1
|
Yang Q, Wang W, Cheng D, Wang Y, Han Y, Huang J, Peng X. Non-coding RNA in exosomes: Regulating bone metastasis of lung cancer and its clinical application prospect. Transl Oncol 2024; 46:102002. [PMID: 38797017 PMCID: PMC11153237 DOI: 10.1016/j.tranon.2024.102002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/20/2024] [Accepted: 05/19/2024] [Indexed: 05/29/2024] Open
Abstract
Lung cancer is a highly prevalent malignancy with poor prognosis and rapid progression. It most frequently metastasizes to the bone, where it can pose a severe threat to the patient's survival. Once metastasized, the disease is often incurable and can result in severe complications such as hypercalcemia, bone pain, fractures, spinal cord compression, and subsequent paralysis. Exosomes are bilayer vesicle nanoparticles secreted by most of the extracellular vesicles, which can be found in almost all organisms and play an essential role in intercellular communication. Through their ability to regulate related bone cells, exosomes carry bioactive molecules, including proteins, lipids, and non-coding RNAs (ncRNAs), that can be extremely important in bone remodeling. Studies have been conducted on the role play by proteins, lncRNA, and microRNA-all ncRNAs-carried by exosomes in the bone metastases of lung cancer. In this review, the latest progress of the regulatory mechanism of ncRNAs carried by exosomes in lung cancer bone metastasis has been reviewed. The clinical use of exosomes as a promising biomarker, drug transporter, and therapeutic target was highlighted to offer a novel diagnostic and treatment approach for patients with lung cancer bone metastases.
Collapse
Affiliation(s)
- Qing Yang
- Nuclear Medicine Department, The First Affiliated Hospital of Yangtze University, Jingzhou 434000, Hubei, China; Health Science Center of Yangtze University, Jingzhou 434023, Hubei, China
| | - Wei Wang
- Department of Rehabilitation Radiology, Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, China
| | - Dezhou Cheng
- Health Science Center of Yangtze University, Jingzhou 434023, Hubei, China
| | - Yiling Wang
- Health Science Center of Yangtze University, Jingzhou 434023, Hubei, China
| | - Yukun Han
- Health Science Center of Yangtze University, Jingzhou 434023, Hubei, China
| | - Jinbai Huang
- Nuclear Medicine Department, The First Affiliated Hospital of Yangtze University, Jingzhou 434000, Hubei, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, Hubei, China.
| | - Xiaochun Peng
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, Hubei, China.
| |
Collapse
|
2
|
Wang R, Xu Y, Tong L, Zhang X, Zhang S. Recent progress of exosomal lncRNA/circRNA-miRNA-mRNA axis in lung cancer: implication for clinical application. Front Mol Biosci 2024; 11:1417306. [PMID: 39021878 PMCID: PMC11251945 DOI: 10.3389/fmolb.2024.1417306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 06/11/2024] [Indexed: 07/20/2024] Open
Abstract
Lung cancer is the leading cause of death among malignant tumors in the world. High lung cancer mortality rate is due to most of patients diagnosed at advanced stage. The Liquid biopsy of lung cancer have received recent interest for early diagnosis. One of the components of liquid biopsy is the exosome. The exosome cargos non-coding-RNAs, especially long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), and microRNAs (miRNAs). The lung cancer derived exosomal non-coding RNAs play the pivotal roles of lung cancer in carcinogenesis, diagnosis, therapy, drug resistance and prognosis of lung cancer. Given ceRNA (competitive endogenous RNA) mechanism, lncRNA or circRNA can act as ceRNA to compete to bind miRNAs and alter the expression of the targeted mRNA, contributing to the development and progression of lung cancer. The current research progress of the roles of the exosomal non-coding-RNAs and the interplay of ceRNAs and miRNAs in mediated lung cancer is illustrated in this article. Hence, we presented an experimentally validated lung cancer derived exosomal non-coding RNAs-regulated target gene axis from already existed evidence in lung cancer. Then LncRNA/circRNA-miRNA-mRNA axis may be a potential target for lung cancer treatment and has great potential in the diagnosis and prognosis of lung cancer.
