1
|
Chen Y, Liu J, Qin H, Qin S, Huang X, Wei C, Hu X. Deciphering regulatory patterns in a mouse model of hyperoxia-induced acute lung injury. PeerJ 2024; 12:e18069. [PMID: 39346085 PMCID: PMC11439394 DOI: 10.7717/peerj.18069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/19/2024] [Indexed: 10/01/2024] Open
Abstract
Background Oxygen therapy plays a pivotal role in treating critically ill patients in the intensive care unit (ICU). However, excessive oxygen concentrations can precipitate hyperoxia, leading to damage in multiple organs, with a notable effect on the lungs. Hyperoxia condition may lead to hyperoxia-induced acute lung injury (HALI), deemed as a milder form of acute respiratory distress syndrome (ARDS). Given its clinical importance and practical implications, there is a compelling need to investigate the underlying pathogenesis and comprehensively understand the regulatory mechanisms implicated in the development of HALI. Results In this study, we conducted a mouse model with HALI and performed regulatory mechanism analysis using RNA-seq on both HALI and control group. Comprehensive analysis revealed 727 genes of significant differential expression, including 248 long non-coding RNAs (lncRNAs). Also, alternative splicing events were identified from sequencing results. Notably, we observed up-regulation or abnormal alternative splicing of genes associated with immune response and ferroptosis under hyperoxia conditions. Utilizing weighted gene co-expression network analysis (WGCNA), we ascertained that genes involved in immune response formed a distinct cluster, showcasing an up-regulated pattern in hyperoxia, consistent with previous studies. Furthermore, a competing endogenous RNA (ceRNA) network was constructed, including 78 differentially expressed mRNAs and six differentially expressed lncRNAs, including H19. These findings uncover the intricate interplay of multiple transcriptional regulatory mechanisms specifically tailored to the pulmonary defense against HALI, substantiating the importance of these non-coding RNAs in this disease context. Conclusions Our results provide new insights into the potential mechanisms and underlying pathogenesis in the development of HALI at the post-transcriptional level. The findings of this study reveal potential regulatory interactions and biological roles of specific lncRNAs and genes, such as H19 and Sox9, encompassing driven gene expression patterns, alternative splicing events, and lncRNA-miRNA-mRNA ceRNA networks. These findings may pave the way for advancing therapeutic strategies and reducing the risk associated with oxygen treatment for patients.
Collapse
Affiliation(s)
- Yundi Chen
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jinwen Liu
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Nutrition, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Han Qin
- Department of Respiratory and Critical Care Medicine, Kweichow Moutai Hospital, Zunyi, Guizhou, China
| | - Song Qin
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Xinyang Huang
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chunyan Wei
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Xiaolin Hu
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Qi L, Tang Z. Prognostic model revealing pyroptosis-related signatures in oral squamous cell carcinoma based on bioinformatics analysis. Sci Rep 2024; 14:6149. [PMID: 38480853 PMCID: PMC10937718 DOI: 10.1038/s41598-024-56694-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/09/2024] [Indexed: 03/17/2024] Open
Abstract
One of the most common oral carcinomas is oral squamous cell carcinoma (OSCC), bringing a heavy burden to global health. Although progresses have been made in the intervention of OSCC, 5 years survival of patients suffering from OSCC is poor like before regarding to the high invasiveness of OSCC, which causes metastasis and recurrence of the tumor. The relationship between pyroptosis and OSCC remains to be further investigated as pyroptosis in carcinomas has gained much attention. Herein, the key pyroptosis-related genes were identified according to The Cancer Genome Atlas (TCGA) dataset. Additionally, a prognostic model was constructed based upon three key genes (CTLA4, CD5, and IL12RB2) through least absolute shrinkage and selection operator (LASSO) analyses, as well as univariate and multivariate COX regression in OSCC. It was discovered that the high expression of these three genes was associated with the low-risk group. We also identified LAIR2 as a hub gene, whose expression negatively correlated with the risk score and the different immune cell infiltration. Finally, we proved that these three genes were independent prognostic factors linked to overall survival (OS), and reliable consequences could be predicted by this model. Our study revealed the relationship between pyroptosis and OSCC, providing insights into new treatment targets for preventing and treating OSCC.
