1
|
Dhiman A, Kumar V, Das CJ. Quantitative magnetic resonance imaging in prostate cancer: A review of current technology. World J Radiol 2024; 16:497-511. [PMID: 39494137 PMCID: PMC11525833 DOI: 10.4329/wjr.v16.i10.497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/26/2024] [Accepted: 10/20/2024] [Indexed: 10/28/2024] Open
Abstract
Prostate cancer (PCa) imaging forms an important part of PCa clinical management. Magnetic resonance imaging is the modality of choice for prostate imaging. Most of the current imaging assessment is qualitative i.e., based on visual inspection and thus subjected to inter-observer disagreement. Quantitative imaging is better than qualitative assessment as it is more objective, and standardized, thus improving interobserver agreement. Apart from detecting PCa, few quantitative parameters may have potential to predict disease aggressiveness, and thus can be used for prognosis and deciding the course of management. There are various magnetic resonance imaging-based quantitative parameters and few of them are already part of PIRADS v.2.1. However, there are many other parameters that are under study and need further validation by rigorous multicenter studies before recommending them for routine clinical practice. This review intends to discuss the existing quantitative methods, recent developments, and novel techniques in detail.
Collapse
Affiliation(s)
- Ankita Dhiman
- Department of Radiodiagnosis and Interventional Radiology, All India Institute of Medical Sciences, New Delhi 110029, Delhi, India
| | - Virendra Kumar
- Department of NMR & MRI Facility, All India Institute of Medical Sciences, New Delhi 110029, Delhi, India
| | - Chandan Jyoti Das
- Department of Radiodiagnosis and Interventional Radiology, All India Institute of Medical Sciences, New Delhi 110029, Delhi, India
| |
Collapse
|
2
|
Tarchi SM, Salvatore M, Lichtenstein P, Sekar T, Capaccione K, Luk L, Shaish H, Makkar J, Desperito E, Leb J, Navot B, Goldstein J, Laifer S, Beylergil V, Ma H, Jambawalikar S, Aberle D, D'Souza B, Bentley-Hibbert S, Marin MP. Radiology of fibrosis part III: genitourinary system. J Transl Med 2024; 22:616. [PMID: 38961396 PMCID: PMC11223291 DOI: 10.1186/s12967-024-05333-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/20/2024] [Indexed: 07/05/2024] Open
Abstract
Fibrosis is a pathological process involving the abnormal deposition of connective tissue, resulting from improper tissue repair in response to sustained injury caused by hypoxia, infection, or physical damage. It can impact any organ, leading to their dysfunction and eventual failure. Additionally, tissue fibrosis plays an important role in carcinogenesis and the progression of cancer.Early and accurate diagnosis of organ fibrosis, coupled with regular surveillance, is essential for timely disease-modifying interventions, ultimately reducing mortality and enhancing quality of life. While extensive research has already been carried out on the topics of aberrant wound healing and fibrogenesis, we lack a thorough understanding of how their relationship reveals itself through modern imaging techniques.This paper focuses on fibrosis of the genito-urinary system, detailing relevant imaging technologies used for its detection and exploring future directions.
Collapse
Affiliation(s)
- Sofia Maria Tarchi
- Department of Biomedical Sciences, Humanitas University, Milan, Italy.
- Department of Radiology, Columbia University Irving Medical Center, 630 W 168th Street, New York, NY, 10032, USA.
| | - Mary Salvatore
- Department of Radiology, Columbia University Irving Medical Center, 630 W 168th Street, New York, NY, 10032, USA
| | - Philip Lichtenstein
- Department of Radiology, Columbia University Irving Medical Center, 630 W 168th Street, New York, NY, 10032, USA
| | - Thillai Sekar
- Department of Radiology, Columbia University Irving Medical Center, 630 W 168th Street, New York, NY, 10032, USA
| | - Kathleen Capaccione
- Department of Radiology, Columbia University Irving Medical Center, 630 W 168th Street, New York, NY, 10032, USA
| | - Lyndon Luk
- Department of Radiology, Columbia University Irving Medical Center, 630 W 168th Street, New York, NY, 10032, USA
| | - Hiram Shaish
- Department of Radiology, Columbia University Irving Medical Center, 630 W 168th Street, New York, NY, 10032, USA
| | - Jasnit Makkar
- Department of Radiology, Columbia University Irving Medical Center, 630 W 168th Street, New York, NY, 10032, USA
| | - Elise Desperito
- Department of Radiology, Columbia University Irving Medical Center, 630 W 168th Street, New York, NY, 10032, USA
| | - Jay Leb
- Department of Radiology, Columbia University Irving Medical Center, 630 W 168th Street, New York, NY, 10032, USA
| | - Benjamin Navot
- Department of Radiology, Columbia University Irving Medical Center, 630 W 168th Street, New York, NY, 10032, USA
| | - Jonathan Goldstein
- Department of Radiology, Columbia University Irving Medical Center, 630 W 168th Street, New York, NY, 10032, USA
| | - Sherelle Laifer
- Department of Radiology, Columbia University Irving Medical Center, 630 W 168th Street, New York, NY, 10032, USA
| | - Volkan Beylergil
- Department of Radiology, Columbia University Irving Medical Center, 630 W 168th Street, New York, NY, 10032, USA
| | - Hong Ma
- Department of Radiology, Columbia University Irving Medical Center, 630 W 168th Street, New York, NY, 10032, USA
| | - Sachin Jambawalikar
- Department of Radiology, Columbia University Irving Medical Center, 630 W 168th Street, New York, NY, 10032, USA
| | - Dwight Aberle
- Department of Radiology, Columbia University Irving Medical Center, 630 W 168th Street, New York, NY, 10032, USA
| | - Belinda D'Souza
- Department of Radiology, Columbia University Irving Medical Center, 630 W 168th Street, New York, NY, 10032, USA
| | - Stuart Bentley-Hibbert
- Department of Radiology, Columbia University Irving Medical Center, 630 W 168th Street, New York, NY, 10032, USA
| | - Monica Pernia Marin
- Department of Radiology, Columbia University Irving Medical Center, 630 W 168th Street, New York, NY, 10032, USA
| |
Collapse
|
3
|
Zhou X, Fan X, Chatterjee A, Yousuf A, Antic T, Oto A, Karczmar GS. Parametric maps of spatial two-tissue compartment model for prostate dynamic contrast enhanced MRI - comparison with the standard tofts model in the diagnosis of prostate cancer. Phys Eng Sci Med 2023; 46:1215-1226. [PMID: 37432557 DOI: 10.1007/s13246-023-01289-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 06/14/2023] [Indexed: 07/12/2023]
Abstract
The spatial two-tissue compartment model (2TCM) was used to analyze prostate dynamic contrast enhanced (DCE) MRI data and compared with the standard Tofts model. A total of 29 patients with biopsy-confirmed prostate cancer were included in this IRB-approved study. MRI data were acquired on a Philips Achieva 3T-TX scanner. After T2-weighted and diffusion-weighted imaging, DCE data using 3D T1-FFE mDIXON sequence were acquired pre- and post-contrast media injection (0.1 mmol/kg Multihance) for 60 dynamic scans with temporal resolution of 8.3 s/image. The 2TCM has one fast ([Formula: see text] and [Formula: see text]) and one slow ([Formula: see text] and [Formula: see text]) exchanging compartment, compared with the standard Tofts model parameters (Ktrans and kep). On average, prostate cancer had significantly higher values (p < 0.01) than normal prostate tissue for all calculated parameters. There was a strong correlation (r = 0.94, p < 0.001) between Ktrans and [Formula: see text] for cancer, but weak correlation (r = 0.28, p < 0.05) between kep and [Formula: see text]. Average root-mean-square error (RMSE) in fits from the 2TCM was significantly smaller (p < 0.001) than the RMSE in fits from the Tofts model. Receiver operating characteristic (ROC) analysis showed that fast [Formula: see text] had the highest area under the curve (AUC) than any other individual parameter. The combined four parameters from the 2TCM had a considerably higher AUC value than the combined two parameters from the Tofts model. The 2TCM is useful for quantitative analysis of prostate DCE-MRI data and provides new information in the diagnosis of prostate cancer.
