain EJ, Hoelen TCA, Arts JJC, McLaughlin C, Altman DT, Yu AK, Cheng BC. The Osteogenic Peptide P-15 for Bone Regeneration: A Narrative Review of the Evidence for a Mechanism of Action. Bioengineering (Basel) 2024; 11:599. [PMID: 38927835 PMCID: PMC11200470 DOI: 10.3390/bioengineering11060599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/22/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Bone regeneration is a complex multicellular process involving the recruitment and attachment of osteoprogenitors and their subsequent differentiation into osteoblasts that deposit extracellular matrixes. There is a growing demand for synthetic bone graft materials that can be used to augment these processes to enhance the healing of bone defects resulting from trauma, disease or surgery. P-15 is a small synthetic peptide that is identical in sequence to the cell-binding domain of type I collagen and has been extensively demonstrated in vitro and in vivo to enhance the adhesion, differentiation and proliferation of stem cells involved in bone formation. These events can be categorized into three phases: attachment, activation and amplification. This narrative review summarizes the large body of preclinical research on P-15 in terms of these phases to describe the mechanism of action by which P-15 improves bone formation. Knowledge of this mechanism of action will help to inform the use of P-15 in clinical practice as well as the development of methods of delivering P-15 that optimize clinical outcomes.
Collapse
Affiliation(s)
- Cooper T. Cheng
- Neuroscience Institute, Allegheny General Hospital, Allegheny Health Network, Pittsburgh, PA 15212, USA; (C.T.C.); (P.S.V.); (C.M.)
| | - Praveer S. Vyas
- Neuroscience Institute, Allegheny General Hospital, Allegheny Health Network, Pittsburgh, PA 15212, USA; (C.T.C.); (P.S.V.); (C.M.)
| | - Edward James McClain
- Neuroscience Institute, Allegheny General Hospital, Allegheny Health Network, Pittsburgh, PA 15212, USA; (C.T.C.); (P.S.V.); (C.M.)
| | - Thomáy-Claire Ayala Hoelen
- Department of Orthopedic Surgery and CAPHRI Research School, Maastricht University Medical Center (MUMC+), P.O. Box 616 Maastricht, The Netherlands; (T.-C.A.H.); (J.J.C.A.)
| | - Jacobus Johannes Chris Arts
- Department of Orthopedic Surgery and CAPHRI Research School, Maastricht University Medical Center (MUMC+), P.O. Box 616 Maastricht, The Netherlands; (T.-C.A.H.); (J.J.C.A.)
| | - Colin McLaughlin
- Neuroscience Institute, Allegheny General Hospital, Allegheny Health Network, Pittsburgh, PA 15212, USA; (C.T.C.); (P.S.V.); (C.M.)
| | - Daniel T. Altman
- Department of Orthopaedic Surgery, Allegheny General Hospital, Allegheny Health Network, Pittsburgh, PA 15212, USA;
| | - Alexander K. Yu
- Department of Neurosurgery, Allegheny General Hospital, Allegheny Health Network, Pittsburgh, PA 15212, USA;
| | - Boyle C. Cheng
- Neuroscience Institute, Allegheny General Hospital, Allegheny Health Network, Pittsburgh, PA 15212, USA; (C.T.C.); (P.S.V.); (C.M.)
