1
|
Zikou E, Koliaki C, Makrilakis K. The Role of Fecal Microbiota Transplantation (FMT) in the Management of Metabolic Diseases in Humans: A Narrative Review. Biomedicines 2024; 12:1871. [PMID: 39200335 PMCID: PMC11352194 DOI: 10.3390/biomedicines12081871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 09/02/2024] Open
Abstract
The gut microbiota represents a complex ecosystem of trillions of microorganisms residing in the human gastrointestinal tract, which is known to interact with the host physiology and regulate multiple functions. Alterations in gut microbial composition, diversity, and function are referred to as dysbiosis. Dysbiosis has been associated with a variety of chronic diseases, including Clostridioides difficile infections, but also cardiometabolic diseases, including obesity, metabolic syndrome, and type 2 diabetes mellitus (T2DM). The implication of gut microbiota dysbiosis in the pathogenesis of both obesity and T2DM has paved the way to implementing novel therapeutic approaches for metabolic diseases through gut microbial reconfiguration. These interventions include probiotics, prebiotics, and synbiotics, while a more innovative approach has been fecal microbiota transplantation (FMT). FMT is a procedure that delivers healthy human donor stool to another individual through the gastrointestinal tract, aiming to restore gut microbiota balance. Several studies have investigated this approach as a potential tool to mitigate the adverse metabolic effects of gut microbiota aberrations associated with obesity and T2DM. The aim of the present review was to critically summarize the existing evidence regarding the clinical applications of FMT in the management of obesity and T2DM and provide an update on the potential of this method to remodel the entire host microbiota, leading thus to weight loss and sustained metabolic benefits. Safety issues, long-term efficacy, limitations, and pitfalls associated with FMT studies are further discussed, emphasizing the need for further research and standardization in certain methodological aspects in order to optimize metabolic outcomes.
Collapse
|
2
|
Portincasa P, Khalil M, Graziani A, Frühbeck G, Baffy G, Garruti G, Di Ciaula A, Bonfrate L. Gut microbes in metabolic disturbances. Promising role for therapeutic manipulations? Eur J Intern Med 2024; 119:13-30. [PMID: 37802720 DOI: 10.1016/j.ejim.2023.10.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/30/2023] [Accepted: 10/02/2023] [Indexed: 10/08/2023]
Abstract
The prevalence of overweight, obesity, type 2 diabetes, metabolic syndrome and steatotic liver disease is rapidly increasing worldwide with a huge economic burden in terms of morbidity and mortality. Several genetic and environmental factors are involved in the onset and development of metabolic disorders and related complications. A critical role also exists for the gut microbiota, a complex polymicrobial ecology at the interface of the internal and external environment. The gut microbiota contributes to food digestion and transformation, caloric intake, and immune response of the host, keeping the homeostatic control in health. Mechanisms of disease include enhanced energy extraction from the non-digestible dietary carbohydrates, increased gut permeability and translocation of bacterial metabolites which activate a chronic low-grade systemic inflammation and insulin resistance, as precursors of tangible metabolic disorders involving glucose and lipid homeostasis. The ultimate causative role of gut microbiota in this respect remains to be elucidated, as well as the therapeutic value of manipulating the gut microbiota by diet, pre- and pro- synbiotics, or fecal microbial transplantation.
Collapse
Affiliation(s)
- Piero Portincasa
- Clinica Medica "A. Murri", Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari "Aldo Moro" Medical School, Policlinico Hospital, Piazza G. Cesare 11, Bari 70124, Italy.
| | - Mohamad Khalil
- Clinica Medica "A. Murri", Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari "Aldo Moro" Medical School, Policlinico Hospital, Piazza G. Cesare 11, Bari 70124, Italy
| | - Annarita Graziani
- Institut AllergoSan Pharmazeutische Produkte Forschungs- und Vertriebs GmbH, Graz, Austria
| | - Gema Frühbeck
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), ISCIII, Pamplona, Spain; Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain; Department of Endocrinology & Nutrition, Clínica Universidad de Navarra, Pamplona, Spain
| | - Gyorgy Baffy
- Department of Medicine, VA Boston Healthcare System and Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02130, USA
| | - Gabriella Garruti
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari Medical School, Bari 70124, Italy
| | - Agostino Di Ciaula
- Clinica Medica "A. Murri", Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari "Aldo Moro" Medical School, Policlinico Hospital, Piazza G. Cesare 11, Bari 70124, Italy.
