1
|
Lee H, Bae AN, Yang H, Lee JH, Park JH. Modulation of PRC1 Promotes Anticancer Effects in Pancreatic Cancer. Cancers (Basel) 2024; 16:3310. [PMID: 39409930 PMCID: PMC11475828 DOI: 10.3390/cancers16193310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/11/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Background: Pancreatic cancer, while relatively uncommon, is extrapolated to become the second leading cause of cancer-related deaths worldwide. Despite identifying well-known markers like the KRAS gene, the exact regulation of pancreatic cancer progression remains elusive. Methods: Clinical value of PRC1 was analyzed using bioinformatics database. The role of PRC1 was further evaluated through cell-based assays, including viability, wound healing, and sensitivity with the drug. Results: We demonstrate that PRC1 was significantly overexpressed in pancreatic cancer compared to pancreases without cancer, as revealed through human databases and cell lines analysis. Furthermore, high PRC1 expression had a negative correlation with CD4+ T cells, which are crucial for the immune response against cancers. Additionally, PRC1 showed a positive correlation with established pancreatic cancer markers. Silencing PRC1 expression using siRNA significantly inhibited cancer cell proliferation and viability and increased chemotherapeutic drug sensitivity. Conclusions: These findings suggest that targeting PRC1 in pancreatic cancer may enhance immune cell infiltration and inhibit cancer cell proliferation, offering a promising avenue for developing anticancer therapies.
Collapse
Affiliation(s)
| | | | | | | | - Jong Ho Park
- Department of Anatomy, School of Medicine, Keimyung University, Daegu 42601, Republic of Korea
| |
Collapse
|
2
|
Tan MCB, Isom CA, Liu Y, Trégouët DA, Wu L, Zhou D, Gamazon ER. Transcriptome-wide association study and Mendelian randomization in pancreatic cancer identifies susceptibility genes and causal relationships with type 2 diabetes and venous thromboembolism. EBioMedicine 2024; 106:105233. [PMID: 39002386 PMCID: PMC11284564 DOI: 10.1016/j.ebiom.2024.105233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/19/2024] [Accepted: 06/25/2024] [Indexed: 07/15/2024] Open
Abstract
BACKGROUND Two important questions regarding the genetics of pancreatic adenocarcinoma (PDAC) are 1. Which germline genetic variants influence the incidence of this cancer; and 2. Whether PDAC causally predisposes to associated non-malignant phenotypes, such as type 2 diabetes (T2D) and venous thromboembolism (VTE). METHODS In this study of 8803 patients with PDAC and 67,523 controls, we first performed a large-scale transcriptome-wide association study to investigate the association between genetically determined gene expression in normal pancreas tissue and PDAC risk. Secondly, we used Mendelian Randomization (MR) to analyse the causal relationships among PDAC, T2D (74,124 cases and 824,006 controls) and VTE (30,234 cases and 172,122 controls). FINDINGS Sixteen genes showed an association with PDAC risk (FDR <0.10), including six genes not yet reported for PDAC risk (PPIP5K2, TFR2, HNF4G, LRRC10B, PRC1 and FBXL20) and ten previously reported genes (INHBA, SMC2, ABO, PDX1, MTMR6, ACOT2, PGAP3, STARD3, GSDMB, ADAM33). MR provided support for a causal effect of PDAC on T2D using genetic instruments in the HNF4G and PDX1 loci, and unidirectional causality of VTE on PDAC involving the ABO locus (OR 2.12, P < 1e-7). No evidence of a causal effect of PDAC on VTE was found. INTERPRETATION These analyses identified candidate susceptibility genes and disease relationships for PDAC that warrant further investigation. HNF4G and PDX1 may induce PDAC-associated diabetes, whereas ABO may induce the causative effect of VTE on PDAC. FUNDING National Institutes of Health (USA).