| |
Collapse
|
6
|
Kaneko Y, Minehara H, Sonobe T, Kameda T, Sekiguchi M, Matsushita T, Konno SI, Matsumoto Y. Differences in macrophage expression in induced membranes by fixation method - Masquelet technique using a mouse's femur critical-sized bone defect model. Injury 2024; 55:111135. [PMID: 37925281 DOI: 10.1016/j.injury.2023.111135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 10/06/2023] [Accepted: 10/14/2023] [Indexed: 11/06/2023]
Abstract
INTRODUCTION Masquelet's induced membrane technique (MIMT) is an emerging method for reconstructing critical-sized bone defects. However, an incomplete understanding of the underlying biological and physical processes hinders further optimization. This study investigated the effect of different bone-defect fixation methods on macrophage expression in an induced membrane using a novel mouse plate-fixed Masquelet model. METHODS Mice were divided into Plate-fixed Masquelet (P-M), Intramedullary-fixed Masquelet (IM-M), Plate-fixed Control (P-C), and Back subfascial (B) groups. In the P-M and IM-M groups, a polymethylmethacrylate (PMMA) spacer was implanted into a 3 mm bone defect, while the defect in the P-C group remained unfilled. In group B, a spacer was inserted under the back fascia to examine membrane formation caused by a simple foreign body reaction. Tissues were collected at 1, 2, and 4 weeks postoperatively. Hematoxylin and eosin (H&E) staining and immunohistochemistry (CD68 and CD163: macrophage markers) were performed to assess macrophage expression within the membrane. qPCR was performed to measure the expression of CD68, CD163, and fibroblast growth factor 2 (FGF2). RESULTS Four weeks post-operation, the P-M group presented with minimal callus growth, whereas the IM-M group exhibited vigorous growth. The P-M and IM-M groups displayed a tri-layered membrane structure, which is consistent with the results of previous studies. The IM-M group had significantly thicker membranes, whereas the P-M group exhibited higher expression levels of CD68, CD163, and FGF2. Group P-C showed no osteogenesis, whereas group B maintained a thin, cell-dense membrane structure. The P-M group consistently showed higher gene expression levels than the P-C and P-B groups. CONCLUSION This study introduced a mouse plate fixation model for MIMT. The induced membranes could be adequately evaluated in this model. Induced membranes are formed by foreign body reactions to PMMA spacers; however, their properties are clearly different from those of simple foreign body reaction capsules and granulation tissues that infiltrate bone defects, suggesting that they are more complex tissues. The characteristics and expression of macrophages within these induced membranes varied according to the bone defect fixation method.
Collapse
Affiliation(s)
- Yota Kaneko
- Department of Orthopaedic Surgery, Fukushima Medical University School of Medicine, Japan
| | - Hiroaki Minehara
- Department of Traumatology, Fukushima Medical University School of Medicine, Japan.
| | - Tatsuru Sonobe
- Department of Orthopaedic Surgery, Fukushima Medical University School of Medicine, Japan
| | - Takuya Kameda
- Department of Orthopaedic Surgery, Fukushima Medical University School of Medicine, Japan
| | - Miho Sekiguchi
- Department of Orthopaedic Surgery, Fukushima Medical University School of Medicine, Japan; Laboratory Animal Research Centor, Fukushima Medical University School of Medicine, Japan
| | - Takashi Matsushita
- Department of Traumatology, Fukushima Medical University School of Medicine, Japan
| | - Shin-Ich Konno
- Department of Orthopaedic Surgery, Fukushima Medical University School of Medicine, Japan
| | - Yoshihiro Matsumoto
- Department of Orthopaedic Surgery, Fukushima Medical University School of Medicine, Japan
| |
Collapse
|
7
|
Hachemi Y, Perrin S, Ethel M, Julien A, Vettese J, Geisler B, Göritz C, Colnot C. Multimodal analyses of immune cells during bone repair identify macrophages as a therapeutic target in musculoskeletal trauma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.29.591608. [PMID: 38746344 PMCID: PMC11092472 DOI: 10.1101/2024.04.29.591608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Musculoskeletal traumatic injuries (MTI) involve soft tissue lesions adjacent to a bone fracture leading to fibrous nonunion. The impact of MTI on the inflammatory response to fracture and on the immunomodulation of skeletal stem/progenitor cells (SSPCs) remains unknown. Here, we used single cell transcriptomic analyses to describe the immune cell dynamics after bone fracture and identified distinct macrophage subsets with successive pro-inflammatory, pro-repair and anti-inflammatory profiles. Concurrently, SSPCs transition via a pro- and anti-inflammatory fibrogenic phase of differentiation prior to osteochondrogenic differentiation. In a preclinical MTI mouse model, the injury response of immune cells and SSPCs is disrupted leading to a prolonged pro-inflammatory phase and delayed resolution of inflammation. Macrophage depletion improves bone regeneration in MTI demonstrating macrophage involvement in fibrous nonunion. Finally, pharmacological inhibition of macrophages using the CSF1R inhibitor Pexidartinib ameliorates healing. These findings reveal the coordinated immune response of macrophages and skeletal stem/progenitor cells as driver of bone healing and as a primary target for the treatment of trauma-associated fibrosis. Summary Hachemi et al. report the immune cell atlas of bone repair revealing macrophages as pro-fibrotic regulators and a therapeutic target for musculoskeletal regeneration. Genetic depletion or pharmacological inhibition of macrophages improves bone healing in musculoskeletal trauma.