Collapse
Affiliation(s)
- Lu Qi
- Hunan Key Laboratory of Oral Health Research, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha, 410000, China
| | - Zhangui Tang
- Hunan Key Laboratory of Oral Health Research, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha, 410000, China.
| |
Collapse
|
3
|
Stevens-Jones O, Mojzisova H, Elisak M, Constantinescu R, Hanzalova J, Axelsson M, Krysl D. Paraneoplastic or not? Sirtuin 2 in anti-N-methyl-d-aspartate receptor encephalitis. Eur J Neurol 2023; 30:3228-3235. [PMID: 37483157 DOI: 10.1111/ene.15987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/27/2023] [Accepted: 07/17/2023] [Indexed: 07/25/2023]
Abstract
BACKGROUND AND PURPOSE N-methyl-d-aspartate receptor (NMDAR) and leucine-rich glioma-inactivated protein 1 (LGI1) encephalitis are important types of autoimmune encephalitis (AE) with significant morbidity. In this study, we used a proteomic approach in search of novel clinically relevant biomarkers in these types of encephalitides. METHODS Swedish and Czech tertiary neuroimmunology centers collaborated in this retrospective exploratory study. Fifty-eight cerebrospinal fluid (CSF) samples of 28 patients with AE (14 definite NMDAR, 14 with definite LGI1 encephalitis) and 30 controls were included. CSF samples were analyzed using proximity extension assay technology (Olink Target 96 Inflammation panel). For each CSF sample, 92 proteins were measured. Clinical variables were retrospectively collected, and correlations with protein levels were statistically analyzed. RESULTS Patients and controls differed significantly in the following 18 biomarkers: TNFRSF9, TNFRSF12, TNFRSF14, TNFβ, TNFα, IL7, IL10, IL12B, IFNγ, CD5, CD6, CASP8, MMP1, CXCL8, CXCL10, CXCL11, IL20RA, and sirtuin 2 (SIRT2). In LGI1 encephalitis, no clinically useful association was found between biomarkers and clinical variables. In the NMDAR encephalitis group, SIRT2, TNFβ, and CD5 were significantly associated with ovarian teratoma. For SIRT2, this was true even for the first patients' CSF sample (SIRT2 without vs. with tumor, mean ± SD = 2.2 ± 0.29 vs. 2.88 ± 0.48; p = 0.007, 95% confidence interval = -1.15 to -0.22; r statistic in point-biserial correlation (rpb) = 0.66, p = 0.011). SIRT2 was positively correlated with age (rpb = 0.39, p = 0.018) and total hospital days (r = 0.55, p = <0.001). CONCLUSIONS SIRT2 should be investigated as a biomarker of paraneoplastic etiology in NMDAR encephalitis.
Collapse
Affiliation(s)
- Oskar Stevens-Jones
- Department of Neurology, Sahlgrenska University Hospital, Gothenburg, Sweden
- Institute of Neuroscience and Physiology, Sahlgrenska Akademin, Gothenburg University, Gothenburg, Sweden
| | - Hana Mojzisova
- Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Martin Elisak
- Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Radu Constantinescu
- Department of Neurology, Sahlgrenska University Hospital, Gothenburg, Sweden
- Institute of Neuroscience and Physiology, Sahlgrenska Akademin, Gothenburg University, Gothenburg, Sweden
| | - Jitka Hanzalova
- Department of Immunology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Markus Axelsson
- Department of Neurology, Sahlgrenska University Hospital, Gothenburg, Sweden
- Institute of Neuroscience and Physiology, Sahlgrenska Akademin, Gothenburg University, Gothenburg, Sweden
| | - David Krysl
- Institute of Neuroscience and Physiology, Sahlgrenska Akademin, Gothenburg University, Gothenburg, Sweden
- Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
- Department of Clinical Neurophysiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
4
|
Giriyappagoudar M, Vastrad B, Horakeri R, Vastrad C. Identification and Interaction Analysis of Molecular Markers in Pancreatic Ductal Adenocarcinoma by Bioinformatics and Next-Generation Sequencing Data Analysis. Bioinform Biol Insights 2023; 17:11779322231186719. [PMID: 37529485 PMCID: PMC10387711 DOI: 10.1177/11779322231186719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 06/18/2023] [Indexed: 08/03/2023] Open