Collapse
Affiliation(s)
- Marcus C B Tan
- Division of Surgical Oncology and Endocrine Surgery, Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA; Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
| | - Chelsea A Isom
- Herbert Wertheim School of Public Health & Human Longevity Science, University of California, San Diego, San Diego, CA, USA
| | - Yangzi Liu
- Vanderbilt University School of Medicine, Nashville, TN, USA
| | | | - Lang Wu
- Cancer Epidemiology Division, Population Sciences in the Pacific Program, University of Hawai'i Cancer Center, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Dan Zhou
- School of Public Health and the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Hangzhou, China.
| | - Eric R Gamazon
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA; Clare Hall, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
3
|
Bordan Z, Batori RK, Haigh S, Li X, Meadows ML, Brown ZL, West MA, Dong K, Han W, Su Y, Ma Q, Huo Y, Zhou J, Abdelbary M, Sullivan JC, Weintraub NL, Stepp DW, Chen F, Barman SA, Fulton DJR. PDZ-Binding Kinase, a Novel Regulator of Vascular Remodeling in Pulmonary Arterial Hypertension. Circulation 2024; 150:393-410. [PMID: 38682326 DOI: 10.1161/circulationaha.123.067095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 03/04/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Pulmonary arterial hypertension (PAH) is high blood pressure in the lungs that originates from structural changes in small resistance arteries. A defining feature of PAH is the inappropriate remodeling of pulmonary arteries (PA) leading to right ventricle failure and death. Although treatment of PAH has improved, the long-term prognosis for patients remains poor, and more effective targets are needed. METHODS Gene expression was analyzed by microarray, RNA sequencing, quantitative polymerase chain reaction, Western blotting, and immunostaining of lung and isolated PA in multiple mouse and rat models of pulmonary hypertension (PH) and human PAH. PH was assessed by digital ultrasound, hemodynamic measurements, and morphometry. RESULTS Microarray analysis of the transcriptome of hypertensive rat PA identified a novel candidate, PBK (PDZ-binding kinase), that was upregulated in multiple models and species including humans. PBK is a serine/threonine kinase with important roles in cell proliferation that is minimally expressed in normal tissues but significantly increased in highly proliferative tissues. PBK was robustly upregulated in the medial layer of PA, where it overlaps with markers of smooth muscle cells. Gain-of-function approaches show that active forms of PBK increase PA smooth muscle cell proliferation, whereas silencing PBK, dominant negative PBK, and pharmacological inhibitors of PBK all reduce proliferation. Pharmacological inhibitors of PBK were effective in PH reversal strategies in both mouse and rat models, providing translational significance. In a complementary genetic approach, PBK was knocked out in rats using CRISPR/Cas9 editing, and loss of PBK prevented the development of PH. We found that PBK bound to PRC1 (protein regulator of cytokinesis 1) in PA smooth muscle cells and that multiple genes involved in cytokinesis were upregulated in experimental models of PH and human PAH. Active PBK increased PRC1 phosphorylation and supported cytokinesis in PA smooth muscle cells, whereas silencing or dominant negative PBK reduced cytokinesis and the number of cells in the G2/M phase of the cell cycle. CONCLUSIONS PBK is a newly described target for PAH that is upregulated in proliferating PA smooth muscle cells, where it contributes to proliferation through changes in cytokinesis and cell cycle dynamics to promote medial thickening, fibrosis, increased PA resistance, elevated right ventricular systolic pressure, right ventricular remodeling, and PH.
Collapse
Affiliation(s)
- Zsuzsanna Bordan
- Vascular Biology Center (Z.B., R.K.B., S.H., Z.L.B., M.A.W., Q.M., Y.H., N.L.W., D.W.S., D.J.R.F.), Medical College of Georgia, Augusta University
| | - Robert K Batori
- Vascular Biology Center (Z.B., R.K.B., S.H., Z.L.B., M.A.W., Q.M., Y.H., N.L.W., D.W.S., D.J.R.F.), Medical College of Georgia, Augusta University
| | - Stephen Haigh
- Vascular Biology Center (Z.B., R.K.B., S.H., Z.L.B., M.A.W., Q.M., Y.H., N.L.W., D.W.S., D.J.R.F.), Medical College of Georgia, Augusta University
| | - Xueyi Li
- Departments of Ophthalmology and Medicine, Stanford University School of Medicine, Palo Alto, CA (X.L.)