Collapse
Affiliation(s)
- Xueyan Zhou
- School of Technology, Harbin University, Harbin, China.
- Department of Radiology, University of Chicago, Chicago, IL, 60637, USA.
| | - Xiaobing Fan
- Department of Radiology, University of Chicago, Chicago, IL, 60637, USA
| | | | - Ambereen Yousuf
- Department of Radiology, University of Chicago, Chicago, IL, 60637, USA
| | - Tatjana Antic
- Department of Pathology, University of Chicago, Chicago, IL, 60637, USA
| | - Aytekin Oto
- Department of Radiology, University of Chicago, Chicago, IL, 60637, USA
| | | |
Collapse
|
4
|
de Oliveira Correia ET, Qiao PL, Griswold MA, Chen Y, Bittencourt LK. Magnetic resonance fingerprinting based comprehensive quantification of T1 and T2 values of the background prostatic peripheral zone: Correlation with clinical and demographic features. Eur J Radiol 2023; 164:110883. [PMID: 37209463 DOI: 10.1016/j.ejrad.2023.110883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/01/2023] [Accepted: 05/10/2023] [Indexed: 05/22/2023]
Abstract
PURPOSE To quantify and assess the distribution of MR fingerprinting (MRF)-derived T1 and T2 values of the whole prostatic peripheral zone (PZ), and perform subgroup analyses according to clinical and demographic features. METHOD One hundred and twenty-four patients with prostate MR exams and MRF-based T1 and T2 maps of the prostatic apex, mid gland, and base were identified from our database and included. Regions of interest encompassing the right and left lobes of the PZ were drawn for each axial slice on the T2 map and copied to the T1 map. Clinical data were obtained from medical records. Kruskal-Wallis test was used for assessing differences between subgroups and the Spearman coefficient was used for assessing any correlations. RESULTS Mean T1 and T2 values were 1941 and 88 ms, respectively, for the whole-gland, 1884 and 83 ms for the apex, 1974 and 92 ms for the mid-gland, 1966 and 88 ms for the base. T1 values were weakly negatively correlated with PSA values, while T1 and T2 values were weakly positively correlated with prostate weight and moderately positively correlated with PZ width. Finally, patients with PI-RADS 1 scores had higher T1 and T2 values of the whole PZ, compared with those with scores 2-5. CONCLUSION Mean T1 and T2 values of the background PZ of the whole gland were 1941 ± 313 and 88 ± 39 ms, respectively. Among clinical and demographic factors, there was a significant positive correlation between T1 and T2 values and PZ width.
Collapse
Affiliation(s)
| | - Peter L Qiao
- Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, USA.
| | - Mark A Griswold
- University Hospitals Cleveland Medical Center, 11100 Euclid Ave, Cleveland, OH 44106, USA; Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, USA.
| | - Yong Chen
- Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, USA.
| | - Leonardo Kayat Bittencourt
- University Hospitals Cleveland Medical Center, 11100 Euclid Ave, Cleveland, OH 44106, USA; Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, USA.
| |
Collapse
|
5
|
Dev ID, Puranik AD, Sahay A, Purandare NC, Agrawal A, Shah S, Rangarajan V. Primary Neuroendocrine Tumor of Prostate in a Case of Metastatic Adenocarcinoma of Lung: Rare Entity with Histopathological and Gallium 68 DOTANOC Positron Emission Tomography Correlation. Indian J Nucl Med 2023; 38:154-156. [PMID: 37456183 PMCID: PMC10348502 DOI: 10.4103/ijnm.ijnm_193_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/07/2022] [Accepted: 12/24/2022] [Indexed: 07/18/2023] Open
Abstract
Neuroendocrine tumor (NET) of the prostate is an extremely rare entity which represents <1% of the prostatic cancers, but with increasing incidence. Its spectrum encompasses several histological variants ranging from well-differentiated tumor which are often indolent in nature; to aggressive neuroendocrine carcinoma which portends aggressive management. Hence, such rare entities are to be characterized and treated accordingly. We report an unusual case of well-differentiated NET of prostate which was flagged on fluorodeoxyglucose positron emission tomography computed tomography (PET/CT) performed for other indication and confirmed on Gallium-68 DOTANOC PET/CT. Histopathology and immunohistochemistry confirmed the findings subsequently.
Collapse
Affiliation(s)
- Indraja D. Dev
- Department of Nuclear Medicine and Molecular Imaging, Tata Memorial Center, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Ameya D. Puranik
- Department of Nuclear Medicine and Molecular Imaging, Tata Memorial Center, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Ayushi Sahay
- Department of Pathology, Tata Memorial Center, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Nilendu C. Purandare
- Department of Nuclear Medicine and Molecular Imaging, Tata Memorial Center, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Archi Agrawal
- Department of Nuclear Medicine and Molecular Imaging, Tata Memorial Center, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Sneha Shah
- Department of Nuclear Medicine and Molecular Imaging, Tata Memorial Center, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Venkatesh Rangarajan
- Department of Nuclear Medicine and Molecular Imaging, Tata Memorial Center, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| |
Collapse
|
6
|
Generative Adversarial Networks Can Create High Quality Artificial Prostate Cancer Magnetic Resonance Images. J Pers Med 2023; 13:jpm13030547. [PMID: 36983728 PMCID: PMC10051877 DOI: 10.3390/jpm13030547] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 03/22/2023] Open
Abstract
The recent integration of open-source data with machine learning models, especially in the medical field, has opened new doors to studying disease progression and/or regression. However, the ability to use medical data for machine learning approaches is limited by the specificity of data for a particular medical condition. In this context, the most recent technologies, like generative adversarial networks (GANs), are being looked upon as a potential way to generate high-quality synthetic data that preserve the clinical variability of a condition. However, despite some success, GAN model usage remains largely minimal when depicting the heterogeneity of a disease such as prostate cancer. Previous studies from our group members have focused on automating the quantitative multi-parametric magnetic resonance imaging (mpMRI) using habitat risk scoring (HRS) maps on the prostate cancer patients in the BLaStM trial. In the current study, we aimed to use the images from the BLaStM trial and other sources to train the GAN models, generate synthetic images, and validate their quality. In this context, we used T2-weighted prostate MRI images as training data for Single Natural Image GANs (SinGANs) to make a generative model. A deep learning semantic segmentation pipeline trained the model to segment the prostate boundary on 2D MRI slices. Synthetic images with a high-level segmentation boundary of the prostate were filtered and used in the quality control assessment by participating scientists with varying degrees of experience (more than ten years, one year, or no experience) to work with MRI images. Results showed that the most experienced participating group correctly identified conventional vs. synthetic images with 67% accuracy, the group with one year of experience correctly identified the images with 58% accuracy, and the group with no prior experience reached 50% accuracy. Nearly half (47%) of the synthetic images were mistakenly evaluated as conventional. Interestingly, in a blinded quality assessment, a board-certified radiologist did not significantly differentiate between conventional and synthetic images in the context of the mean quality of synthetic and conventional images. Furthermore, to validate the usability of the generated synthetic images from prostate cancer MRIs, we subjected these to anomaly detection along with the original images. Importantly, the success rate of anomaly detection for quality control-approved synthetic data in phase one corresponded to that of the conventional images. In sum, this study shows promise that high-quality synthetic images from MRIs can be generated using GANs. Such an AI model may contribute significantly to various clinical applications which involve supervised machine-learning approaches.