Collapse
|
8
|
Aleynik DY, Bokov AE, Charykova IN, Rubtsova YP, Linkova DD, Farafontova EA, Egorikhina MN. Functionalization of Osteoplastic Material with Human Placental Growth Factor and Assessment of Biocompatibility of the Resulting Material In Vitro. Pharmaceutics 2024; 16:85. [PMID: 38258096 PMCID: PMC10819287 DOI: 10.3390/pharmaceutics16010085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/27/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
This article provides the results of a study of the interaction of placental growth factor with adipose-derived stem cells (ASCs) of various origins, as well as the possibility of generating osteoplastic material based on xenogeneic matrix functionalization with human placental growth factor (PLGF). It is demonstrated that the greatest release of this factor from the functionalized material into the medium occurs during the first 3 h of contact with the model medium, but then the levels of the factor being released fall sharply, although release did continue throughout the 7 days of observation. The modified material was not cytotoxic, and its surface provided good cell adhesion. During 3 days of cultivation, the ASCs proliferated and migrated more actively on the surfaces of the modified material than on the surfaces of the control material. This study can serve as the basis for the development of original methods to functionalize such osteoplastic material by increasing PLGF immobilization by creating stronger bonds in order to regulate both factor dosage and the dynamics of the factor release into the environment. Further studies in experimental animals should facilitate assessment of the effectiveness of the functionalized materials. Such studies will be useful in the development of osteoplastic materials with new properties resulting from the inclusion of growth factors and in research on their biological activity.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Marfa N. Egorikhina
- Federal State Budgetary Educational Institution of Higher Education, Privolzhsky Research Medical University of the Ministry of Health of the Russian Federation, 10/1 Minin and Pozharsky Square, 603005 Nizhny Novgorod, Russia; (D.Y.A.); (A.E.B.); (I.N.C.); (Y.P.R.); (D.D.L.); (E.A.F.)
| |
Collapse
|
9
|
Borgiani E, Nasello G, Ory L, Herpelinck T, Groeneveldt L, Bucher CH, Schmidt-Bleek K, Geris L. COMMBINI: an experimentally-informed COmputational Model of Macrophage dynamics in the Bone INjury Immunoresponse. Front Immunol 2023; 14:1231329. [PMID: 38130715 PMCID: PMC10733790 DOI: 10.3389/fimmu.2023.1231329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 10/11/2023] [Indexed: 12/23/2023] Open
Abstract
Bone fracture healing is a well-orchestrated but complex process that involves numerous regulations at different scales. This complexity becomes particularly evident during the inflammatory stage, as immune cells invade the healing region and trigger a cascade of signals to promote a favorable regenerative environment. Thus, the emergence of criticalities during this stage might hinder the rest of the process. Therefore, the investigation of the many interactions that regulate the inflammation has a primary importance on the exploration of the overall healing progression. In this context, an in silico model named COMMBINI (COmputational Model of Macrophage dynamics in the Bone INjury Immunoresponse) has been developed to investigate the mechano-biological interactions during the early inflammatory stage at the tissue, cellular and molecular levels. An agent-based model is employed to simulate the behavior of immune cells, inflammatory cytokines and fracture debris as well as their reciprocal multiscale biological interactions during the development of the early inflammation (up to 5 days post-injury). The strength of the computational approach is the capacity of the in silico model to simulate the overall healing process by taking into account the numerous hidden events that contribute to its success. To calibrate the model, we present an in silico immunofluorescence method that enables a direct comparison at the cellular level between the model output and experimental immunofluorescent images. The combination of sensitivity analysis and a Genetic Algorithm allows dynamic cooperation between these techniques, enabling faster identification of the most accurate parameter values, reducing the disparity between computer simulation and histological data. The sensitivity analysis showed a higher sensibility of the computer model to the macrophage recruitment ratio during the early inflammation and to proliferation in the late stage. Furthermore, the Genetic Algorithm highlighted an underestimation of macrophage proliferation by in vitro experiments. Further experiments were conducted using another externally fixated murine model, providing an independent validation dataset. The validated COMMBINI platform serves as a novel tool to deepen the understanding of the intricacies of the early bone regeneration phases. COMMBINI aims to contribute to designing novel treatment strategies in both the biological and mechanical domains.