| | - Mary Louise Meadows
- Department of Pharmacology and Toxicology (M.L.M., W.H., Y.S., J.Z., S.A.B., D.J.R.F.), Medical College of Georgia, Augusta University
| | - Zach L Brown
- Vascular Biology Center (Z.B., R.K.B., S.H., Z.L.B., M.A.W., Q.M., Y.H., N.L.W., D.W.S., D.J.R.F.), Medical College of Georgia, Augusta University
| | - Madison A West
- Vascular Biology Center (Z.B., R.K.B., S.H., Z.L.B., M.A.W., Q.M., Y.H., N.L.W., D.W.S., D.J.R.F.), Medical College of Georgia, Augusta University
| | - Kunzhe Dong
- Vascular Biology Center (Z.B., R.K.B., S.H., Z.L.B., M.A.W., Q.M., Y.H., N.L.W., D.W.S., D.J.R.F.), Medical College of Georgia, Augusta University
| | - Weihong Han
- Department of Pharmacology and Toxicology (M.L.M., W.H., Y.S., J.Z., S.A.B., D.J.R.F.), Medical College of Georgia, Augusta University
| | - Yunchao Su
- Department of Pharmacology and Toxicology (M.L.M., W.H., Y.S., J.Z., S.A.B., D.J.R.F.), Medical College of Georgia, Augusta University
| | - Qian Ma
- Vascular Biology Center (Z.B., R.K.B., S.H., Z.L.B., M.A.W., Q.M., Y.H., N.L.W., D.W.S., D.J.R.F.), Medical College of Georgia, Augusta University
| | - Yuqing Huo
- Vascular Biology Center (Z.B., R.K.B., S.H., Z.L.B., M.A.W., Q.M., Y.H., N.L.W., D.W.S., D.J.R.F.), Medical College of Georgia, Augusta University
| | - Jiliang Zhou
- Department of Pharmacology and Toxicology (M.L.M., W.H., Y.S., J.Z., S.A.B., D.J.R.F.), Medical College of Georgia, Augusta University
| | - Mahmoud Abdelbary
- School of Medicine, Oregon Health & Science University, Portland (M.A.)
| | - Jennifer C Sullivan
- Immunology Center of Georgia (K.D.), Department of Physiology (J.C.S.), Medical College of Georgia, Augusta University
| | - Neal L Weintraub
- Vascular Biology Center (Z.B., R.K.B., S.H., Z.L.B., M.A.W., Q.M., Y.H., N.L.W., D.W.S., D.J.R.F.), Medical College of Georgia, Augusta University
| | - David W Stepp
- Vascular Biology Center (Z.B., R.K.B., S.H., Z.L.B., M.A.W., Q.M., Y.H., N.L.W., D.W.S., D.J.R.F.), Medical College of Georgia, Augusta University
| | - Feng Chen
- Department of Forensic Medicine, Nanjing Medical University, China (F.C.)
| | - Scott A Barman
- Department of Pharmacology and Toxicology (M.L.M., W.H., Y.S., J.Z., S.A.B., D.J.R.F.), Medical College of Georgia, Augusta University
| | - David J R Fulton
- Vascular Biology Center (Z.B., R.K.B., S.H., Z.L.B., M.A.W., Q.M., Y.H., N.L.W., D.W.S., D.J.R.F.), Medical College of Georgia, Augusta University
- Department of Pharmacology and Toxicology (M.L.M., W.H., Y.S., J.Z., S.A.B., D.J.R.F.), Medical College of Georgia, Augusta University
| |
Collapse
|
4
|
Zhang C, Qin C. Protein regulator of cytokinesis 1 accentuates cholangiocarcinoma progression via mTORC1-mediated glycolysis. Hum Cell 2024; 37:739-751. [PMID: 38416277 DOI: 10.1007/s13577-024-01032-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 01/18/2024] [Indexed: 02/29/2024]
Abstract
This study aimed to investigate the expression of protein regulator of cytokinesis 1 (PRC1) in cholangiocarcinoma (CHOL) and elucidate its potential impact as well as the underlying mechanisms governing the progression of CHOL. In this study, we used CHOL cells (HUCCT1, RBE, and CCLP1) and conducted a series of experiments, including qRT-PCR, cell counting kit-8 assays, EdU assays, flow cytometry, wound healing assays, Transwell assays, western blotting, double luciferase assays, and ELISA. Subsequently, a mouse model was established using cancer cell injections. Haematoxylin-eosin staining, along with Ki67 and TUNEL assays, were employed to assess tissue histopathology, cell proliferation, and apoptosis. Our findings revealed significantly elevated PRC1 expression in CHOL. According to bioinformatics analysis, it was found that the increased PRC1 level is correlated with the high tumour grades, metastases, and unfavourable prognoses. Notably, PRC1 knockdown inhibited cell viability, proliferation, migration, and invasion while promoting apoptosis in CHOL cells. Analysing TCGA-CHOL data and utilising transcription factor prediction tools (hTFtarget and HumanTFDB), we identified that genes positively correlated with PRC1 in TCGA-CHOL intersect with predicted transcription factors, revealing the activation of PRC1 by forkhead box protein M1 (FOXM1). Moreover, PRC1 was found to exert regulatory control over glycolysis and the mammalian target of rapamycin complex 1 (mTORC1) pathway in the context of CHOL based on KEGG and GSEA analysis. Collectively, these results underscore the pivotal role of PRC1 in CHOL progression, wherein it modulates glycolysis and the mTORC1 pathway under the regulatory influence of FOXM1.