Abstract
Background Pancreatic ductal adenocarcinoma (PDAC) is one of the most common cancers worldwide. Intense efforts have been made to elucidate the molecular pathogenesis, but the molecular mechanisms of PDAC are still not well understood. The purpose of this study is to further explore the molecular mechanism of PDAC through integrated bioinformatics analysis. Methods To identify the candidate genes in the carcinogenesis and progression of PDAC, next-generation sequencing (NGS) data set GSE133684 was downloaded from Gene Expression Omnibus (GEO) database. The differentially expressed genes (DEGs) were identified, and Gene Ontology (GO) and pathway enrichment analyses were performed. The protein-protein interaction network (PPI) was constructed and the module analysis was performed using Integrated Interactions Database (IID) interactome database and Cytoscape. Subsequently, miRNA-DEG regulatory network and TF-DEG regulatory network were constructed using miRNet database, NetworkAnalyst database, and Cytoscape software. The expression levels of hub genes were validated based on Kaplan-Meier analysis, expression analysis, stage analysis, mutation analysis, protein expression analysis, immune infiltration analysis, and receiver operating characteristic (ROC) curve analysis. Results A total of 463 DEGs were identified, consisting of 232 upregulated genes and 233 downregulated genes. The enriched GO terms and pathways of the DEGs include vesicle organization, secretory vesicle, protein dimerization activity, lymphocyte activation, cell surface, transferase activity, transferring phosphorus-containing groups, hemostasis, and adaptive immune system. Four hub genes (namely, cathepsin B [CCNB1], four-and-a-half LIM domains 2 (FHL2), major histocompatibility complex, class II, DP alpha 1 (HLA-DPA1) and tubulin beta 1 class VI (TUBB1)) were obtained via taking interaction of different analysis results. Conclusions On the whole, the findings of this investigation enhance our understanding of the potential molecular mechanisms of PDAC and provide potential targets for further investigation.
Collapse
Affiliation(s)
| | - Basavaraj Vastrad
- Department of Pharmaceutical Chemistry, K.L.E. Society’s College of Pharmacy, Gadag, India
| | - Rajeshwari Horakeri
- Department of Computer Science, Government First Grade College, Hubballi, India
| | | |
Collapse
|
5
|
He M, Roussak K, Ma F, Borcherding N, Garin V, White M, Schutt C, Jensen TI, Zhao Y, Iberg CA, Shah K, Bhatia H, Korenfeld D, Dinkel S, Gray J, Antonova AU, Ferris S, Donermeyer D, Arlehamn CL, Gubin MM, Luo J, Gorvel L, Pellegrini M, Sette A, Tung T, Bak R, Modlin RL, Fields RC, Schreiber RD, Allen PM, Klechevsky E. CD5 expression by dendritic cells directs T cell immunity and sustains immunotherapy responses. Science 2023; 379:eabg2752. [PMID: 36795805 PMCID: PMC10424698 DOI: 10.1126/science.abg2752] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 01/17/2023] [Indexed: 02/18/2023]
Abstract
The induction of proinflammatory T cells by dendritic cell (DC) subtypes is critical for antitumor responses and effective immune checkpoint blockade (ICB) therapy. Here, we show that human CD1c+CD5+ DCs are reduced in melanoma-affected lymph nodes, with CD5 expression on DCs correlating with patient survival. Activating CD5 on DCs enhanced T cell priming and improved survival after ICB therapy. CD5+ DC numbers increased during ICB therapy, and low interleukin-6 (IL-6) concentrations promoted their de novo differentiation. Mechanistically, CD5 expression by DCs was required to generate optimally protective CD5hi T helper and CD8+ T cells; further, deletion of CD5 from T cells dampened tumor elimination in response to ICB therapy in vivo. Thus, CD5+ DCs are an essential component of optimal ICB therapy.