Collapse
|
7
|
Zhou X, Fan X, Chatterjee A, Yousuf A, Antic T, Oto A, Karczmar GS. Parametric maps of spatial two-tissue compartment model for prostate dynamic contrast enhanced MRI - comparison with the standard Tofts model in the diagnosis of prostate cancer. RESEARCH SQUARE 2023:rs.3.rs-2539644. [PMID: 36798227 PMCID: PMC9934750 DOI: 10.21203/rs.3.rs-2539644/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
The spatial two-tissue compartment model (2TCM) was used to analyze prostate dynamic contrast enhanced (DCE) MRI data and compared with the standard Tofts model. A total of 29 patients with biopsy-confirmed prostate cancer were included in this IRB-approved study. MRI data were acquired on a Philips Achieva 3T-TX scanner. After T2-weighted and diffusion-weighted imaging, DCE data using 3D T1-FFE mDIXON sequence were acquired pre- and post-contrast media injection (0.1 mmol/kg Multihance) for 60 dynamic scans with temporal resolution of 8.3 s/image. The 2TCM has one fast (K 1 trans and k 1 ep ) and one slow (K 2 trans and k 2 ep ) exchanging compartment, compared with the standard Tofts model parameters (K trans and k ep ). On average, prostate cancer had significantly higher values (p < 0.007) than normal prostate tissue for all calculated parameters. There was a strong correlation (r = 0.94, p < 0.0001) between K trans and K 1 trans for cancer, but weak correlation (r = 0.28, p < 0.05) between k ep and k 1 ep . Average root-mean-square error (RMSE) in fits from the 2TCM was significantly smaller (p < 0.001) than the RMSE in fits from the Tofts model. Receiver operating characteristic (ROC) analysis showed that fast K 1 trans had the highest area under the curve (AUC) than any other individual parameter. The combined four parameters from the 2TCM had a considerably higher AUC value than the combined two parameters from the Tofts model. The 2TCM may be useful for quantitative analysis of prostate DCE-MRI data and may provide new information in the diagnosis of prostate cancer.
Collapse
|
8
|
Sieryi O, Ushenko Y, Ushenko V, Dubolazov O, Syvokorovskaya AV, Vanchulyak O, Ushenko AG, Gorsky M, Tomka Y, Bykov A, Yan W, Meglinski I. Optical anisotropy composition of benign and malignant prostate tissues revealed by Mueller-matrix imaging. BIOMEDICAL OPTICS EXPRESS 2022; 13:6019-6034. [PMID: 36733722 PMCID: PMC9872883 DOI: 10.1364/boe.464420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/07/2022] [Accepted: 09/18/2022] [Indexed: 06/18/2023]
Abstract
A Mueller matrix imaging approach is employed to disclose the three-dimensional composition framework of optical anisotropy within cancerous biotissues. Visualized by the Mueller matrix technique spatial architecture of optical anisotropy of tissues is characterised by high-order statistical moments. Thus, quantitative analysis of the spatial distribution of optical anisotropy, such as linear and circular birefringence and dichroism, is revealed by using high-order statistical moments, enabling definitively discriminate prostate adenoma and carcinoma. The developed approach provides greater (>90%) accuracy of diagnostic achieved by using either the 3-rd or 4-th order statistical moments of the linear anisotropy parameters. Noticeable difference is observed between prostate adenoma and carcinoma tissue samples in terms of the extinction coefficient and the degree of depolarisation. Juxtaposition to other optical diagnostic modalities demonstrates the greater accuracy of the approach described herein, paving the way for its wider application in cancer diagnosis and tissue characterization.
Collapse
Affiliation(s)
- Oleksii Sieryi
- Optoelectronics and Measurement Techniques, University of Oulu, Oulu, Finland
| | - Yuriy Ushenko
- Optics and Publishing Department, Chernivtsi National University, Chernivtsi, Ukraine
| | - Volodimir Ushenko
- Optics and Publishing Department, Chernivtsi National University, Chernivtsi, Ukraine
| | - Olexander Dubolazov
- Optics and Publishing Department, Chernivtsi National University, Chernivtsi, Ukraine
| | | | - Oleh Vanchulyak
- Department of Forensic Medicine and Medical Law, Bukovinian State Medical University, Chernivtsi, Ukraine
| | - Alexander G. Ushenko
- Optics and Publishing Department, Chernivtsi National University, Chernivtsi, Ukraine
- College of Electrical Engineering, Taizhou Research Institute, Zhejiang University, Taizhou, China
| | - Mykhailo Gorsky
- Department of Forensic Medicine and Medical Law, Bukovinian State Medical University, Chernivtsi, Ukraine
| | - Yuriy Tomka
- Optics and Publishing Department, Chernivtsi National University, Chernivtsi, Ukraine
| | - Alexander Bykov
- Optoelectronics and Measurement Techniques, University of Oulu, Oulu, Finland
| | - Wenjun Yan
- College of Electrical Engineering, Taizhou Research Institute, Zhejiang University, Taizhou, China
| | - Igor Meglinski
- Optoelectronics and Measurement Techniques, University of Oulu, Oulu, Finland
- College of Engineering and Physical Sciences, Aston University, Birmingham, UK
| |
Collapse
|
9
|
Lo WC, Panda A, Jiang Y, Ahad J, Gulani V, Seiberlich N. MR fingerprinting of the prostate. MAGMA (NEW YORK, N.Y.) 2022; 35:557-571. [PMID: 35419668 PMCID: PMC10288492 DOI: 10.1007/s10334-022-01012-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 06/03/2023]
Abstract
Multiparametric magnetic resonance imaging (mpMRI) has been adopted as the key tool for detection, localization, characterization, and risk stratification of patients suspected to have prostate cancer. Despite advantages over systematic biopsy, the interpretation of prostate mpMRI has limitations including a steep learning curve, leading to considerable interobserver variation. There is growing interest in clinical translation of quantitative imaging techniques for more objective lesion assessment. However, traditional mapping techniques are slow, precluding their use in the clinic. Magnetic resonance fingerprinting (MRF) is an efficient approach for quantitative maps of multiple tissue properties simultaneously. The T1 and T2 values obtained with MRF have been validated with phantom studies as well as in normal volunteers and patients. Studies have shown that MRF-derived T1 and T2 along with ADC values are all significant independent predictors in the differentiation between normal prostate tissue and prostate cancer, and hold promise in differentiating low and intermediate/high-grade cancers. This review seeks to introduce the basics of the prostate MRF technique, discuss the potential applications of prostate MRF for the characterization of prostate cancer, and describes ongoing areas of research.