Collapse
Affiliation(s)
- Chao Zhang
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital, Shandong University, 324 Jingwuwei 7Th Road, Jinan, 250021, Shandong, People's Republic of China
- Department of Hepatobiliary Surgery, Linyi People's Hospital, Linyi, 276034, Shandong, People's Republic of China
| | - Chengkun Qin
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital, Shandong University, 324 Jingwuwei 7Th Road, Jinan, 250021, Shandong, People's Republic of China.
| |
Collapse
|
5
|
Sun Q, Liu R, Zhang H, Zong L, Jing X, Ma L, Li J, Zhang L. Fascin actin-bundling protein 1 regulates non-small cell lung cancer progression by influencing the transcription and splicing of tumorigenesis-related genes. PeerJ 2023; 11:e16526. [PMID: 38077434 PMCID: PMC10704988 DOI: 10.7717/peerj.16526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 11/05/2023] [Indexed: 12/18/2023] Open
Abstract
Background High mortality rates are prevalent among patients with non-small-cell lung cancer (NSCLC), and effective therapeutic targets are key prognostic factors. Fascin actin-bundling protein 1 (FSCN1) promotes NSCLC; however, its role as an RNA-binding protein in NSCLC remains unexplored. Therefore, we aimed to explore FSCN1 expression and function in A549 cells. Method We screened for alternative-splicing events and differentially expressed genes (DEGs) after FSCN1 silence via RNA-sequencing (RNA-seq). FSCN1 immunoprecipitation followed by RNA-seq were used to identify target genes whose mRNA expression and pre-mRNA alternative-splicing levels might be influenced by FSCN1. Results Silencing FSCN1 in A549 cells affected malignant phenotypes; it inhibited proliferation, migration, and invasion, and promoted apoptosis. RNA-seq analysis revealed 2,851 DEGs and 3,057 alternatively spliced genes. Gene ontology-based functional enrichment analysis showed that downregulated DEGs and alternatively splicing genes were enriched for the cell-cycle. FSCN1 promoted the alternative splicing of cell-cycle-related mRNAs involved in tumorigenesis (i.e., BCCIP, DLGAP5, PRC1, RECQL5, WTAP, and SGO1). Combined analysis of FSCN1 RNA-binding targets and RNA-seq data suggested that FSCN1 might affect ACTG1, KRT7, and PDE3A expression by modulating the pre-mRNA alternative-splicing levels of NME4, NCOR2, and EEF1D, that were bound to long non-coding RNA transcripts (RNASNHG20, NEAT1, NSD2, and FTH1), which were highly abundant. Overall, extensive transcriptome analysis of gene alternative splicing and expression levels was performed in cells transfected with FSCN1 short-interfering RNA. Our data provide global insights into the regulatory mechanisms associated with the roles of FSCN1 and its target genes in lung cancer.