| | - Leonilde Bonfrate
- Clinica Medica "A. Murri", Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari "Aldo Moro" Medical School, Policlinico Hospital, Piazza G. Cesare 11, Bari 70124, Italy
| |
Collapse
|
3
|
Gut Microbiome and Its Impact on Obesity and Obesity-Related Disorders. Curr Gastroenterol Rep 2023; 25:31-44. [PMID: 36469257 DOI: 10.1007/s11894-022-00859-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2022] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW The prevalence of overweight and obesity has been increasing worldwide at an alarming rate. Gut microbiota intimately influence host energy metabolism, and immune response. Studies indicate a prominent role of gut dysbiosis in propagating inflammation that is associated with the development of obesity and obesity-related disorders such as type 2 diabetes mellitus, metabolic syndrome, and non-alcoholic fatty liver disease. This article will review the current literature on gut microbiome and its impact on obesity and obesity-related disorders. RECENT FINDINGS An altered gut microbial composition in obesity and obesity-related disorders is associated with enhanced energy extraction from the non-digestible dietary carbohydrates, increased gut permeability, increased production of proinflammatory metabolites, such as lipopolysaccharides, resulting in systemic inflammation and insulin resistance. Gut microbiota modulation can be achieved either by dietary manipulation or by administration of probiotics, prebiotics, synbiotics, and/or fecal microbiota transplantation aiming at the improvement of the gut dysbiosis in obesity and metabolic disorders. Further clinical trials are required to better elucidate the dose, and frequency of these interventions and also their long-term impact on host metabolism.
Collapse
|
4
|
Fernandes D, Andreyev J. The Role of the Human Gut Microbiome in Inflammatory Bowel Disease and Radiation Enteropathy. Microorganisms 2022; 10:1613. [PMID: 36014031 PMCID: PMC9415405 DOI: 10.3390/microorganisms10081613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 12/04/2022] Open
Abstract
The human gut microbiome plays a key role in regulating host physiology. In a stable state, both the microbiota and the gut work synergistically. The overall homeostasis of the intestinal flora can be affected by multiple factors, including disease states and the treatments given for those diseases. In this review, we examine the relatively well-characterised abnormalities that develop in the microbiome in idiopathic inflammatory bowel disease, and compare and contrast them to those that are found in radiation enteropathy. We discuss how these changes may exert their effects at a molecular level, and the possible role of manipulating the microbiome through the use of a variety of therapies to reduce the severity of the underlying condition.
Collapse
Affiliation(s)
- Darren Fernandes
- The Department of Gastroenterology, United Lincolnshire NHS Trust, Lincoln County Hospital, Lincoln LN2 5QY, UK
| | - Jervoise Andreyev
- The Department of Gastroenterology, United Lincolnshire NHS Trust, Lincoln County Hospital, Lincoln LN2 5QY, UK
- The Biomedical Research Centre, Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham NG7 2RD, UK
| |
Collapse
|
5
|
Smith BJ, Piceno Y, Zydek M, Zhang B, Syriani LA, Terdiman JP, Kassam Z, Ma A, Lynch SV, Pollard KS, El-Nachef N. Strain-resolved analysis in a randomized trial of antibiotic pretreatment and maintenance dose delivery mode with fecal microbiota transplant for ulcerative colitis. Sci Rep 2022; 12:5517. [PMID: 35365713 PMCID: PMC8976058 DOI: 10.1038/s41598-022-09307-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 03/16/2022] [Indexed: 01/04/2023] Open
Abstract
Fecal microbiota transplant is a promising therapy for ulcerative colitis. Parameters maximizing effectiveness and tolerability are not yet clear, and it is not known how import the transmission of donor microbes to patients is. Here (clinicaltrails.gov: NCT03006809) we have tested the effects of antibiotic pretreatment and compared two modes of maintenance dose delivery, capsules versus enema, in a randomized, pilot, open-label, 2 × 2 factorial design with 22 patients analyzed with mild to moderate UC. Clinically, the treatment was well-tolerated with favorable safety profile. Of patients who received antibiotic pretreatment, 6 of 11 experienced remission after 6 weeks of treatment, versus 2 of 11 non-pretreated patients (log odds ratio: 1.69, 95% confidence interval: −0.25 to 3.62). No significant differences were found between maintenance dosing via capsules versus enema. In exploratory analyses, microbiome turnover at both the species and strain levels was extensive and significantly more pronounced in the pretreated patients. Associations were also revealed between taxonomic turnover and changes in the composition of primary and secondary bile acids. Together these findings suggest that antibiotic pretreatment contributes to microbiome engraftment and possibly clinical effectiveness, and validate longitudinal strain tracking as a powerful way to monitor the dynamics and impact of microbiota transfer.