Collapse
Affiliation(s)
- Wei-Ching Lo
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
- Siemens Medical Solutions USA, Boston, Massachusetts, USA
| | - Ananya Panda
- Department of Radiology, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA
| | - Yun Jiang
- Department of Radiology, University of Michigan, University of Michigan Health System, 1500 E. Medical Center Drive, Ann Arbor, MI, 48109-5030, USA
| | - James Ahad
- Case Western Reserve University, Cleveland, OH, USA
| | - Vikas Gulani
- Department of Radiology, University of Michigan, University of Michigan Health System, 1500 E. Medical Center Drive, Ann Arbor, MI, 48109-5030, USA
| | - Nicole Seiberlich
- Department of Radiology, University of Michigan, University of Michigan Health System, 1500 E. Medical Center Drive, Ann Arbor, MI, 48109-5030, USA.
- Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
10
|
Ratnani P, Dovey Z, Parekh S, Sobotka S, Shukla D, Davis A, Roshandel R, Wagaskar V, Jambor I, Lundon DJ, Wiklund P, Kyprianou N, Menon M, Tewari A. Prostate MRI percentage tumor involvement or "PI-RADS percent" as a predictor of adverse surgical pathology. Prostate 2022; 82:970-983. [PMID: 35437769 DOI: 10.1002/pros.24344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/25/2022] [Accepted: 03/07/2022] [Indexed: 11/08/2022]
Abstract
BACKGROUND This study assesses magnetic resonance imaging (MRI) prostate % tumor involvement or "PI-RADs percent" as a predictor of adverse pathology (AP) after surgery for localized prostate cancer (PCa). Two separate variables, "All PI-RADS percent" (APP) and "Highest PI-RADS percent" (HPP), are defined as the volume of All PI-RADS 3-5 score lesions on MRI and the volume of the Highest PI-RADS 3-5 score lesion each divided by TPV, respectively. METHOD An analysis was done of an IRB approved prospective cohort of 557 patients with localized PCa who had targeted biopsy of MRI PIRADs 3-5 lesions followed by RARP from April 2015 to May 2020 performed by a single surgeon at a single center. AP was defined as ISUP GGG ≥3, pT stage ≥T3 and/or LNI. Univariate and multivariable analyses were used to evaluate APP and HPP at predicting AP with other clinical variables such as Age, PSA at surgery, Race, Biopsy GGG, mpMRI ECE and mpMRI SVI. Internal and External Validation demonstrated predicted probabilities versus observed probabilities. RESULTS AP was reported in 44.5% (n = 248) of patients. Multivariable regression showed both APP (odds ratio [OR]: 1.10, 95% confidence interval [CI]: 1.04-1.14, p = 0.0007) and HPP (OR: 1.10; 95% CI: 1.04-1.16; p = 0.0007) were significantly associated with AP with individual area under the operating curves (AUCs) of 0.6142 and 0.6229, respectively, and AUCs of 0.8129 and 0.8124 when incorporated in models including preoperative PSA and highest biopsy GGG. CONCLUSIONS Increasing PI-RADS Percent was associated with a higher risk of AP, and both APP and HPP may have clinical utility as predictors of AP in GGG 1 and 2 patients being considered for AS. PATIENT SUMMARY Using PIRADs percent to predict AP for presurgical patients may help risk stratification, and for low and low volume intermediate risk patients, may influence treatment decisions.
Collapse
Affiliation(s)
- Parita Ratnani
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Zach Dovey
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Sneha Parekh
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Stanislaw Sobotka
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Devki Shukla
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Avery Davis
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Reza Roshandel
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Vinayak Wagaskar
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Ivan Jambor
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Dara J Lundon
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Peter Wiklund
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Solna, Sweden
- Department of Urology, Karolinska University Hospital Solna, Sweden
| | - Natasha Kyprianou
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Mani Menon
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Ash Tewari
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| |
Collapse
|
11
|
Wang Y, Abenojar EC, Wang J, de Leon AC, Tavri S, Wang X, Gopalakrishnan R, Walker E, MacLennan GT, Giles A, Czarnota GJ, Basilion JP, Exner AA. Development of a novel castration-resistant orthotopic prostate cancer model in New Zealand White rabbit. Prostate 2022; 82:695-705. [PMID: 35167141 PMCID: PMC8994852 DOI: 10.1002/pros.24314] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 01/12/2022] [Accepted: 01/24/2022] [Indexed: 01/15/2023]
Abstract
BACKGROUND Prostate cancer (PCa) models in mice and rats are limited by their size and lack of a clearly delineated or easily accessible prostate gland. The canine PCa model is currently the only large animal model which can be used to test new preclinical interventions but is costly and availability is sparse. As an alternative, we developed an orthotopic human prostate tumor model in an immunosuppressed New Zealand White rabbit. Rabbits are phylogenetically closer to humans, their prostate gland is anatomically similar, and its size allows for clinically-relevant testing of interventions. METHODS Rabbits were immunosuppressed via injection of cyclosporine. Human PC3pipGFP PCa cells were injected into the prostate via either (a) laparotomy or (b) transabdominal ultrasound (US) guided injection. Tumor growth was monitored using US and magnetic resonance imaging (MRI). Contrast-enhanced ultrasound (CEUS) imaging using nanobubbles and Lumason microbubbles was also performed to examine imaging features and determine the optimal contrast dose required for enhanced visualization of the tumor. Ex vivo fluorescence imaging, histopathology, and immunohistochemistry analyses of the collected tissues were performed to validate tumor morphology and prostate-specific membrane antigen (PSMA) expression. RESULTS Immunosuppression and tumor growth were, in general, well-tolerated by the rabbits. Fourteen out of 20 rabbits, with an average age of 8 months, successfully grew detectable tumors from Day 14 onwards after cell injection. The tumor growth rate was 39 ± 25 mm2 per week. CEUS and MRI of tumors appear hypoechoic and T2 hypointense, respectively, relative to normal prostate tissue. Minimally invasive US-guided tumor cell injection proved to be a better method compared to laparotomy due to the shorter recovery time required for the rabbits following injection. Among the rabbits that grew tumors, seven had tumors both inside and outside the prostate, three had tumors only inside the prostate, and four had tumors exclusively outside of the prostate. All tumors expressed the PSMA receptor. CONCLUSIONS We have established, for the first time, an orthotopic PCa rabbit model via percutaneous US-guided tumor cell inoculation. This animal model is an attractive, clinically relevant intermediate step to assess preclinical diagnostic and therapeutic compounds.