Collapse
Affiliation(s)
- Mingyu He
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kate Roussak
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Feiyang Ma
- Molecular Cell and Developmental Biology at University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Nicholas Borcherding
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Vince Garin
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Mike White
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Charles Schutt
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Trine I. Jensen
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Yun Zhao
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Courtney A. Iberg
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kairav Shah
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Himanshi Bhatia
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Daniel Korenfeld
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sabrina Dinkel
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Judah Gray
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Alina Ulezko Antonova
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Stephen Ferris
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - David Donermeyer
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Cecilia Lindestam Arlehamn
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Matthew M. Gubin
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jingqin Luo
- Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Laurent Gorvel
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Matteo Pellegrini
- Molecular Cell and Developmental Biology at University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California San Diego (UCSD), La Jolla, CA 92037, USA
| | - Thomas Tung
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Rasmus Bak
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
- Aarhus Institute of Advanced Studies (AIAS), Aarhus University, 8000 Aarhus C, Denmark
| | - Robert L. Modlin
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Ryan C. Fields
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Robert D. Schreiber
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Paul M. Allen
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Eynav Klechevsky
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
6
|
Casadó‐Llombart S, Ajami T, Consuegra‐Fernández M, Carreras E, Aranda F, Armiger N, Alcaraz A, Mengual L, Lozano F. Gene variation impact on prostate cancer progression: Lymphocyte modulator, activation, and cell adhesion gene variant contribution. Prostate 2022; 82:1331-1337. [PMID: 35767366 PMCID: PMC9542726 DOI: 10.1002/pros.24407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/29/2022] [Accepted: 06/01/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND The view of prostate cancer (PCa) progression as a result of the interaction of epithelial cancer cells with the host's immune system is supported by the presence of tumor infiltrating lymphocytes (TILs). TILs fate and interaction with the tumor microenvironment is mediated by accessory molecules such as CD5 and CD6, two signal-transducing coreceptors involved in fine-tuning of T cell responses. While the nature of the CD5 ligand is still controversial, CD6 binds CD166/ALCAM, a cell adhesion molecule involved in progression and dissemination of epithelial cancers, including PCa. The purpose of the present study was to determine the role of CD5, CD6, and CD166/ALCAM gene variants in PCa. METHODS Functionally relevant CD5 (rs2241002 and rs2229177), CD6 (rs17824933, rs11230563, and rs12360861) and CD166/ALCAM (rs6437585, rs579565, rs1044243, and rs35271455) single nucleotide polymorphisms (SNPs) were genotyped in germline DNA samples from 376 PCa patients. Their association with PCa prognostic factors, namely biochemical recurrence (BCR) and International Society of Urological Pathology (ISUP) grade was analyzed by generalized linear models and survival analyses. RESULT Proportional hazards regression showed that the minor CD6 rs12360861AA and CD166/ALCAM rs579565AA genotypes were associated with earlier BCR, with hazard ratios of 2.65 (95% CI: 1.39-5.05, p = 0.003) and 1.86, (95% CI: 1.02-3.39, p = 0.043), respectively. Individually, none of the analyzed SNPs was significantly associated with ISUP grade, but haplotype analyses revealed association of the CD5 rs2241002C -rs2229177T haplotype with ISUP grade ≥2, with odds ratio of 1.52 (95% CI: 1.05-2.21, p = 0.026). CONCLUSION The results show the impact on PCa aggressiveness and recurrence brought about by gene variants involved in modulation of lymphocyte activation (CD5, CD6) and immune-epithelial cell adhesion (CD166/ALCAM) in PCa aggressiveness and recurrence, thus supporting a role for host immune response in PCa pathophysiology.
Collapse
Affiliation(s)
- Sergi Casadó‐Llombart
- Immunoreceptors del Sistema Innat i AdaptatiuInstitut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
| | - Tarek Ajami
- Laboratori i Servei d'UrologiaHospital Clínic de BarcelonaBarcelonaSpain
| | - Marta Consuegra‐Fernández
- Immunoreceptors del Sistema Innat i AdaptatiuInstitut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
| | - Esther Carreras
- Immunoreceptors del Sistema Innat i AdaptatiuInstitut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
| | - Fernando Aranda
- Immunoreceptors del Sistema Innat i AdaptatiuInstitut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
| | - Noelia Armiger
- Immunoreceptors del Sistema Innat i AdaptatiuInstitut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
| | - Antonio Alcaraz
- Laboratori i Servei d'UrologiaHospital Clínic de BarcelonaBarcelonaSpain