Collapse
Affiliation(s)
- Ren Wang
- Guangzhou Institute of Cancer Research, The Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yiwei Xu
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Liangjing Tong
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiao Zhang
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Sheng Zhang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| |
Collapse
|
3
|
Wu H, Zeng C, Wu G, Fang F, Xiao C, Li L, Luo Y, Ouyang Z, Zhou C, Qian Y. Exosomal LRG1 promotes non-small cell lung cancer proliferation and metastasis by binding FN1 protein. Exp Cell Res 2024; 439:114097. [PMID: 38796135 DOI: 10.1016/j.yexcr.2024.114097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/13/2024] [Accepted: 05/19/2024] [Indexed: 05/28/2024]
Abstract
Leucine-rich α2-glycoprotein-1 (LRG1) is overexpressed in various cancers, including non-small cell lung cancer (NSCLC), but its role in NSCLC cell metastasis is not well understood. In this study, NSCLC cell exosomes were analyzed using different techniques, and the impact of exosomal LRG1 on NSCLC cell behavior was investigated through various assays both in vitro and in vivo. The study revealed that LRG1, found abundantly in NSCLC cells and exosomes, enhanced cell proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT). Exosomal LRG1 was shown to promote NSCLC cell metastasis in animal models. Additionally, the interaction between LRG1 and fibronectin 1 (FN1) in the cytoplasm was identified. It was observed that FN1 could counteract the effects of LRG1 knockdown on cell regulation induced by exosomes derived from NSCLC cells. Overall, the findings suggest that targeting exosomal LRG1 or FN1 may hold therapeutic potential for treating NSCLC.
Collapse
Affiliation(s)
- Hao Wu
- Department of Respiratory and Critical Care Medicine, Shenzhen Second People's Hospital, Shenzhen, 518035, China.
| | - Chao Zeng
- Department of Thoracic Surgery, Shenzhen Second People's Hospital, Shenzhen, 518035, China.
| | - Guodong Wu
- Department of Respiratory and Critical Care Medicine, Shenzhen Second People's Hospital, Shenzhen, 518035, China.
| | - Fuyuan Fang
- Department of Respiratory and Critical Care Medicine, Shenzhen Second People's Hospital, Shenzhen, 518035, China.
| | - Chunyang Xiao
- Department of Respiratory and Critical Care Medicine, Shenzhen Second People's Hospital, Shenzhen, 518035, China.
| | - Liang Li
- Department of Respiratory and Critical Care Medicine, Shenzhen Second People's Hospital, Shenzhen, 518035, China
| | - Yisheng Luo
- Department of Respiratory and Critical Care Medicine, Shenzhen Second People's Hospital, Shenzhen, 518035, China.
| | - Zezhong Ouyang
- Department of Respiratory and Critical Care Medicine, Shenzhen Second People's Hospital, Shenzhen, 518035, China.
| | - Chaochao Zhou
- Department of Respiratory and Critical Care Medicine, Shenzhen Second People's Hospital, Shenzhen, 518035, China.
| | - Youhui Qian
- Department of Respiratory and Critical Care Medicine, Shenzhen Second People's Hospital, Shenzhen, 518035, China.
| |
Collapse
|
4
|
Lv X, Yang L, Xie Y, Momeni MR. Non-coding RNAs and exosomal non-coding RNAs in lung cancer: insights into their functions. Front Cell Dev Biol 2024; 12:1397788. [PMID: 38859962 PMCID: PMC11163066 DOI: 10.3389/fcell.2024.1397788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/02/2024] [Indexed: 06/12/2024] Open
Abstract
Lung cancer is the second most common form of cancer worldwide Research points to the pivotal role of non-coding RNAs (ncRNAs) in controlling and managing the pathology by controlling essential pathways. ncRNAs have all been identified as being either up- or downregulated among individuals suffering from lung cancer thus hinting that they may play a role in either promoting or suppressing the spread of the disease. Several ncRNAs could be effective non-invasive biomarkers to diagnose or even serve as effective treatment options for those with lung cancer, and several molecules have emerged as potential targets of interest. Given that ncRNAs are contained in exosomes and are implicated in the development and progression of the malady. Herein, we have summarized the role of ncRNAs in lung cancer. Moreover, we highlight the role of exosomal ncRNAs in lung cancer.