Collapse
Affiliation(s)
- Yu Wang
- Department of Radiology, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Ultrasound, Peking University People’s Hospital, Beijing, China
| | - Eric C. Abenojar
- Department of Radiology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Jing Wang
- Department of Radiology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Al C. de Leon
- Department of Radiology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Sidhartha Tavri
- Department of Radiology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Xinning Wang
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | | | - Ethan Walker
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Gregory T. MacLennan
- Department of Pathology and Urology, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, Ohio, USA
| | - Anoja Giles
- Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Gregory J. Czarnota
- Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Radiation Oncology and Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - James P. Basilion
- Department of Radiology, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Agata A. Exner
- Department of Radiology, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
12
|
Acosta-Falomir MJ, Angulo-Lozano JC, Sanchez-Musi LF, Soria Céspedes D, Fernández de Lara Barrera Y. Detection of High-Grade Prostate Cancer With a Super High B-value (4000 s/mm2) in Diffusion-Weighted Imaging Sequences by Magnetic Resonance Imaging. Cureus 2022; 14:e22807. [PMID: 35399424 PMCID: PMC8980248 DOI: 10.7759/cureus.22807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2022] [Indexed: 11/30/2022] Open
Abstract
Introduction: High-grade adenocarcinoma of the prostate tends to have denser glandular structures and a prominent desmoplastic reaction, which could be detected by magnetic resonance imaging (MRI) with a super-high b-value in diffusion-weighted imaging (DWI) sequence, to differentiate it from low-grade carcinomas. Objective: To evaluate the diagnostic validity of the diffusion sequence with values of b4000 s/mm2 for the diagnosis of high-grade prostate cancer (Gleason score ≥ 7). Materials and methods: It is a retrospective analytical study of male patients who have undergone a prostate biopsy and count with a prostate MRI with a DWI sequence of a super-high b-value (4000 s/mm2). Results: The sensitivity of the diffusion sequence with b4000 s/mm2 values to classify as positive for prostate cancer was 57.14% as compared to biopsy. The specificity of the diffusion sequence with b4000 s/mm2 values classifying patients with prostate carcinoma as negative was 84.62%. The probability that the diffusion sequence with b4000 s/mm2 values classifies patients with prostate cancer was 80%. The probability that the diffusion sequence with b4000 s/mm2 values does not classify patients with prostate cancer was 64.71%. The proportion of patients adequately classified with prostate cancer using the diffusion sequence with b4000 s/mm2 values was 70.37%. Conclusions: The study shows that using the diffusion sequence with values of b4000 s/mm2 is an optimal value that serves as a tool to be able to decant those high-risk carcinomas with those of low risk; however, it is not a definitive method of diagnosis that could replace the performance of a biopsy. Since the study sample was limited, these results cannot be interpreted as reliable for diagnosing high-grade prostate cancer and should encourage future studies on a larger scale population to obtain significant evidence for a non-invasive diagnostic tool with a better cost-benefit for the patient.
Collapse
|
13
|
Albano D, Bruno F, Agostini A, Angileri SA, Benenati M, Bicchierai G, Cellina M, Chianca V, Cozzi D, Danti G, De Muzio F, Di Meglio L, Gentili F, Giacobbe G, Grazzini G, Grazzini I, Guerriero P, Messina C, Micci G, Palumbo P, Rocco MP, Grassi R, Miele V, Barile A. Dynamic contrast-enhanced (DCE) imaging: state of the art and applications in whole-body imaging. Jpn J Radiol 2021; 40:341-366. [PMID: 34951000 DOI: 10.1007/s11604-021-01223-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/17/2021] [Indexed: 12/18/2022]
Abstract
Dynamic contrast-enhanced (DCE) imaging is a non-invasive technique used for the evaluation of tissue vascularity features through imaging series acquisition after contrast medium administration. Over the years, the study technique and protocols have evolved, seeing a growing application of this method across different imaging modalities for the study of almost all body districts. The main and most consolidated current applications concern MRI imaging for the study of tumors, but an increasing number of studies are evaluating the use of this technique also for inflammatory pathologies and functional studies. Furthermore, the recent advent of artificial intelligence techniques is opening up a vast scenario for the analysis of quantitative information deriving from DCE. The purpose of this article is to provide a comprehensive update on the techniques, protocols, and clinical applications - both established and emerging - of DCE in whole-body imaging.
Collapse
Affiliation(s)
- Domenico Albano
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Milan, Italy
- IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
- Dipartimento Di Biomedicina, Neuroscienze E Diagnostica Avanzata, Sezione Di Scienze Radiologiche, Università Degli Studi Di Palermo, via Vetoio 1L'Aquila, 67100, Palermo, Italy
| | - Federico Bruno
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Milan, Italy.
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy.
| | - Andrea Agostini
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Milan, Italy
- Department of Clinical, Special and Dental Sciences, Department of Radiology, University Politecnica delle Marche, University Hospital "Ospedali Riuniti Umberto I - G.M. Lancisi - G. Salesi", Ancona, Italy
| | - Salvatore Alessio Angileri
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Milan, Italy
- Radiology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Massimo Benenati
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Milan, Italy
- Dipartimento di Diagnostica per Immagini, Fondazione Policlinico Universitario A. Gemelli IRCCS, Oncologia ed Ematologia, RadioterapiaRome, Italy
| | - Giulia Bicchierai
- Diagnostic Senology Unit, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| | - Michaela Cellina
- Department of Radiology, ASST Fatebenefratelli Sacco, Ospedale Fatebenefratelli, Milan, Italy
| | - Vito Chianca
- Ospedale Evangelico Betania, Naples, Italy
- Clinica Di Radiologia, Istituto Imaging Della Svizzera Italiana - Ente Ospedaliero Cantonale, Lugano, Switzerland
| | - Diletta Cozzi
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Milan, Italy
- Department of Emergency Radiology, Careggi University Hospital, Florence, Italy
| | - Ginevra Danti
- Department of Emergency Radiology, Careggi University Hospital, Florence, Italy
| | - Federica De Muzio
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso, Italy
| | - Letizia Di Meglio
- Postgraduation School in Radiodiagnostics, University of Milan, Milan, Italy
| | - Francesco Gentili
- Unit of Diagnostic Imaging, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Giuliana Giacobbe
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Milan, Italy
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Naples, Italy
| | - Giulia Grazzini
- Department of Radiology, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| | - Irene Grazzini
- Department of Radiology, Section of Neuroradiology, San Donato Hospital, Arezzo, Italy
| | - Pasquale Guerriero
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Milan, Italy
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso, Italy
| | | | - Giuseppe Micci
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Milan, Italy
- Dipartimento Di Biomedicina, Neuroscienze E Diagnostica Avanzata, Sezione Di Scienze Radiologiche, Università Degli Studi Di Palermo, via Vetoio 1L'Aquila, 67100, Palermo, Italy
| | - Pierpaolo Palumbo
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Milan, Italy
- Abruzzo Health Unit 1, Department of diagnostic Imaging, Area of Cardiovascular and Interventional Imaging, L'Aquila, Italy
| | - Maria Paola Rocco
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Naples, Italy
| | - Roberto Grassi
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Milan, Italy
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Naples, Italy
| | - Vittorio Miele
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Milan, Italy
- Department of Radiology, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| | - Antonio Barile
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Milan, Italy
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
14
|
Bura V, Caglic I, Snoj Z, Sushentsev N, Berghe AS, Priest AN, Barrett T. MRI features of the normal prostatic peripheral zone: the relationship between age and signal heterogeneity on T2WI, DWI, and DCE sequences. Eur Radiol 2021; 31:4908-4917. [PMID: 33398421 PMCID: PMC8213603 DOI: 10.1007/s00330-020-07545-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/30/2020] [Accepted: 11/18/2020] [Indexed: 12/24/2022]
Abstract
OBJECTIVES To assess the multiparametric MRI (mpMRI) appearances of normal peripheral zone (PZ) across age groups in a biopsy-naïve population, where prostate cancer (PCa) was subsequently excluded, and propose a scoring system for background PZ changes. METHODS This retrospective study included 175 consecutive biopsy-naïve patients (40-74 years) referred with a suspicion of PCa, but with subsequent negative investigations. Patients were grouped by age into categories ≤ 54, 55-59, 60-64, and ≥ 65 years. MpMRI sequences (T2-weighted imaging [T2WI], diffusion-weighted imaging [DWI]/apparent diffusion coefficient [ADC], and dynamic contrast-enhanced imaging [DCE]) were independently evaluated by two uro-radiologists on a proposed 4-point grading scale for background change on each sequence, wherein score 1 mirrored PIRADS-1 change and score 4 represented diffuse background change. Peripheral zone T2WI signal intensity and ADC values were also analyzed for trends relating to age. RESULTS There was a negative correlation between age and assigned background PZ scores for each mpMRI sequence: T2WI: r = - 0.52, DWI: r = - 0.49, DCE: r = - 0.45, p < 0.001. Patients aged ≤ 54 years had mean scores of 3.0 (T2WI), 2.7 (DWI), and 3.1 (DCE), whilst patients ≥ 65 years had significantly lower mean scores of 1.7, 1.4, and 1.9, respectively. There was moderate inter-reader agreement for all scores (range κ = 0.43-0.58). Statistically significant positive correlations were found for age versus normalized T2WI signal intensity (r = 0.2, p = 0.009) and age versus ADC values (r = 0.33, p = 0.001). CONCLUSION The normal PZ in younger patients (≤ 54 years) demonstrates significantly lower T2WI signal intensity, lower ADC values, and diffuse enhancement on DCE, which may hinder diagnostic interpretation in these patients. The proposed standardized PZ background scoring system may help convey the potential for diagnostic uncertainty to clinicians. KEY POINTS • Significant, positive correlations were found between increasing age and higher normalized T2-weighted signal intensity and mean ADC values of the prostatic peripheral zone. • Younger men exhibit lower T2-weighted imaging signal intensity, lower ADC values, and diffuse enhancement on dynamic contrast-enhanced imaging, which may hinder MRI interpretation. • A scoring system is proposed which aims towards a standardized assessment of the normal background PZ. This may help convey the potential for diagnostic uncertainty to clinicians.