- Genètica i tumors urològicsInstitut d'Investigacions Biomèdiques August Pi i Sunyer, IDIBAPSBarcelonaSpain
| | - Lourdes Mengual
- Laboratori i Servei d'UrologiaHospital Clínic de BarcelonaBarcelonaSpain
- Genètica i tumors urològicsInstitut d'Investigacions Biomèdiques August Pi i Sunyer, IDIBAPSBarcelonaSpain
- Departament de Biomedicina, Facultat de Medicina i Ciències de la SalutUniversitat de Barcelona (UB)BarcelonaSpain
| | - Francisco Lozano
- Immunoreceptors del Sistema Innat i AdaptatiuInstitut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
- Genètica i tumors urològicsInstitut d'Investigacions Biomèdiques August Pi i Sunyer, IDIBAPSBarcelonaSpain
- Departament de Biomedicina, Facultat de Medicina i Ciències de la SalutUniversitat de Barcelona (UB)BarcelonaSpain
- Servei d'Immunologia, Centre de Diagnòstic BiomèdicHospital Clínic de BarcelonaBarcelonaSpain
| |
Collapse
|
7
|
Low Expression of CD5 and CD6 Is Associated with Poor Overall Survival for Patients with T-Cell Malignancies. JOURNAL OF ONCOLOGY 2022; 2022:2787426. [PMID: 35983088 PMCID: PMC9381250 DOI: 10.1155/2022/2787426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/16/2022] [Indexed: 11/17/2022]
Abstract
Background T-cell malignancies (TCMs), including T-cell acute lymphoblastic leukemia (T-ALL) and T-cell lymphoma (TCL), are highly aggressive and have a poor prognosis. To further understand prognostic stratifications and to design targeted therapies, this study aims to explore novel, potential biomarkers based on alterations in immune costimulatory molecules (CMs) for TCMs. Methods Peripheral blood from 25 de novo T-ALL patients in our clinical center and transcriptome data from 131 to 162 patients with peripheral TCL (PTCL) from the GSE19069 and GSE58445 dataset, respectively, were obtained to assess the expression levels of CMs and their prognostic significance. Results Seven CMs were associated with overall survival (OS). Among these CMs, CD5 and CD6 had the highest pairwise positive correlation (R = 0.69). CD5 and CD6 were significantly down-regulated in TCM patients compared with healthy individuals (HIs), and lower CD5 and CD6 expression was associated with poor OS for both T-ALL and TCL patients, particularly for patients greater than 60 years old. Furthermore, CD5 was positively correlated with CD6 in TCM patients. Compared with patients who were CD5highCD6high, T-ALL and TCL patients who were CD5lowCD6low had poor OS. Importantly, CD5highCD6high was an independent prognostic predictor for OS in T-ALL (HR = 0.39, 95% CI: 0.23–0.65, P < 0.001) and TCL (HR = 0.35, 95% CI: 0.19–0.62, P < 0.001) patients. Conclusions Low expression of CD5 and CD6 was associated with poor OS for TCM patients, and this may be a potential immune biomarker panel for prognostic stratification of TCM patients.
Collapse
|
8
|
Peters S, Paz-Ares L, Herbst RS, Reck M. Addressing CPI resistance in NSCLC: targeting TAM receptors to modulate the tumor microenvironment and future prospects. J Immunother Cancer 2022; 10:jitc-2022-004863. [PMID: 35858709 PMCID: PMC9305809 DOI: 10.1136/jitc-2022-004863] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2022] [Indexed: 01/09/2023] Open
Abstract
Lung cancer remains a leading cause of cancer death worldwide, with non-small-cell lung cancer (NSCLC) accounting for the majority of cases. Immune checkpoint inhibitors (CPIs), including those targeting programmed cell death protein-1 and its ligand (PD-1/PD-L1), have revolutionized the treatment landscape for various cancers. Notably, PD-1/PD-L1 inhibitor-based regimens now form the standard first-line therapy for metastatic NSCLC, substantially improving patients' overall survival. Despite the progress made using CPI-based therapies in advanced NSCLC, most patients experience disease progression after an initial response due to resistance. Given the currently limited therapeutic options available for second-line and beyond settings in NSCLC, new treatment approaches are needed to improve long-term survival in these patients. Thus, CPI resistance is an emerging concept in cancer treatment and an active area of clinical research.Among the key mechanisms of CPI resistance is the immunosuppressive tumor microenvironment (TME). Effective CPI therapy is based on shifting immune responses against cancer cells, therefore, manipulating the immunosuppressive TME comprises an important strategy to combat CPI resistance. Several aspects of the TME can contribute to treatment resistance in NSCLC, including through the activation of Tyro3, Axl, MerTK (TAM) receptors which are essential pleiotropic regulators of immune homeostasis. Their roles include negatively modulating the immune response, therefore ectopic expression of TAM receptors in the context of cancer can contribute to the immunosuppressive, protumorigenic TME. Furthermore, TAM receptors represent important candidates to simultaneously target both tumor cells and immune cells in the TME. Clinical development of TAM receptor inhibitors (TAM RIs) is increasingly focused on their ability to rescue the antitumor immune response, thereby shifting the immunosuppressive TME to an immunostimulatory TME. There is a strong biological rationale for combining TAM RIs with a CPI to overcome resistance and improve long-term clinical responses in NSCLC. Combinatorial clinical trials of TAM RIs with CPIs are underway with encouraging preliminary results. This review outlines the key mechanisms of CPI resistance, including the role of the immunosuppressive TME, and discusses the rationale for targeting TAM receptors as a novel, promising therapeutic strategy to overcome CPI resistance in NSCLC.