Collapse
Affiliation(s)
- Xiaolong Lv
- Department of Cardiothoracic Surgery, The People’s Hospital of Changshou, Chongqing, China
| | - Lei Yang
- Department of Cardiothoracic Surgery, The People’s Hospital of Tongliang District, Chongqing, China
| | - Yunbo Xie
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | | |
Collapse
|
5
|
Ao YQ, Gao J, Jiang JH, Wang HK, Wang S, Ding JY. Comprehensive landscape and future perspective of long noncoding RNAs in non-small cell lung cancer: it takes a village. Mol Ther 2023; 31:3389-3413. [PMID: 37740493 PMCID: PMC10727995 DOI: 10.1016/j.ymthe.2023.09.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/01/2023] [Accepted: 09/17/2023] [Indexed: 09/24/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) are a distinct subtype of RNA that lack protein-coding capacity but exert significant influence on various cellular processes. In non-small cell lung cancer (NSCLC), dysregulated lncRNAs act as either oncogenes or tumor suppressors, contributing to tumorigenesis and tumor progression. LncRNAs directly modulate gene expression, act as competitive endogenous RNAs by interacting with microRNAs or proteins, and associate with RNA binding proteins. Moreover, lncRNAs can reshape the tumor immune microenvironment and influence cellular metabolism, cancer cell stemness, and angiogenesis by engaging various signaling pathways. Notably, lncRNAs have shown great potential as diagnostic or prognostic biomarkers in liquid biopsies and therapeutic strategies for NSCLC. This comprehensive review elucidates the significant roles and diverse mechanisms of lncRNAs in NSCLC. Furthermore, we provide insights into the clinical relevance, current research progress, limitations, innovative research approaches, and future perspectives for targeting lncRNAs in NSCLC. By summarizing the existing knowledge and advancements, we aim to enhance the understanding of the pivotal roles played by lncRNAs in NSCLC and stimulate further research in this field. Ultimately, unraveling the complex network of lncRNA-mediated regulatory mechanisms in NSCLC could potentially lead to the development of novel diagnostic tools and therapeutic strategies.
Collapse
Affiliation(s)
- Yong-Qiang Ao
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jian Gao
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jia-Hao Jiang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hai-Kun Wang
- CAS Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Shuai Wang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Jian-Yong Ding
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
6
|
González-Ruíz J, A Baccarelli A, Cantu-de-Leon D, Prada D. Air Pollution and Lung Cancer: Contributions of Extracellular Vesicles as Pathogenic Mechanisms and Clinical Utility. Curr Environ Health Rep 2023; 10:478-489. [PMID: 38052753 PMCID: PMC10822800 DOI: 10.1007/s40572-023-00421-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2023] [Indexed: 12/07/2023]
Abstract
PURPOSE OF REVIEW This review addresses the pressing issue of air pollution's threat to human health, focusing on its connection to non-small cell lung cancer (NSCLC) development. The aim is to explore the role of extracellular vesicles (EVs) as potential pathogenic mechanisms in lung cancer, including NSCLC, induced by air pollutants. RECENT FINDINGS Recent research highlights EVs as vital mediators of intercellular communication and key contributors to cancer progression. Notably, this review emphasizes the cargo of EVs released by both cancerous and non-cancerous lung cells, shedding light on their potential role in promoting various aspects of tumor development. The review underscores the importance of comprehending the intricate interplay between air pollution, biological damage mechanisms, and EV-mediated communication during NSCLC development. Major takeaways emphasize the significance of this understanding in addressing air pollution-related lung cancer. Future research avenues are also highlighted, aiming to enhance the applicability of EVs for diagnosis and targeted therapies, ultimately mitigating the inevitable impact of air pollution on NSCLC development and treatment.