Collapse
Affiliation(s)
- Vlad Bura
- Department of Radiology, County Clinical Emergency Hospital, Cluj-Napoca, Cluj, Romania
| | - Iztok Caglic
- Department of Radiology, Addenbrooke's Hospital and University of Cambridge, Box 218, Hills Road, Cambridge, CB2 0QQ, UK
| | - Ziga Snoj
- Radiology Institute, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Nikita Sushentsev
- Department of Radiology, Addenbrooke's Hospital and University of Cambridge, Box 218, Hills Road, Cambridge, CB2 0QQ, UK
| | - Alexandra S Berghe
- Department of Radiology, County Clinical Emergency Hospital, Cluj-Napoca, Cluj, Romania
- Department of Medical Informatics and Biostatistics, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Andrew N Priest
- Department of Radiology, Addenbrooke's Hospital and University of Cambridge, Box 218, Hills Road, Cambridge, CB2 0QQ, UK
| | - Tristan Barrett
- Department of Radiology, Addenbrooke's Hospital and University of Cambridge, Box 218, Hills Road, Cambridge, CB2 0QQ, UK.
| |
Collapse
|
15
|
Liu Y, Yu H, Liu J, Zhang X, Lin M, Schmidt H, Gao J, Xu B. A Pilot Study of 18F-DCFPyL PET/CT or PET/MRI and Ultrasound Fusion Targeted Prostate Biopsy for Intra-Prostatic PET-Positive Lesions. Front Oncol 2021; 11:612157. [PMID: 33747927 PMCID: PMC7973269 DOI: 10.3389/fonc.2021.612157] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/11/2021] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVES The purpose of this study was to evaluate the feasibility and diagnostic performance of prostate-specific membrane antigen (PSMA) based 18F-DCFPyL PET/CT-ultrasound (PET/CT-US) or PET/MRI-ultrasound (PET/MRI-US) fusion targeted biopsy for intra-prostatic PET-positive lesions. METHODS From April 2018 to November 2019, we prospectively enrolled 55 candidates to perform PET/CT-US or PET/MRI-US fusion targeted biopsies for solitary PET-positive prostate lesions (two to four cores/lesion). The positive rates of prostate cancer based on patients and biopsy cores were calculated respectively. With reference to the pathological results of biopsy cores, the MR signal characteristics in the area of the PET-positive lesion were analyzed for the patients who underwent PET/MRI. RESULTS A total of 178 biopsy cores were taken on the 55 patients. One hundred forty-six biopsy cores (82.0%, 146/178) from 51 (92.7%, 51/55) patients were positive for prostate cancer; 47 (85.5%, 47/55) were clinically significant prostate cancer. It is noteworthy that nine patients underwent both 18F-DCFPyL PET/CT and PET/MRI examinations; the seven patients with prostate cancer showed abnormal MR signal in the area of the PET-positive lesion while the other two patients with prostatic hyperplasia and prostatitis showed normal MR signal in the area of the PET-positive lesion. CONCLUSION This study indicated that 18F-DCFPyL PET/CT-US or PET/MRI-US fusion targeted prostate biopsies may be valuable for prostate cancer diagnosis and have a high detection rate of clinically significant prostate cancer for PET-positive lesions. PET/MR can rule out some false PET-positive lesions, which may potentially reduce unnecessary prostate biopsies.
Collapse
Affiliation(s)
- Yachao Liu
- Department of Nuclear Medicine, Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Hongkai Yu
- Department of Urology Surgery, Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Jiajin Liu
- Department of Nuclear Medicine, Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Xiaojun Zhang
- Department of Nuclear Medicine, Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Mu Lin
- Magnetic Resonance Collaboration, Diagnostic Imaging, Siemens Healthineers Ltd., Shanghai, China
| | - Holger Schmidt
- Magnetic Resonance Education, Customer Services, Siemens Healthcare GmbH, Erlangen, Germany
| | - Jiangping Gao
- Department of Urology Surgery, Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Baixuan Xu
- Department of Nuclear Medicine, Chinese People’s Liberation Army General Hospital, Beijing, China
| |
Collapse
|
16
|
Shakur A, Hames K, O'Shea A, Harisinghani MG. Prostatitis: imaging appearances and diagnostic considerations. Clin Radiol 2021; 76:416-426. [PMID: 33632522 DOI: 10.1016/j.crad.2021.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 01/14/2021] [Indexed: 02/07/2023]
Abstract
Acute and chronic inflammation of the prostate gland can be attributed to several underlying aetiologies, including but not limited to, bacterial prostatitis, granulomatous prostatitis, and Immunoglobulin G4-related prostatitis. In this review, we provide an overview of the general imaging appearances of the different types of prostatitis, their distinguishing features and characteristic appearances at cross-sectional imaging. Common imaging pitfalls are presented and illustrated with examples.
Collapse
Affiliation(s)
- A Shakur
- Department of Radiology, Division of Abdominal Imaging, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02114, USA.
| | - K Hames
- Department of Radiology, Hamilton General Hospital, 237 Barton Street E, Hamilton, Ontario, L8L 2X2, Canada
| | - A O'Shea
- Department of Radiology, Division of Abdominal Imaging, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02114, USA
| | - M G Harisinghani
- Department of Radiology, Division of Abdominal Imaging, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02114, USA
| |
Collapse
|
17
|
Ladumor H, Al-Mohannadi S, Ameerudeen FS, Ladumor S, Fadl S. TB or not TB: A comprehensive review of imaging manifestations of abdominal tuberculosis and its mimics. Clin Imaging 2021; 76:130-143. [PMID: 33596517 DOI: 10.1016/j.clinimag.2021.02.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 01/21/2021] [Accepted: 02/08/2021] [Indexed: 02/07/2023]
Abstract
The ever-growing prevalence of tuberculosis is a cause for concern among both developing and developed countries. Abdominal tuberculosis is the most common site of extrapulmonary tuberculosis and involves almost all of the visceral organs. Clinical presentation of abdominal tuberculosis is often non-specific. Thus, having a high index of clinical suspicion is necessary to aide early diagnosis and guide prompt initiation of appropriate treatment. In this review, we focus on the entire spectrum of abdominal tuberculosis and other diseases mimicking it with an emphasis on their imaging findings.