Collapse
Affiliation(s)
- Byron J Smith
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA.,Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | | | - Martin Zydek
- Division of Gastroenterology, University of California, San Francisco, CA, USA
| | - Bing Zhang
- Division of Gastroenterology, University of California, San Francisco, CA, USA.,Division of Gastrointestinal and Liver Diseases, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Lara Aboud Syriani
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, USA
| | - Jonathan P Terdiman
- Division of Gastroenterology, University of California, San Francisco, CA, USA
| | | | - Averil Ma
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Susan V Lynch
- Division of Gastroenterology, University of California, San Francisco, CA, USA.,Benioff Center for Microbiome Medicine, University of California, San Francisco, CA, USA
| | - Katherine S Pollard
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA. .,Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA. .,Chan Zuckerberg Biohub, San Francisco, CA, USA.
| | - Najwa El-Nachef
- Division of Gastroenterology, University of California, San Francisco, CA, USA.
| |
Collapse
|
6
|
Improving the Gut Microbiota with Probiotics and Faecal Microbiota Transplantation. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2021. [DOI: 10.22207/jpam.15.3.53] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Probiotics are “live strains of strictly selected microorganisms which, when administered in adequate amounts, confer a health benefit on the host”. After birth, our intestine is colonized by microbes like Escherichia coli, Clostridium spp., Streptococcus spp., Lactobacillus spp., Bacteroides spp., and Bifidobacterium spp. Our intestine is an extremely complex living system that participates in the protection of host through a strong defence against external aggregations. The microbial ecosystem of the intestine includes many native species of Bacteroides and Firmicutes that permanently colonize the gastrointestinal tract. The composition of flora changes over time depending upon diet and medical emergencies which leads to the diseased condition. Probiotics exert their mode of action by altering the local environment of the gut by competing with the pathogens, bacteriocins production, H2O2 production etc. Obesity is one of the major health problems and is considered as the most prevalent form of inappropriate nutrition. Probiotics like Lactobacillus Sp., Bifidobacterium Sp., Streptococcus Sp. are successfully used in the treatment of obesity proved in clinical trials. Faecal microbiota transplant (FMT), also known as a stool transplant, is the process of transplantation of Faecal bacteria from a healthy donor into a recipient’s gut to restore normal flora in the recipient. The therapeutic principle on which FMT works is microbes and their functions and metabolites produced by them which are used to treat a variety of diseases. The present review focuses on the role of gastrointestinal microbiome, probiotic selection criteria, their applications and FMT to treat diseases.
Collapse
|
7
|
Gopalakrishnan V, Dozier EA, Glover MS, Novick S, Ford M, Morehouse C, Warrener P, Caceres C, Hess S, Sellman BR, Cohen TS. Engraftment of Bacteria after Fecal Microbiota Transplantation Is Dependent on Both Frequency of Dosing and Duration of Preparative Antibiotic Regimen. Microorganisms 2021; 9:1399. [PMID: 34209573 PMCID: PMC8306289 DOI: 10.3390/microorganisms9071399] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 01/04/2023] Open
Abstract
The gut microbiota has emerged as a key mediator of human physiology, and germ-free mice have been essential in demonstrating a role for the microbiome in disease. Preclinical models using conventional mice offer the advantage of working with a mature immune system. However, optimal protocols for fecal microbiota transplant (FMT) engraftment in conventional mice are yet to be established. Conventional BALB/c mice were randomized to receive 3-day (3d) or 3-week (3w) antibiotic (ABX) regimen in their drinking water followed by 1 or 5-daily FMTs from a human donor. Fecal samples were collected longitudinally and characterized using 16S ribosomal RNA (rRNA) sequencing. Semi-targeted metabolomic profiling of fecal samples was also done with liquid chromatography-mass spectrometry (LC-MS). Lastly, we sought to confirm our findings in BKS mice. Recovery of baseline diversity scores were greatest in the 3d groups, driven by re-emergence of mouse commensal microbiota, whereas the most resemblance to donor microbiota was seen in the 3w + 5-FMT group. Amplicon sequence variants (ASVs) that were linked to the input material (human ASVs) engrafted to a significantly greater extent when compared to mouse ASVs in the 3-week groups but not the 3-day groups. Lastly, comparison of metabolomic profiles revealed distinct functional profiles by ABX regimen. These results indicate successful model optimization and emphasize the importance of ABX duration and frequency of FMT dosing; the most stable and reliable colonization by donor ASVs was seen in the 3wk + 5-FMT group.