Collapse
Affiliation(s)
- Qingchao Sun
- Department of Thoracic Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinshi District, China
| | - Ruixue Liu
- Department of Thoracic Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinshi District, China
| | - Haiping Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinshi District, China
| | - Liang Zong
- Department of Thoracic Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinshi District, China
| | - Xiaoliang Jing
- Department of Thoracic Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinshi District, China
| | - Long Ma
- Department of Thoracic Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinshi District, China
| | - Jie Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinshi District, China
| | - Liwei Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinshi District, China
| |
Collapse
|
6
|
Łuczkowska K, Kulig P, Rusińska K, Baumert B, Machaliński B. 5-Aza-2'-Deoxycytidine Alters the Methylation Profile of Bortezomib-Resistant U266 Multiple Myeloma Cells and Affects Their Proliferative Potential. Int J Mol Sci 2023; 24:16780. [PMID: 38069103 PMCID: PMC10706146 DOI: 10.3390/ijms242316780] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/15/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
Multiple myeloma (MM) is a plasma cell malignancy that accounts for 1% of all cancers and is the second-most-common hematological neoplasm. Bortezomib (BTZ) is a proteasome inhibitor widely implemented in the treatment of MM alone or in combination with other agents. The development of resistance to chemotherapy is one of the greatest challenges of modern oncology. Therefore, it is crucial to discover and implement new adjuvant therapies that can bypass therapeutic resistance. In this paper, we investigated the in vitro effect of methylation inhibitor 5-Aza-2'-deoxycytidine on the proliferative potential of MM cells and the development of resistance to BTZ. We demonstrate that alterations in the DNA methylation profile are associated with BTZ resistance. Moreover, the addition of methylation inhibitor 5-Aza-2'-deoxycytidine to BTZ-resistant MM cells led to a reduction in the proliferation of the BTZ-resistant phenotype, resulting in the restoration of sensitivity to BTZ. However, further in vitro and ex vivo studies are required before adjuvant therapy can be incorporated into existing treatment regimens.
Collapse
Affiliation(s)
- Karolina Łuczkowska
- Department of General Pathology, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.Ł.); (P.K.); (K.R.)
| | - Piotr Kulig
- Department of General Pathology, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.Ł.); (P.K.); (K.R.)
| | - Klaudia Rusińska
- Department of General Pathology, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.Ł.); (P.K.); (K.R.)
| | - Bartłomiej Baumert
- Department of Hematology and Transplantology, Pomeranian Medical University, 71-252 Szczecin, Poland
| | - Bogusław Machaliński
- Department of General Pathology, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.Ł.); (P.K.); (K.R.)
- Department of Hematology and Transplantology, Pomeranian Medical University, 71-252 Szczecin, Poland
| |
Collapse
|
7
|
Liu W, Huang X, Luo W, Liu X, Chen W. The Role of Paxillin Aberrant Expression in Cancer and Its Potential as a Target for Cancer Therapy. Int J Mol Sci 2023; 24:ijms24098245. [PMID: 37175948 PMCID: PMC10179295 DOI: 10.3390/ijms24098245] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/21/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
Paxillin is a multi-domain adaptor protein. As an important member of focal adhesion (FA) and a participant in regulating cell movement, paxillin plays an important role in physiological processes such as nervous system development, embryonic development, and vascular development. However, increasing evidence suggests that paxillin is aberrantly expressed in many cancers. Many scholars have also recognized that the abnormal expression of paxillin is related to the prognosis, metastases, invasion, survival, angiogenesis, and other aspects of malignant tumors, suggesting that paxillin may be a potential cancer therapeutic target. Therefore, the study of how aberrant paxillin expression affects the process of tumorigenesis and metastasis will help to develop more efficacious antitumor drugs. Herein, we review the structure of paxillin and its function and expression in tumors, paying special attention to the multifaceted effects of paxillin on tumors, the mechanism of tumorigenesis and progression, and its potential role in tumor therapy. We also hope to provide a reference for the clinical prognosis and development of new tumor therapeutic targets.