Collapse
Affiliation(s)
- Edoardo Borgiani
- Biomechanics Research Unit, GIGA-In Silico Medicine, University of Liège, Liège, Belgium
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
- Division of Biomechanics, Department of Mechanical Engineering, KU Leuven, Leuven, Belgium
| | - Gabriele Nasello
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
- Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium
| | - Liesbeth Ory
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
- Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium
| | - Tim Herpelinck
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
- Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium
| | - Lisanne Groeneveldt
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
- Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Christian H. Bucher
- Julius Wolff Institute, Berlin Institute of Health, Charitè – Universitätsmedizin Berlin, Berlin, Germany
| | - Katharina Schmidt-Bleek
- Julius Wolff Institute, Berlin Institute of Health, Charitè – Universitätsmedizin Berlin, Berlin, Germany
| | - Liesbet Geris
- Biomechanics Research Unit, GIGA-In Silico Medicine, University of Liège, Liège, Belgium
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
- Division of Biomechanics, Department of Mechanical Engineering, KU Leuven, Leuven, Belgium
- Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium
| |
Collapse
|
10
|
Rehage E, Sowislok A, Busch A, Papaeleftheriou E, Jansen M, Jäger M. Surgical Site-Released Tissue Is Potent to Generate Bone onto TCP and PCL-TCP Scaffolds In Vitro. Int J Mol Sci 2023; 24:15877. [PMID: 37958857 PMCID: PMC10647844 DOI: 10.3390/ijms242115877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/24/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
There is evidence that surgical site tissue (SSRT) released during orthopedic surgery has a strong mesenchymal regenerative potential. Some data also suggest that this tissue may activate synthetic or natural bone substitute materials and can thus upgrade its osteopromoting properties. In this comparative in vitro study, we investigate the composition of SSRT during total hip replacement (n = 20) harvested using a surgical suction handle. In addition, the osteopromoting effect of the cells isolated from SSRT is elucidated when incubated with porous beta-tricalcium phosphate (β-TCP) or 80% medical-grade poly-ε-caprolactone (PCL)/20% TCP composite material. We identified multiple growth factors and cytokines with significantly higher levels of PDGF and VEGF in SSRT compared to peripheral blood. The overall number of MSC was 0.09 ± 0.12‱ per gram of SSRT. A three-lineage specific differentiation was possible in all cases. PCL-TCP cultures showed a higher cell density and cell viability compared to TCP after 6 weeks in vitro. Moreover, PCL-TCP cultures showed a higher osteocalcin expression but no significant differences in osteopontin and collagen I synthesis. We could demonstrate the high regenerative potential from SSRT harvested under vacuum in a PMMA filter device. The in vitro data suggest advantages in cytocompatibility for the PCL-TCP composite compared to TCP alone.
Collapse
Affiliation(s)
- Emely Rehage
- Chair of Orthopaedics and Trauma Surgery, University of Duisburg-Essen, 45147 Essen, Germany; (E.R.); (A.S.)
| | - Andrea Sowislok
- Chair of Orthopaedics and Trauma Surgery, University of Duisburg-Essen, 45147 Essen, Germany; (E.R.); (A.S.)
| | - André Busch
- Department of Orthopaedics, Trauma and Reconstructive Surgery, Katholisches Klinikum Essen Philippus, 45355 Essen, Germany
| | - Eleftherios Papaeleftheriou
- Department of Orthopaedics, Trauma and Reconstructive Surgery, St. Marien-Hospital Mülheim an der Ruhr, 45468 Mülheim an der Ruhr, Germany;
| | - Melissa Jansen
- Institute of Cognitive Science, University of Osnabrück, 49090 Osnabrück, Germany;
| | - Marcus Jäger
- Chair of Orthopaedics and Trauma Surgery, University of Duisburg-Essen, 45147 Essen, Germany; (E.R.); (A.S.)
