1
|
Yi Y, Qin G, Yang H, Jia H, Zeng Q, Zheng D, Ye S, Zhang Z, Liu TM, Luo KQ, Deng CX, Xu RH. Mesenchymal Stromal Cells Increase the Natural Killer Resistance of Circulating Tumor Cells via Intercellular Signaling of cGAS-STING-IFNβ-HLA. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400888. [PMID: 38638003 PMCID: PMC11151078 DOI: 10.1002/advs.202400888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/17/2024] [Indexed: 04/20/2024]
Abstract
Circulating tumor cells (CTCs) shed from primary tumors must overcome the cytotoxicity of immune cells, particularly natural killer (NK) cells, to cause metastasis. The tumor microenvironment (TME) protects tumor cells from the cytotoxicity of immune cells, which is partially executed by cancer-associated mesenchymal stromal cells (MSCs). However, the mechanisms by which MSCs influence the NK resistance of CTCs remain poorly understood. This study demonstrates that MSCs enhance the NK resistance of cancer cells in a gap junction-dependent manner, thereby promoting the survival and metastatic seeding of CTCs in immunocompromised mice. Tumor cells crosstalk with MSCs through an intercellular cGAS-cGAMP-STING signaling loop, leading to increased production of interferon-β (IFNβ) by MSCs. IFNβ reversely enhances the type I IFN (IFN-I) signaling in tumor cells and hence the expression of human leukocyte antigen class I (HLA-I) on the cell surface, protecting the tumor cells from NK cytotoxicity. Disruption of this loop reverses NK sensitivity in tumor cells and decreases tumor metastasis. Moreover, there are positive correlations between IFN-I signaling, HLA-I expression, and NK tolerance in human tumor samples. Thus, the NK-resistant signaling loop between tumor cells and MSCs may serve as a novel therapeutic target.
Collapse
Affiliation(s)
- Ye Yi
- Center of Reproduction, Development and Aging, Cancer Center, and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macao SAR, 999078, China
| | - Guihui Qin
- Center of Reproduction, Development and Aging, Cancer Center, and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macao SAR, 999078, China
| | - Hongmei Yang
- Center of Reproduction, Development and Aging, Cancer Center, and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macao SAR, 999078, China
| | - Hao Jia
- Center of Reproduction, Development and Aging, Cancer Center, and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macao SAR, 999078, China
| | - Qibing Zeng
- Center of Reproduction, Development and Aging, Cancer Center, and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macao SAR, 999078, China
| | - Dejin Zheng
- Center of Reproduction, Development and Aging, Cancer Center, and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macao SAR, 999078, China
| | - Sen Ye
- Center of Reproduction, Development and Aging, Cancer Center, and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macao SAR, 999078, China
| | - Zhiming Zhang
- Center of Reproduction, Development and Aging, Cancer Center, and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macao SAR, 999078, China
| | - Tzu-Ming Liu
- Center of Reproduction, Development and Aging, Cancer Center, and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macao SAR, 999078, China
- Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macao SAR, 999078, China
| | - Kathy Qian Luo
- Center of Reproduction, Development and Aging, Cancer Center, and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macao SAR, 999078, China
- Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macao SAR, 999078, China
| | - Chu-Xia Deng
- Center of Reproduction, Development and Aging, Cancer Center, and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macao SAR, 999078, China
- Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macao SAR, 999078, China
| | - Ren-He Xu
- Center of Reproduction, Development and Aging, Cancer Center, and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macao SAR, 999078, China
- Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macao SAR, 999078, China
| |
Collapse
|
2
|
Bian G, Cao J, Li W, Huang D, Ding X, Zang X, Ye Y, Li P. Identification and Validation of a Cancer-Testis Antigen-Related Signature to Predict the Prognosis in Stomach Adenocarcinoma. J Cancer 2024; 15:3596-3611. [PMID: 38817874 PMCID: PMC11134429 DOI: 10.7150/jca.91842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/06/2024] [Indexed: 06/01/2024] Open
Abstract