Collapse
Affiliation(s)
- Heta Ladumor
- Weill Cornell Medicine - Qatar, Qatar Foundation - Education City, P.O. Box 24144, Doha, Qatar.
| | - Salma Al-Mohannadi
- Weill Cornell Medicine - Qatar, Qatar Foundation - Education City, P.O. Box 24144, Doha, Qatar
| | | | - Sushila Ladumor
- Department of Radiology, Hamad General Hospital, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar
| | - Shaimaa Fadl
- Department of Radiology, Virginia Commonwealth University, West Hospital, 1200 East Broad Street, Room 2-013, Box 984070, Richmond, VA, 23298, United States of America
| |
Collapse
|
18
|
Round table: arguments in supporting abbreviated or biparametric MRI of the prostate protocol. Abdom Radiol (NY) 2020; 45:3974-3981. [PMID: 32303773 DOI: 10.1007/s00261-020-02510-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Prostate Imaging Reporting and Data System (PI-RADS) version 2.1 update, in the attempt to improve clinical guidelines for multiparametric magnetic resonance imaging (mpMRI) of the prostate, has clear limitations. The role of dynamic contrast-enhanced sequences is not defined, precise guidance on the clinical management (biopsy or clinical surveillance) for score 3 lesions [equivocal for clinical significant prostate cancer (sPCa)] is not offered and criteria for lesions interpretation remain difficult and subjective. We report criteria and arguments in supporting the use of abbreviated or biparametric prostate MRI protocol in clinical practice for detection and management of PCa.
Collapse
|
19
|
McGarry SD, Bukowy JD, Iczkowski KA, Lowman AK, Brehler M, Bobholz S, Nencka A, Barrington A, Jacobsohn K, Unteriner J, Duvnjak P, Griffin M, Hohenwalter M, Keuter T, Huang W, Antic T, Paner G, Palangmonthip W, Banerjee A, LaViolette PS. Radio-pathomic mapping model generated using annotations from five pathologists reliably distinguishes high-grade prostate cancer. J Med Imaging (Bellingham) 2020; 7:054501. [PMID: 32923510 PMCID: PMC7479263 DOI: 10.1117/1.jmi.7.5.054501] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 08/20/2020] [Indexed: 12/19/2022] Open
Abstract
Purpose: Our study predictively maps epithelium density in magnetic resonance imaging (MRI) space while varying the ground truth labels provided by five pathologists to quantify the downstream effects of interobserver variability. Approach: Clinical imaging and postsurgical tissue from 48 recruited prospective patients were used in our study. Tissue was sliced to match the MRI orientation and whole-mount slides were stained and digitized. Data from 28 patients ( n = 33 slides) were sent to five pathologists to be annotated. Slides from the remaining 20 patients ( n = 123 slides) were annotated by one of the five pathologists. Interpathologist variability was measured using Krippendorff's alpha. Pathologist-specific radiopathomic mapping models were trained using a partial least-squares regression using MRI values to predict epithelium density, a known marker for disease severity. An analysis of variance characterized intermodel means difference in epithelium density. A consensus model was created and evaluated using a receiver operator characteristic classifying high grade versus low grade and benign, and was statistically compared to apparent diffusion coefficient (ADC). Results: Interobserver variability ranged from low to acceptable agreement (0.31 to 0.69). There was a statistically significant difference in mean predicted epithelium density values ( p < 0.001 ) between the five models. The consensus model outperformed ADC (areas under the curve = 0.80 and 0.71, respectively, p < 0.05 ). Conclusion: We demonstrate that radiopathomic maps of epithelium density are sensitive to the pathologist annotating the dataset; however, it is unclear if these differences are clinically significant. The consensus model produced the best maps, matched the performance of the best individual model, and outperformed ADC.
Collapse
Affiliation(s)
- Sean D McGarry
- Medical College of Wisconsin, Department of Biophysics, Milwaukee, Wisconsin, United States
| | - John D Bukowy
- Medical College of Wisconsin, Department of Radiology, Milwaukee, Wisconsin, United States
| | - Kenneth A Iczkowski
- Medical College of Wisconsin, Department of Pathology, Milwaukee, Wisconsin, United States
| | - Allison K Lowman
- Medical College of Wisconsin, Department of Radiology, Milwaukee, Wisconsin, United States
| | - Michael Brehler
- Medical College of Wisconsin, Department of Radiology, Milwaukee, Wisconsin, United States
| | - Samuel Bobholz
- Medical College of Wisconsin, Department of Biophysics, Milwaukee, Wisconsin, United States
| | - Andrew Nencka
- Medical College of Wisconsin, Department of Radiology, Milwaukee, Wisconsin, United States
| | - Alex Barrington
- Medical College of Wisconsin, Department of Radiology, Milwaukee, Wisconsin, United States
| | - Kenneth Jacobsohn
- Medical College of Wisconsin, Department of Urological Surgery, Milwaukee, Wisconsin, United States
| | - Jackson Unteriner
- Medical College of Wisconsin, Department of Radiology, Milwaukee, Wisconsin, United States
| | - Petar Duvnjak
- Medical College of Wisconsin, Department of Radiology, Milwaukee, Wisconsin, United States
| | - Michael Griffin
- Medical College of Wisconsin, Department of Radiology, Milwaukee, Wisconsin, United States
| | - Mark Hohenwalter
- Medical College of Wisconsin, Department of Radiology, Milwaukee, Wisconsin, United States
| | - Tucker Keuter
- Medical College of Wisconsin, Department of Biostatistics, Milwaukee, Wisconsin, United States
| | - Wei Huang
- University of Wisconsin-Madison, Department of Pathology, Madison, Wisconsin, United States
| | - Tatjana Antic
- University of Chicago, Department of Pathology, Chicago, Illinois, United States
| | - Gladell Paner
- University of Chicago, Department of Pathology, Chicago, Illinois, United States
| | - Watchareepohn Palangmonthip
- Medical College of Wisconsin, Department of Pathology, Milwaukee, Wisconsin, United States.,Chiang Mai University, Department of Pathology, Faculty of Medicine, Chiang Mai, Thailand
| | - Anjishnu Banerjee
- Medical College of Wisconsin, Department of Biostatistics, Milwaukee, Wisconsin, United States
| | - Peter S LaViolette
- Medical College of Wisconsin, Department of Radiology, Milwaukee, Wisconsin, United States.,Medical College of Wisconsin, Department of Biomedical Engineering, Milwaukee, Wisconsin, United States
| |
Collapse
|
20
|
Mannaerts CK, Engelbrecht MRW, Postema AW, van Kollenburg RAA, Hoeks CMA, Savci-Heijink CD, Van Sloun RJG, Wildeboer RR, De Reijke TM, Mischi M, Wijkstra H. Detection of clinically significant prostate cancer in biopsy-naïve men: direct comparison of systematic biopsy, multiparametric MRI- and contrast-ultrasound-dispersion imaging-targeted biopsy. BJU Int 2020; 126:481-493. [PMID: 32315112 DOI: 10.1111/bju.15093] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVES To compare and evaluate a multiparametric magnetic resonance imaging (mpMRI)-targeted biopsy (TBx) strategy, contrast-ultrasound-dispersion imaging (CUDI)-TBx strategy and systematic biopsy (SBx) strategy for the detection of clinically significant prostate cancer (csPCa) in biopsy-naïve men. PATIENTS AND METHODS A prospective, single-centre paired diagnostic study included 150 biopsy-naïve men, from November 2015 to November 2018. All men underwent pre-biopsy mpMRI and CUDI followed by a 12-core SBx taken by an operator blinded from the imaging results. Men with suspicious lesions on mpMRI and/or CUDI also underwent MRI-TRUS fusion-TBx and/or cognitive CUDI-TBx after SBx by a second operator. A non-inferiority analysis of the mpMRI- and CUDI-TBx strategies in comparison with SBx for International Society of Urological Pathology Grade Group [GG] ≥2 PCa in any core with a non-inferiority margin of 1 percentage point was performed. Additional analyses for GG ≥2 PCa with cribriform growth pattern and/or intraductal carcinoma (CR/IDC), and GG ≥3 PCa were performed. Differences in detection rates were tested using McNemar's test with adjusted Wald confidence intervals. RESULTS After enrolment of 150 men, an interim analysis was performed. Both the mpMRI- and CUDI-TBx strategies were inferior to SBx for GG ≥2 PCa detection and the study was stopped. SBx found significantly more GG ≥2 PCa: 39% (56/142), as compared with 29% (41/142) and 28% (40/142) for mpMRI-TBx and CUDI-TBx, respectively (P < 0.05). SBx found significantly more GG = 1 PCa: 14% (20/142) compared to 1% (two of 142) and 3% (four of 142) with mpMRI-TBx and CUDI-TBx, respectively (P < 0.05). Detection of GG ≥2 PCa with CR/IDC and GG ≥3 PCa did not differ significantly between the strategies. The mpMRI- and CUDI-TBx strategies were comparable in detection but the mpMRI-TBx strategy had less false-positive findings (18% vs 53%). CONCLUSIONS In our study in biopsy-naïve men, the mpMRI- and CUDI-TBx strategies had comparable PCa detection rates, but the mpMRI-TBX strategy had the least false-positive findings. Both strategies were inferior to SBx for the detection of GG ≥2 PCa, despite reduced detection of insignificant GG = 1 PCa. Both strategies did not significantly differ from SBx for the detection of GG ≥2 PCa with CR/IDC and GG ≥3 PCa.