Collapse
Affiliation(s)
| | - Andrea A Baccarelli
- Mailman School of Public Health, Department of Environmental Health Sciences, Columbia University, New York City, NY, 10032, USA
| | | | - Diddier Prada
- Department of Population Health Science and Policy and the Department of Environmental Medicine and Public Health, Institute for Health Equity Research, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl · (212) 241-6500, Room L2-38, New York City, NY, 10029, USA.
| |
Collapse
|
7
|
Liang H, Zhang L, Zhao X, Rong J. The therapeutic potential of exosomes in lung cancer. Cell Oncol (Dordr) 2023; 46:1181-1212. [PMID: 37365450 DOI: 10.1007/s13402-023-00815-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2023] [Indexed: 06/28/2023] Open
Abstract
BACKGROUND Lung cancer (LC) is one of the most common malignancies globally. Besides early detection and surgical resection, there is currently no effective curative treatment for metastatic advanced LC. Exosomes are endogenous nano-extracellular vesicles produced by somatic cells that play an important role in the development and maintenance of normal physiology. Exosomes can carry proteins, peptides, lipids, nucleic acids, and various small molecules for intra- and intercellular material transport or signal transduction. LC cells can maintain their survival, proliferation, migration, invasion, and metastasis, by producing or interacting with exosomes. Basic and clinical data also show that exosomes can be used to suppress LC cell proliferation and viability, induce apoptosis, and enhance treatment sensitivity. Due to the high stability and target specificity, good biocompatibility, and low immunogenicity of exosomes, they show promise as vehicles of LC therapy. CONCLUSION We have written this comprehensive review to communicate the LC treatment potential of exosomes and their underlying molecular mechanisms. We found that overall, LC cells can exchange substances or crosstalk with themselves or various other cells in the surrounding TME or distant organs through exosomes. Through this, they can modulate their survival, proliferation, stemness, migration, and invasion, EMT, metastasis, and apoptotic resistance.
Collapse
Affiliation(s)
- Hongyuan Liang
- Department of Radiology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang, 110004, China
| | - Lingyun Zhang
- Department of Medical Oncology, the First Hospital of China Medical University, No. 210, BaiTa Street, Hunnan District, Shenyang, 110001, People's Republic of China
| | - Xiangxuan Zhao
- Health Sciences Institute, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110022, People's Republic of China.
| | - Jian Rong
- Department of Pediatrics, PICU, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang, Liaoning Province, 110004, People's Republic of China.
| |
Collapse
|
8
|
Li Y, Ye J, Xu S, Wang J. Circulating noncoding RNAs: promising biomarkers in liquid biopsy for the diagnosis, prognosis, and therapy of NSCLC. Discov Oncol 2023; 14:142. [PMID: 37526759 PMCID: PMC10393935 DOI: 10.1007/s12672-023-00686-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/11/2023] [Indexed: 08/02/2023] Open
Abstract
As the second most common malignant tumor in the world, lung cancer is a great threat to human health. In the past several decades, the role and mechanism of ncRNAs in lung cancer as a class of regulatory RNAs have been studied intensively. In particular, ncRNAs in body fluids have attracted increasing attention as biomarkers for lung cancer diagnosis and prognosis and for the evaluation of lung cancer treatment due to their low invasiveness and accessibility. As emerging tumor biomarkers in lung cancer, circulating ncRNAs are easy to obtain, independent of tissue specimens, and can well reflect the occurrence and progression of tumors due to their correlation with some biological processes in tumors. Circulating ncRNAs have a very high potential to serve as biomarkers and hold promise for the development of ncRNA-based therapeutics. In the current study, there has been extensive evidence that circulating ncRNA has clinical significance and value as a biomarker. In this review, we summarize how ncRNAs are generated and enter the circulation, remaining stable for subsequent detection. The feasibility of circulating ncRNAs as biomarkers in the diagnosis and prognosis of non-small cell lung cancer is also summarized. In the current systematic treatment of non-small cell lung cancer, circulating ncRNAs can also predict drug resistance, adverse reactions, and other events in targeted therapy, chemotherapy, immunotherapy, and radiotherapy and have promising potential to guide the systematic treatment of non-small cell lung cancer.