- Department of Orthopaedics, Trauma and Reconstructive Surgery, Katholisches Klinikum Essen Philippus, 45355 Essen, Germany
- Department of Orthopaedics, Trauma and Reconstructive Surgery, St. Marien-Hospital Mülheim an der Ruhr, 45468 Mülheim an der Ruhr, Germany;
| |
Collapse
|
11
|
Khajuria DK, Reider I, Kamal F, Norbury CC, Elbarbary RA. Distinct defects in early innate and late adaptive immune responses typify impaired fracture healing in diet-induced obesity. Front Immunol 2023; 14:1250309. [PMID: 37854593 PMCID: PMC10579581 DOI: 10.3389/fimmu.2023.1250309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/25/2023] [Indexed: 10/20/2023] Open
Abstract
Bone fractures, the most common musculoskeletal injuries, heal through three main phases: inflammatory, repair, and remodeling. Around 10% of fracture patients suffer from impaired healing that requires surgical intervention, a huge burden on the healthcare system. The rate of impaired healing increases with metabolic diseases such as obesity-associated hyperglycemia/type 2 diabetes (T2D), an increasing concern given the growing incidence of obesity/T2D. Immune cells play pivotal roles in fracture healing, and obesity/T2D is associated with defective immune-cell functions. However, there is a gap in knowledge regarding the stoichiometry of immune cells that populate the callus and how that population changes during different phases of healing. Here, we used complementary global and single-cell techniques to characterize the repertoire of immune cells in the fracture callus and to identify populations specifically enriched in the fracture callus relative to the unfractured bone or bone marrow. Our analyses identified two clear waves of immune-cell infiltration into the callus: the first wave occurs during the early inflammatory phase of fracture healing, while the second takes place during the late repair/early remodeling phase, which is consistent with previous publications. Comprehensive analysis of each wave revealed that innate immune cells were activated during the early inflammatory phase, but in later phases they returned to homeostatic numbers and activation levels. Of the innate immune cells, distinct subsets of activated dendritic cells were particularly enriched in the inflammatory healing hematoma. In contrast to innate cells, lymphocytes, including B and T cells, were enriched and activated in the callus primarily during the late repair phase. The Diet-Induced Obesity (DIO) mouse, an established model of obesity-associated hyperglycemia and insulin resistance, suffers from multiple healing defects. Our data demonstrate that DIO mice exhibit dysregulated innate immune responses during the inflammatory phase, and defects in all lymphocyte compartments during the late repair phase. Taken together, our data characterize, for the first time, immune populations that are enriched/activated in the callus during two distinct phases of fracture healing and identify defects in the healing-associated immune response in DIO mice, which will facilitate future development of immunomodulatory therapeutics for impaired fracture healing.
Collapse
Affiliation(s)
- Deepak Kumar Khajuria
- Department of Orthopaedics and Rehabilitation, The Pennsylvania State University College of Medicine, Hershey, PA, United States
- Center for Orthopaedic Research and Translational Science (CORTS), The Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Irene Reider
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Fadia Kamal
- Department of Orthopaedics and Rehabilitation, The Pennsylvania State University College of Medicine, Hershey, PA, United States
- Center for Orthopaedic Research and Translational Science (CORTS), The Pennsylvania State University College of Medicine, Hershey, PA, United States
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Christopher C. Norbury
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Reyad A. Elbarbary
- Department of Orthopaedics and Rehabilitation, The Pennsylvania State University College of Medicine, Hershey, PA, United States
- Center for Orthopaedic Research and Translational Science (CORTS), The Pennsylvania State University College of Medicine, Hershey, PA, United States
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, United States
- Center for RNA Molecular Biology, Pennsylvania State University, University Park, State College, PA, United States
| |
Collapse
|
12
|
Etschmaier V, Üçal M, Lohberger B, Absenger-Novak M, Kolb D, Weinberg A, Schäfer U. Disruption of Endochondral Ossification and Extracellular Matrix Maturation in an Ex Vivo Rat Femur Organotypic Slice Model Due to Growth Plate Injury. Cells 2023; 12:1687. [PMID: 37443722 PMCID: PMC10341345 DOI: 10.3390/cells12131687] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Postnatal bone fractures of the growth plate (GP) are often associated with regenerative complications such as growth impairment. In order to understand the underlying processes of trauma-associated growth impairment within postnatal bone, an ex vivo rat femur slice model was developed. To achieve this, a 2 mm horizontal cut was made through the GP of rat femur prior to the organotypic culture being cultivated for 15 days in vitro. Histological analysis showed disrupted endochondral ossification, including disordered architecture, increased chondrocyte metabolic activity, and a loss of hypertrophic zone throughout the distal femur. Furthermore, altered expression patterns of Col2α1, Acan, and ColX, and increased chondrocyte metabolic activity in the TZ and MZ at day 7 and day 15 postinjury were observed. STEM revealed the presence of stem cells, fibroblasts, and chondrocytes within the injury site at day 7. In summary, the findings of this study suggest that the ex vivo organotypic GP injury model could be a valuable tool for investigating the underlying mechanisms of GP regeneration post-trauma, as well as other tissue engineering and disease studies.