Background: Stomach adenocarcinoma (STAD) is the fifth most common cancer and the third leading cause of cancer-related deaths worldwide. Cancer-testis antigens (CTAs) participate in the pathogenesis and development of multiple cancers and are aberrantly overexpressed in various types of cancer. This study aimed to develop a CTA-related gene signature (CTARSig) to predict prognosis in STAD patients and explore its underlying mechanisms. Methods: We performed differential and prognostic analyses of CTA-related genes and constructed a CTA-related signature (CTARSig) along with a novel nomogram to predict the prognosis of patients with STAD based on the Cox and The Least Absolute Shrinkage and Selection Operator. CTARSig was further validated in an external cohort (GSE84437). Additionally, univariate and multivariate Cox regression, as well as receiver operating characteristic (ROC) analyses, were performed to assess the CTARSig systematically. Single-sample gene set enrichment analysis and ESTIMATE were used to characterise the Tumor Immune Microenvironment (TIME) in patients with STAD. Furthermore, Gene Set Variation Analysis, Kyoto Encyclopedia of Genes and Genomes, and Gene Ontology analyses revealed the biological functions and signalling pathways associated with CTARSig. Finally, the human gastric cancer cell lines, HCG-27 and AGS, were used for in vitro and in vivo experiments, respectively, to further validate the role of ELOVL4. Results: Eleven CTA-related genes were identified to construct the CTARSig. Kaplan-Meier curves, independent prognostic analysis, and ROC curves revealed that CTARSig could better predict survival in patients with STAD. Moreover, in our study, we demonstrated that ELOVL4 is upregulated in gastric cancer tissues and that its high expression is associated with poor survival. Additionally, in vitro and in vivo experiments demonstrated that ELOVL4 promotes the metastatic and invasive potential of STAD cells, suggesting it may be a potential therapeutic target for STAD. Conclusion: In this study, a novel signature associated with CTAs was constructed for STAD, which may be a good predictor of patient prognosis. Thus, ELOVL4 may be a potential therapeutic target for gastric cancer. This study provides new insights into the potential roles of CTAs in gastric cancer.
Collapse
Affiliation(s)
- Geng Bian
- Department of Integrated Traditional Chinese and Western Medicine, Anhui Medical University, Hefei, Anhui 230022, China
- Department of Chinese Integrative Medicine Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Jie Cao
- Department of Respiratory, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Weiyu Li
- National Clinical Research Center of Digestive Diseases, Beijing 100050, China
- Liver Research Center, Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Dabing Huang
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Xiping Ding
- Department of Geriatrics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
- Gerontology Institute of Anhui Province, Hefei, Anhui, China; Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, Anhui 230001, China
| | - Xiaodong Zang
- Department of Pediatrics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Yingquan Ye
- Department of Integrated Traditional Chinese and Western Medicine, Anhui Medical University, Hefei, Anhui 230022, China
- Department of Chinese Integrative Medicine Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Ping Li
- Department of Integrated Traditional Chinese and Western Medicine, Anhui Medical University, Hefei, Anhui 230022, China
- Department of Chinese Integrative Medicine Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| |
Collapse
|
3
|
Rohan P, dos Santos EC, Abdelhay E, Binato R. High Expression of THY1 in Intestinal Gastric Cancer as a Key Factor in Tumor Biology: A Poor Prognosis-Independent Marker Related to the Epithelial-Mesenchymal Transition Profile. Genes (Basel) 2023; 15:28. [PMID: 38254918 PMCID: PMC10815053 DOI: 10.3390/genes15010028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
Gastric cancer (GC) is an important cancer-related death worldwide. Among its histological subtypes, intestinal gastric cancer (IGC) is the most common. A previous work showed that increased expression of the THY1 gene was associated with poor overall survival in IGC. Furthermore, it was shown that IGC tumor cells with high expression of THY1 have a greater capacity for tumorigenesis and metastasis in vitro. This study aimed to identify molecular differences between IGC with high and low expression of THY1. Using a feature selection method, a group of 35 genes were found to be the most informative gene set for THY1high IGC tumors. Through a classification model, these genes differentiate THY1high from THY1low tumors with 100% of accuracy both in the test subset and the independent test set. Additionally, this group of 35 genes correctly clustered 100% of the samples. An extensive validation of this potential molecular signature in multiple cohorts successfully segregated between THY1high and THY1low IGC tumors (>95%), proving to be independent of the gene expression quantification methodology. These genes are involved in central processes to tumor biology, such as the epithelial-mesenchymal transition (EMT) and remodeling of the tumor tissue composition. Moreover, patients with THY1high IGC demonstrated poor survival and a more advanced clinicopathological staging. Our findings revealed a molecular signature for IGC with high THY1 expression. This signature showed EMT and remodeling of the tumor tissue composition potentially related to the biology of IGC. Altogether, our results indicate that THY1high IGC tumors are a particular subset of tumors with a specific molecular and prognosis profile.
Collapse
Affiliation(s)
| | | | | | - Renata Binato
- Correspondence: ; Tel.: +55-21-3207-1874; Fax: +55-21-2509-2121
| |
Collapse
|