Collapse
Affiliation(s)
- Yilin Li
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang, 110002, China
| | - Jun Ye
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang, 110002, China
| | - Shun Xu
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang, 110002, China.
| | - Jiajun Wang
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang, 110002, China.
| |
Collapse
|
9
|
Lin H, Li J, Wang M, Zhang X, Zhu T. Exosomal Long Noncoding RNAs in NSCLC: Dysfunctions and Clinical Potential. J Cancer 2023; 14:1736-1750. [PMID: 37476194 PMCID: PMC10355206 DOI: 10.7150/jca.84506] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/31/2023] [Indexed: 07/22/2023] Open
Abstract
Exosomes are a typical subset of extracellular vesicles (EVs) that can be transmitted from parent cells to recipient cells via human bodily fluids. Exosomes perform a vital role in mediating intercellular communication by shuttling bioactive cargos, such as nucleic acids, proteins and lipids. Long noncoding RNAs (lncRNAs) are transcripts longer than 200 nucleotides without protein translation ability and can be selectively packaged into exosomes. Accumulating evidence indicates that exosomal lncRNAs have a critical role in tumor initiation and progression through regulating tumor proliferation, apoptosis, invasion, metastasis, angiogenesis, treatment resistance and tumor microenvironment. Increasing studies suggest that exosomal lncRNAs have great potential to be served as novel targets and non-invasive biomarkers for diagnosis and prognosis in non-small cell lung cancer (NSCLC). In this review, we provide an overview of current research on the disordered functions of exosomal lncRNAs in NSCLC and summarize their potential clinical applications as diagnostic and prognostic biomarkers and therapeutic targets for NSCLC.
Collapse
Affiliation(s)
- Hongze Lin
- Department of Pulmonary and Critical Care Medicine, Yixing Hospital affiliated to Jiangsu University, Yixing 214200, China
| | - Jiaying Li
- Department of Pulmonary and Critical Care Medicine, Yixing Hospital affiliated to Jiangsu University, Yixing 214200, China
| | - Maoye Wang
- School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Xu Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Taofeng Zhu
- Department of Pulmonary and Critical Care Medicine, Yixing Hospital affiliated to Jiangsu University, Yixing 214200, China
| |
Collapse
|
10
|
Ren XD, Su N, Sun XG, Li WM, Li J, Li BW, Li RX, Lv J, Xu QY, Kong WL, Huang Q. Advances in liquid biopsy-based markers in NSCLC. Adv Clin Chem 2023; 114:109-150. [PMID: 37268331 DOI: 10.1016/bs.acc.2023.02.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Lung cancer is the second most-frequently occurring cancer and the leading cause of cancer-associated deaths worldwide. Non-small cell lung cancer (NSCLC), the most common type of lung cancer is often diagnosed in middle or advanced stages and have poor prognosis. Diagnosis of disease at an early stage is a key factor for improving prognosis and reducing mortality, whereas, the currently used diagnostic tools are not sufficiently sensitive for early-stage NSCLC. The emergence of liquid biopsy has ushered in a new era of diagnosis and management of cancers, including NSCLC, since analysis of circulating tumor-derived components, such as cell-free DNA (cfDNA), circulating tumor cells (CTCs), cell-free RNAs (cfRNAs), exosomes, tumor-educated platelets (TEPs), proteins, and metabolites in blood or other biofluids can enable early cancer detection, treatment selection, therapy monitoring and prognosis assessment. There have been great advances in liquid biopsy of NSCLC in the past few years. Hence, this chapter introduces the latest advances on the clinical application of cfDNA, CTCs, cfRNAs and exosomes, with a particular focus on their application as early markers in the diagnosis, treatment and prognosis of NSCLC.