Collapse
Affiliation(s)
- Vancheswaran Gopalakrishnan
- Microbiome Discovery, Microbial Sciences, BioPharmaceuticals R & D, AstraZeneca, Gaithersburg, MD 20878, USA; (V.G.); (E.A.D.); (C.M.); (P.W.); (C.C.); (B.R.S.)
| | - Elizabeth Ashley Dozier
- Microbiome Discovery, Microbial Sciences, BioPharmaceuticals R & D, AstraZeneca, Gaithersburg, MD 20878, USA; (V.G.); (E.A.D.); (C.M.); (P.W.); (C.C.); (B.R.S.)
| | - Matthew S. Glover
- Dynamic Omics, Antibody Discovery & Protein Engineering, R & D, AstraZeneca, Gaithersburg, MD 20878, USA; (M.S.G.); (S.H.)
| | - Steven Novick
- Data Sciences and Quantitative Biology, Discovery Sciences, BioPharmaceuticals R & D, AstraZeneca, Gaithersburg, MD 20878, USA;
| | - Michael Ford
- Animal Sciences and Technologies, R & D, AstraZeneca, Gaithersburg, MD 20878, USA;
| | - Christopher Morehouse
- Microbiome Discovery, Microbial Sciences, BioPharmaceuticals R & D, AstraZeneca, Gaithersburg, MD 20878, USA; (V.G.); (E.A.D.); (C.M.); (P.W.); (C.C.); (B.R.S.)
| | - Paul Warrener
- Microbiome Discovery, Microbial Sciences, BioPharmaceuticals R & D, AstraZeneca, Gaithersburg, MD 20878, USA; (V.G.); (E.A.D.); (C.M.); (P.W.); (C.C.); (B.R.S.)
| | - Carolina Caceres
- Microbiome Discovery, Microbial Sciences, BioPharmaceuticals R & D, AstraZeneca, Gaithersburg, MD 20878, USA; (V.G.); (E.A.D.); (C.M.); (P.W.); (C.C.); (B.R.S.)
| | - Sonja Hess
- Dynamic Omics, Antibody Discovery & Protein Engineering, R & D, AstraZeneca, Gaithersburg, MD 20878, USA; (M.S.G.); (S.H.)
| | - Bret R. Sellman
- Microbiome Discovery, Microbial Sciences, BioPharmaceuticals R & D, AstraZeneca, Gaithersburg, MD 20878, USA; (V.G.); (E.A.D.); (C.M.); (P.W.); (C.C.); (B.R.S.)
| | - Taylor S. Cohen
- Microbiome Discovery, Microbial Sciences, BioPharmaceuticals R & D, AstraZeneca, Gaithersburg, MD 20878, USA; (V.G.); (E.A.D.); (C.M.); (P.W.); (C.C.); (B.R.S.)
| |
Collapse
|
8
|
Akutko K, Stawarski A. Probiotics, Prebiotics and Synbiotics in Inflammatory Bowel Diseases. J Clin Med 2021; 10:2466. [PMID: 34199428 PMCID: PMC8199601 DOI: 10.3390/jcm10112466] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/17/2021] [Accepted: 05/31/2021] [Indexed: 12/14/2022] Open
Abstract
Inflammatory bowel diseases (IBD), which include Crohn's disease (CD) and ulcerative colitis (UC), are chronic inflammatory diseases of the digestive tract with periods of remission and relapses. The etiopathogenesis of IBD is multifactorial and has not been fully understood. Hence, only symptomatic treatment of these diseases is possible. The current pharmacological treatment has variable efficacy and is associated with the risk of significant side effects. Therefore, there is a constant need to search for new types of therapies with a high safety profile. Considering that the qualitative and quantitative profile of the gastrointestinal microbiome is often different in patients with IBD than in healthy individuals, there is a need for looking for therapies aimed at restoring intestinal microbiome homeostasis. Thus, the use of strictly defined probiotics, prebiotics and synbiotics may become an alternative form of IBD therapy. There is evidence that treatment with certain probiotic strains, e.g., VSL#3 and Escherischia coli Nissle 1917, is an effective form of therapy to induce remission in patients with mild to moderate UC. So far, the effectiveness of the use of probiotics, prebiotics and synbiotics in inducing or maintaining remission in patients with CD has not been confirmed. There are also reports of possible beneficial effects of fecal microbiota transplantation (FMT) on the course of IBD, especially UC. Further, well-planned studies on a large group of patients are needed to determine the role of specific probiotic strains, prebiotics, synbiotics and FMT in the treatment of IBD in adults and in children.