Collapse
Affiliation(s)
- Christophe K Mannaerts
- Department of Urology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Marc R W Engelbrecht
- Department of Radiology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Arnoud W Postema
- Department of Urology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Rob A A van Kollenburg
- Department of Urology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Caroline M A Hoeks
- Department of Radiology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Cemile Dilara Savci-Heijink
- Department of Pathology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Ruud J G Van Sloun
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Rogier R Wildeboer
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Theo M De Reijke
- Department of Urology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Massimo Mischi
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Hessel Wijkstra
- Department of Urology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands.,Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
21
|
What You Need to Know Before Reading Multiparametric MRI for Prostate Cancer. AJR Am J Roentgenol 2020; 214:1211-1219. [PMID: 32255689 DOI: 10.2214/ajr.19.22751] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE. Multiparametric MRI (mpMRI) has become the main imaging modality for the detection, localization, and local staging of prostate cancer over the past decade. For radiologists to achieve consistent and reproducible reporting of prostate mpMRI, a comprehensive evaluation of the gland including detailed knowledge of anatomy, pathology, and clinical data is required. This article familiarizes radiologists with common pitfalls and conditions that affect mpMRI performance during readouts. CONCLUSION. Consistent, accurate, and reproducible reporting of prostate mpMRI is vital. Additionally, radiologists should be aware of common diagnostic pitfalls that can hinder mpMRI performance.
Collapse
|
22
|
Shape Analysis of Peripheral Zone Observations on Prostate DWI: Correlation to Histopathology Outcomes After Radical Prostatectomy. AJR Am J Roentgenol 2020; 214:1239-1247. [PMID: 32228325 DOI: 10.2214/ajr.19.22318] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE. The objective of our study was to subjectively and quantitatively assess shape features of peripheral zone (PZ) tumors at DWI compared with pathologic outcomes. MATERIALS AND METHODS. During the study period, 241 consecutive men with PZ dominant prostate tumors underwent 3-T MRI including DWI before undergoing radical prostatectomy. DW images of these patients were retrospectively assessed by two blinded radiologists. The reviewers assigned Prostate Imaging Reporting and Data System (PI-RADS) shape categories (round or oval, crescentic [i.e., conforming to PZ], linear or wedge-shaped) and segmented tumors for quantitative shape analysis. Discrepancies were resolved by consensus. Comparisons were performed with Gleason score (GS) and pathologic stage. RESULTS. Consensus review results were as follows: 63.9% (154/241) of tumors were round or oval; 22.8% (55/241), crescentic; and 13.3% (32/241), linear or wedge-shaped. Agreement for shape assessment was moderate (κ = 0.41). Round or oval tumors were higher grade (GS 6 = 1.3%, GS 7 = 78.0%, GS ≥ 8 = 20.7%) than crescentic tumors (GS 6 = 9.1%, GS 7 = 74.6%, GS ≥ 8 = 16.3%) and linear or wedge-shaped tumors (GS 6 = 6.3%, GS 7 = 78.1%, GS ≥ 8 = 15.6%) (p = 0.011). In addition, round or oval tumors had higher rates of extraprostatic extension (EPE) and seminal vesicle invasion (SVI) (EPE and SVI: 70.1% and 26.0%) than crescentic tumors (67.3% and 9.1%; p = 0.003) and linear or wedge-shaped tumors (40.6% and 9.4%; p = 0.008). Quantitatively, the shape features termed "circularity" and "roundness" were associated with EPE (p < 0.001 and p = 0.003), SVI (p < 0.001 and p = 0.029), and increasing GS (p = 0.009 and p = 0.021), but there was overlap between groups. CONCLUSION. In this study, approximately 10% of resected PZ tumors were linear or wedge-shaped on DWI. PZ tumors that were judged subjectively and evaluated quantitatively to be round or oval were associated with increased prostate cancer aggressiveness.
Collapse
|
23
|
Olsson LE, Johansson M, Zackrisson B, Blomqvist LK. Basic concepts and applications of functional magnetic resonance imaging for radiotherapy of prostate cancer. PHYSICS & IMAGING IN RADIATION ONCOLOGY 2019; 9:50-57. [PMID: 33458425 PMCID: PMC7807726 DOI: 10.1016/j.phro.2019.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 12/27/2018] [Accepted: 02/08/2019] [Indexed: 12/30/2022]
Abstract
Recently, the interest to integrate magnetic resonance imaging (MRI) in radiotherapy for prostate cancer has increased considerably. MRI can contribute in all steps of the radiotherapy workflow from diagnosis, staging, and target definition to treatment follow-up. Of particular interest is the ability of MRI to provide a wide range of functional measures. The complexity of MRI as an imaging modality combined with the growing interest of the application to prostate cancer radiotherapy, emphasize the need for dedicated education within the radiation oncology community. In this context, an overview of the most common as well as a few upcoming functional MR imaging techniques is presented: the basic methodology and measurement is described, the link between the functional measures and the underlying biology is established, and finally relevant applications of functional MRI useful for prostate cancer radiotherapy are given.
Collapse
Affiliation(s)
- Lars E Olsson
- Department of Medical Radiation Physics, Translational Medicine, Lund University, Sweden.,Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Sweden
| | | | | | - Lennart K Blomqvist
- Department of Radiology, Molecular Medicine and Surgery, Karolinska University, Sweden
| |
Collapse
|