Collapse
Affiliation(s)
- Xiao-Dong Ren
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, P.R. China
| | - Ning Su
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, P.R. China
| | - Xian-Ge Sun
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, P.R. China
| | - Wen-Man Li
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, P.R. China
| | - Jin Li
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, P.R. China
| | - Bo-Wen Li
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, P.R. China
| | - Ruo-Xu Li
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, P.R. China
| | - Jing Lv
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, P.R. China
| | - Qian-Ying Xu
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, P.R. China
| | - Wei-Long Kong
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, P.R. China
| | - Qing Huang
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, P.R. China.
| |
Collapse
|
11
|
Paramanantham A, Asfiya R, Das S, McCully G, Srivastava A. Extracellular Vesicle (EVs) Associated Non-Coding RNAs in Lung Cancer and Therapeutics. Int J Mol Sci 2022; 23:13637. [PMID: 36362424 PMCID: PMC9655370 DOI: 10.3390/ijms232113637] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 10/26/2022] [Indexed: 08/13/2023] Open
Abstract
Lung cancer is one of the most lethal forms of cancer, with a very high mortality rate. The precise pathophysiology of lung cancer is not well understood, and pertinent information regarding the initiation and progression of lung cancer is currently a crucial area of scientific investigation. Enhanced knowledge about the disease will lead to the development of potent therapeutic interventions. Extracellular vesicles (EVs) are membrane-bound heterogeneous populations of cellular entities that are abundantly produced by all cells in the human body, including the tumor cells. A defined class of EVs called small Extracellular Vesicles (sEVs or exosomes) carries key biomolecules such as RNA, DNA, Proteins and Lipids. Exosomes, therefore, mediate physiological activities and intracellular communication between various cells, including constituent cells of the tumor microenvironment, namely stromal cells, immunological cells, and tumor cells. In recent years, a surge in studying tumor-associated non-coding RNAs (ncRNAs) has been observed. Subsequently, studies have also reported that exosomes abundantly carry different species of ncRNAs and these exosomal ncRNAs are functionally involved in cancer initiation and progression. Here, we discuss the function of exosomal ncRNAs, such as miRNAs and long non-coding RNAs, in the pathophysiology of lung tumors. Further, the future application of exosomal-ncRNAs in clinics as biomarkers and therapeutic targets in lung cancer is also discussed due to the multifaceted influence of exosomes on cellular physiology.
Collapse
Affiliation(s)
- Anjugam Paramanantham
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Rahmat Asfiya
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Siddharth Das
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Grace McCully
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Akhil Srivastava
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO 65212, USA
- Ellis Fischel Cancer Center, University of Missouri School of Medicine, Columbia, MO 65212, USA
| |
Collapse
|
12
|
Preethi KA, Selvakumar SC, Ross K, Jayaraman S, Tusubira D, Sekar D. Liquid biopsy: Exosomal microRNAs as novel diagnostic and prognostic biomarkers in cancer. Mol Cancer 2022; 21:54. [PMID: 35172817 PMCID: PMC8848669 DOI: 10.1186/s12943-022-01525-9] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/26/2022] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Detecting cancer at an early stage before clinical manifestation could be an effective strategy to decrease cancer mortality. Thus, identifying liquid biopsy biomarkers with high efficacy could be a promising approach for non-invasive diagnosis of cancer. MAIN TEXT Liquid biopsies are increasingly used as a supplement to biopsy, as it enables disease progression to be detected months before clinical and radiographic confirmation. Many bodily fluids contain exosomal microRNAs (miRNAs) which could provide a new class of biomarkers for early and minimally invasive cancer diagnosis due to the stability of miRNAs in exosomes. In this review, we mainly focused on the exosomal miRNAs (liquid biopsy) as biomarkers in the diagnosis and prognosis of various cancers. CONCLUSION Exosomal miRNAs can be used as diagnostic and prognosis biomarkers that provide unique insights and a more dynamic perspective of the progression and therapeutic responses in various malignancies. Therefore, the development of novel and more sensitive technologies that exploit exosomal miRNAs should be a priority for cancer management.
Collapse
Affiliation(s)
- K Auxzilia Preethi
- Centre for Cellular and Molecular Research, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, 600077, India
| | - Sushmaa Chandralekha Selvakumar
- Centre for Cellular and Molecular Research, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, 600077, India
| | - Kehinde Ross
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Selvaraj Jayaraman
- Department of Biochemistry, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 600077, India
| | - Deusdedit Tusubira
- Biochemistry Department, Mbarara University of Science and Technology, Mbarara, Uganda.
| | - Durairaj Sekar
- Centre for Cellular and Molecular Research, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, 600077, India.