Collapse
Affiliation(s)
- Weixian Liu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Aging Research, Guangdong Medical University, Dongguan 523808, China
- Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang 524023, China
| | - Xinxian Huang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Aging Research, Guangdong Medical University, Dongguan 523808, China
- Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang 524023, China
| | - Weizhao Luo
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Aging Research, Guangdong Medical University, Dongguan 523808, China
- Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang 524023, China
| | - Xinguang Liu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Aging Research, Guangdong Medical University, Dongguan 523808, China
- Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang 524023, China
| | - Weichun Chen
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Aging Research, Guangdong Medical University, Dongguan 523808, China
- Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang 524023, China
| |
Collapse
|
8
|
Tan F, Xu J. Validation of the solution structure of dimerization domain of PRC1. PLoS One 2022; 17:e0270572. [PMID: 35930764 PMCID: PMC9355583 DOI: 10.1371/journal.pone.0270572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/13/2022] [Indexed: 11/18/2022] Open
Abstract
Cell-cycle dependent proteins are indispensible for the accurate division of cells, a group of proteins called Microtubule-associated proteins (MAPs) are important to cell division as it bind microtubules and participate with other co-factors to form the spindle midbody, which works as the workhorse of cell-division. PRC1 is a distinguishing member of MAPs, as it is a human MAP and works as the key in mediating daughter cell segregation in ana-phase and telo-phase. The physiological significance of PRC1 calls for a high resolution three-dimensional structure. The crystal structure of PRC1 was published but has low resolution (>3 Å) and incomplete sidechains, placing hurdles to understanding the structure-function relationships of PRC1, therefore, we determined the high-resolution solution structure of PRC1’s dimerization domain using NMR spectroscopy. Significant differences between the crystal structure and the solution structure can be observed, the main differences center around the N terminus and the end of the alpha-Helix H2. Furthermore, detailed structure analyses revealed that the hydrophobic core packing of the solution and crystal structures are also different. To validate the solution structure, we used Hydrogen-deuterium exchange experiments that address the structural discrepancies between the crystal and solution structure; we also generated mutants that are key to the differences in the crystal and solution structures, measuring its structural or thermal stability by NMR spectroscopy and Fluorescence Thermal Shift Assays. These results suggest that N terminal residues are key to the integrity of the whole protein, and the solution structure of the dimerization domain better reflects the conformation PRC1 adopted in solution conditions.
Collapse
Affiliation(s)
- Fei Tan
- Peking University, Beijing, China
- * E-mail:
| | - Jin Xu
- Peking University, Beijing, China
| |
Collapse
|
9
|
N-Terminus-Mediated Solution Structure of Dimerization Domain of PRC1. Curr Issues Mol Biol 2022; 44:1626-1645. [PMID: 35723369 PMCID: PMC9164050 DOI: 10.3390/cimb44040111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/01/2022] [Accepted: 04/06/2022] [Indexed: 11/30/2022] Open
Abstract
Microtubule-associated proteins (MAPs) are essential for the accurate division of a cell into two daughter cells. These proteins target specific microtubules to be incorporated into the spindle midzone, which comprises a special array of microtubules that initiate cytokinesis during anaphase. A representative member of the MAPs is Protein Regulator of Cytokinesis 1 (PRC1), which self-multimerizes to cross-link microtubules, the malfunction of which might result in cancerous cells. The importance of PRC1 multimerization makes it a popular target for structural studies. The available crystal structure of PRC1 has low resolution (>3 Å) and accuracy, limiting a better understanding of the structure-related functions of PRC1. Therefore, we used NMR spectroscopy to better determine the structure of the dimerization domain of PRC1. The NMR structure shows that the PRC1 N terminus is crucial to the overall structure integrity, but the crystal structure bespeaks otherwise. We systematically addressed the role of the N terminus by generating a series of mutants in which N-terminal residues methionine (Met1) and arginine (Arg2) were either deleted, extended or substituted with other rationally selected amino acids. Each mutant was subsequently analyzed by NMR spectroscopy or fluorescence thermal shift assays for its structural or thermal stability; we found that N-terminal perturbations indeed affected the overall protein structure and that the solution structure better reflects the conformation of PRC1 under solution conditions. These results reveal that the structure of PRC1 is governed by its N terminus through hydrophobic interactions with other core residues, such hitherto unidentified N-terminal conformations might shed light on the structure−function relationships of PRC1 or other proteins. Therefore, our study is of major importance in terms of identifying a novel structural feature and can further the progress of protein folding and protein engineering.
Collapse
|