Collapse
Affiliation(s)
- Vanessa Etschmaier
- Research Unit for Experimental Neurotraumatology, Medical University of Graz, 8036 Graz, Austria; (V.E.); (M.Ü.)
- Department of Orthopaedics and Trauma, Medical University Graz, 8036 Graz, Austria; (B.L.); (A.W.)
| | - Muammer Üçal
- Research Unit for Experimental Neurotraumatology, Medical University of Graz, 8036 Graz, Austria; (V.E.); (M.Ü.)
- Bio-Tech-Med Graz, 8010 Graz, Austria
| | - Birgit Lohberger
- Department of Orthopaedics and Trauma, Medical University Graz, 8036 Graz, Austria; (B.L.); (A.W.)
| | - Markus Absenger-Novak
- Center for Medical Research, Core Facility Imaging, Medical University of Graz, 8036 Graz, Austria;
| | - Dagmar Kolb
- Center for Medical Research, Core Facility Ultrastructure Analysis, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria;
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria
| | - Annelie Weinberg
- Department of Orthopaedics and Trauma, Medical University Graz, 8036 Graz, Austria; (B.L.); (A.W.)
| | - Ute Schäfer
- Research Unit for Experimental Neurotraumatology, Medical University of Graz, 8036 Graz, Austria; (V.E.); (M.Ü.)
| |
Collapse
|
13
|
Lim YY, Zaidi AMA, Miskon A. Combining Copper and Zinc into a Biosensor for Anti-Chemoresistance and Achieving Osteosarcoma Therapeutic Efficacy. Molecules 2023; 28:2920. [PMID: 37049685 PMCID: PMC10096333 DOI: 10.3390/molecules28072920] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 04/14/2023] Open
Abstract
Due to its built-up chemoresistance after prolonged usage, the demand for replacing platinum in metal-based drugs (MBD) is rising. The first MBD approved by the FDA for cancer therapy was cisplatin in 1978. Even after nearly four and a half decades of trials, there has been no significant improvement in osteosarcoma (OS) therapy. In fact, many MBD have been developed, but the chemoresistance problem raised by platinum remains unresolved. This motivates us to elucidate the possibilities of the copper and zinc (CuZn) combination to replace platinum in MBD. Thus, the anti-chemoresistance properties of CuZn and their physiological functions for OS therapy are highlighted. Herein, we summarise their chelators, main organic solvents, and ligand functions in their structures that are involved in anti-chemoresistance properties. Through this review, it is rational to discuss their ligands' roles as biosensors in drug delivery systems. Hereafter, an in-depth understanding of their redox and photoactive function relationships is provided. The disadvantage is that the other functions of biosensors cannot be elaborated on here. As a result, this review is being developed, which is expected to intensify OS drugs with higher cure rates. Nonetheless, this advancement intends to solve the major chemoresistance obstacle towards clinical efficacy.
Collapse
Affiliation(s)
- Yan Yik Lim
- Faculty of Defence Science and Technology, National Defence University of Malaysia, Sungai Besi Camp, Kuala Lumpur 57000, Malaysia
| | - Ahmad Mujahid Ahmad Zaidi
- Faculty of Defence Science and Technology, National Defence University of Malaysia, Sungai Besi Camp, Kuala Lumpur 57000, Malaysia
| | - Azizi Miskon
- Faculty of Engineering, National Defence University of Malaysia, Sungai Besi Camp, Kuala Lumpur 57000, Malaysia
| |
Collapse
|