| |
Collapse
|
13
|
Saviana M, Romano G, Le P, Acunzo M, Nana-Sinkam P. Extracellular Vesicles in Lung Cancer Metastasis and Their Clinical Applications. Cancers (Basel) 2021; 13:5633. [PMID: 34830787 PMCID: PMC8616161 DOI: 10.3390/cancers13225633] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/04/2021] [Accepted: 11/09/2021] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs) are heterogenous membrane-encapsulated vesicles secreted by every cell into the extracellular environment. EVs carry bioactive molecules, including proteins, lipids, DNA, and different RNA forms, which can be internalized by recipient cells, thus altering their biological characteristics. Given that EVs are commonly found in most body fluids, they have been widely described as mediators of communication in several physiological and pathological processes, including cancer. Moreover, their easy detection in biofluids makes them potentially useful candidates as tumor biomarkers. In this manuscript, we review the current knowledge regarding EVs and non-coding RNAs and their role as drivers of the metastatic process in lung cancer. Furthermore, we present the most recent applications for EVs and non-coding RNAs as cancer therapeutics and their relevance as clinical biomarkers.
Collapse
Affiliation(s)
- Michela Saviana
- Department of Internal Medicine, Division of Pulmonary Diseases and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (M.S.); (G.R.); (P.L.); (M.A.)
- Department of Molecular Medicine, University La Sapienza, 00161 Rome, Italy
| | - Giulia Romano
- Department of Internal Medicine, Division of Pulmonary Diseases and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (M.S.); (G.R.); (P.L.); (M.A.)
| | - Patricia Le
- Department of Internal Medicine, Division of Pulmonary Diseases and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (M.S.); (G.R.); (P.L.); (M.A.)
| | - Mario Acunzo
- Department of Internal Medicine, Division of Pulmonary Diseases and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (M.S.); (G.R.); (P.L.); (M.A.)
| | - Patrick Nana-Sinkam
- Department of Internal Medicine, Division of Pulmonary Diseases and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (M.S.); (G.R.); (P.L.); (M.A.)
| |
Collapse
|
14
|
Karimzadeh MR, Seyedtaghia MR, Soudyab M, Nezamnia M, Kidde J, Sahebkar A. Exosomal Long Noncoding RNAs: Insights into Emerging Diagnostic and Therapeutic Applications in Lung Cancer. JOURNAL OF ONCOLOGY 2020; 2020:7630197. [PMID: 33224198 PMCID: PMC7671817 DOI: 10.1155/2020/7630197] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 10/20/2020] [Accepted: 10/25/2020] [Indexed: 12/24/2022]
Abstract
Lung cancer is the most common cause of cancer-related deaths worldwide. Annually, millions of people die from lung cancer because of late detection and ineffective therapies. Recently, exosomes have been introduced as new therapeutic players with the potential to improve upon current diagnostic and treatment options. Exosomes are small membranous vesicles produced during endosomal merging. This allows for cell packaging of nucleic acids, proteins, and lipids and transfer to adjacent or distant cells. While exosomes are a part of normal intercellular signaling, they also allow malignant cells to transfer oncogenic material leading to tumor spread and metastasis. Exosomes are an interesting field of discovery for biomarkers and therapeutic targets. Among exosomal materials, lncRNAs have priority; lncRNAs are a class of noncoding RNAs longer than 200 base pairs. In the case of cancer, primary interest regards their oncogene and tumor suppressor functions. In this review, the advantages of exosomal lncRNAs as biomarkers and therapeutic targets will be discussed in addition to reviewing studies of their application in lung cancer.
Collapse
Affiliation(s)
- Mohammad Reza Karimzadeh
- Department of Medical Genetics, School of Medicine, Bam University of Medical Sciences, Bam, Iran
| | - Mohammad Reza Seyedtaghia
- Department of Medical Genetics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Soudyab
- Department of Medical Genetics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maria Nezamnia
- Department of Obstetrics and Gynecology, School of Medicine, Bam University of Medical Sciences, Bam, Iran
| | - Jason Kidde
- Department of Emergency Medicine, University of Utah, Salt Lake City, UT, USA
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Halal Research Center of IRI, FDA, Tehran, Iran
| |
Collapse
|