Collapse
Affiliation(s)
- Katarzyna Akutko
- 2nd Department and Clinic of Paediatrics, Gastroenterology and Nutrition, Medical University of Wroclaw, M. Curie-Skłodowskiej St. 50/52, 50-369 Wrocław, Poland;
| | | |
Collapse
|
9
|
Abstract
Ulcerative colitis (UC) is a relapsing and remitting inflammatory disease of the colon with a variable course. Despite advances in treatment, only approximately 40% of patients achieve clinical remission at the end of a year, prompting the exploration of new treatment modalities. This review explores novel therapeutic approaches to UC, including promising drugs in various stages of development, efforts to maximize the efficacy of currently available treatment options, and non-medication-based modalities. Treatment approaches which show promise in impacting the future of UC management are highlighted.
Collapse
Affiliation(s)
- Robert P Hirten
- The Dr. Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; ,
| | - Bruce E Sands
- The Dr. Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; ,
| |
Collapse
|
10
|
Hassouneh R, Bajaj JS. Gut Microbiota Modulation and Fecal Transplantation: An Overview on Innovative Strategies for Hepatic Encephalopathy Treatment. J Clin Med 2021; 10:330. [PMID: 33477417 PMCID: PMC7830387 DOI: 10.3390/jcm10020330] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/07/2021] [Accepted: 01/09/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatic encephalopathy (HE) is a major complication of cirrhosis, which is associated with gut microbial composition and functional alterations. Current treatments largely focus on gut microbiota using lactulose, rifaximin and other agents. However, despite these treatments, patients with HE have a high rate of readmission, morbidity and cognitive impairment. Fecal microbiota transplant (FMT) involves introduction of a donor microbiota into a recipient and is currently mainly used for recurrent C. difficile infection (rCDI). The role of FMT in cirrhosis and HE is evolving. There have been two randomized clinical trials (RCT) and several case reports/series in cirrhosis. Both RCTs were safety-focused phase 1 trials. One involved pre-FMT antibiotics and FMT enema versus standard of care, while the other involved 15 FMT capsules versus placebo without pre-FMT antibiotics. There was evidence of safety in both trials and the FMT group demonstrated reduction in hospitalizations compared to the non-FMT group. Changes in microbial function centered around short-chain fatty acids, bile acids and brain function showed improvement in the FMT groups. Long-term follow-up demonstrated continued safety and reduction in the antibiotic-resistance gene carriage. However, larger trials of FMT in HE are needed that can refine the dose, duration and route of FMT administration.
Collapse
Affiliation(s)
- Ramzi Hassouneh
- Department of Internal Medicine, Virginia Commonwealth University Medical Center, Richmond, VA 23298, USA;
| | - Jasmohan S. Bajaj
- Division of Gastroenterology, Hepatology and Nutrition Virginia Commonwealth University and Central Virginia Veterans Healthcare System, 1201 Broad Rock Blvd, Richmond, VA 23249, USA
| |
Collapse
|
11
|
In Situ Profiling of the Three Dominant Phyla Within the Human Gut Using TaqMan PCR for Pre-Hospital Diagnosis of Gut Dysbiosis. Int J Mol Sci 2020; 21:ijms21061916. [PMID: 32168885 PMCID: PMC7139488 DOI: 10.3390/ijms21061916] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 03/05/2020] [Accepted: 03/09/2020] [Indexed: 12/26/2022] Open
Abstract
A microbial imbalance called dysbiosis leads to inflammatory bowel disease (IBD), which can include ulcerative colitis (UC). Fecal microbiota transplantation (FMT), a novel therapy, has recently been successful in treating gut dysbiosis in UC patients. For the FMT technique to be successful, the gut microbiota of both the healthy donors and UC patients must be characterized. For decades, next-generation sequencing (NGS) has been used to analyze gut microbiota. Despite the popularity of NGS, the cost and time constraints make it difficult to use in emergency services and activities related to the periodic monitoring of microbiota profile alterations. Hence, in this study, we developed a multiplex TaqMan qPCR assay (MTq-PCR) with novel probes to simultaneously determine the relative proportions of the three dominant microbial phyla in the human gut: Bacteroidetes, Firmicutes, and Proteobacteria. The relative proportions of the three phyla in fecal samples of either healthy volunteers or UC patients were similar when assessed NGS and the MTq-PCR. Thus, our MTq-PCR assay could be a practical microbiota profiling alternative for diagnosing and monitoring gut dysbiosis in UC patients during emergency situations, and it could have a role in screening stool from potential FMT donors.
Collapse
|