Collapse
Affiliation(s)
- Solange Peters
- Medical Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Luis Paz-Ares
- Medical Oncology Department, Hospital Universitario 12 de Octubre and CNIO-H12O Lung Cancer Unit, Universidad Complutense and Ciberonc, Madrid, Spain
| | - Roy S Herbst
- Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut, USA
| | - Martin Reck
- Lung Clinic Grosshansdorf, Airway Research Center North, Center for Lung Research, Grosshansdorf, Germany
| |
Collapse
|
9
|
Duréndez-Sáez E, Calabuig-Fariñas S, Torres-Martínez S, Moreno-Manuel A, Herreros-Pomares A, Escorihuela E, Mosqueda M, Gallach S, Guijarro R, Serna E, Suárez-Cabrera C, Paramio JM, Blasco A, Camps C, Jantus-Lewintre E. Analysis of Exosomal Cargo Provides Accurate Clinical, Histologic and Mutational Information in Non-Small Cell Lung Cancer. Cancers (Basel) 2022; 14:cancers14133216. [PMID: 35804987 PMCID: PMC9264915 DOI: 10.3390/cancers14133216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary Non-small cell lung cancer (NSCLC) is the second most commonly diagnosed cancer and the leading cause of cancer-related death worldwide. Clinical decision-making depends on the histological classification; however, tissue biopsy is frequently not technically feasible due to tumor location or limited tissue samples. Therefore, we propose to find clinical, molecular and histological biomarkers using a minimally invasive approach based on the analysis of the cargo of the blood extracellular vesicles. Exosomes are membranous vesicles present in several biological fluids, which carry biological information to distant tissues, regulating several tumor processes. This study aims to analyze NSCLC exosome cargo for search biomarkers that could improve clinical management. This report demonstrates the possibility of implementing exosomes to detect molecular alterations and as a source of biomarkers to differentiate NSCLC histology, allowing for a new approach in precision oncology. Abstract Lung cancer is a malignant disease with high mortality and poor prognosis, frequently diagnosed at advanced stages. Nowadays, immense progress in treatment has been achieved. However, the present scenario continues to be critical, and a full comprehension of tumor progression mechanisms is required, with exosomes being potentially relevant players. Exosomes are membranous vesicles that contain biological information, which can be transported cell-to-cell and modulate relevant processes in the hallmarks of cancer. The present research aims to characterize the exosomes’ cargo and study their role in NSCLC to identify biomarkers. We analyzed exosomes secreted by primary cultures and cell lines, grown in monolayer and tumorsphere formations. Exosomal DNA content showed molecular alterations, whereas RNA high-throughput analysis resulted in a pattern of differentially expressed genes depending on histology. The most significant differences were found in XAGE1B, CABYR, NKX2-1, SEPP1, CAPRIN1, and RIOK3 genes when samples from two independent cohorts of resected NSCLC patients were analyzed. We identified and validated biomarkers for adenocarcinoma and squamous cell carcinoma. Our results could represent a relevant contribution concerning exosomes in clinical practice, allowing for the identification of biomarkers that provide information regarding tumor features, prognosis and clinical behavior of the disease.
Collapse
Affiliation(s)
- Elena Duréndez-Sáez
- Molecular Oncology Laboratory, Fundación Investigación Hospital General Universitario de Valencia, 46014 Valencia, Spain; (E.D.-S.); (S.C.-F.); (S.T.-M.); (A.M.-M.); (A.H.-P.); (E.E.); (M.M.); (S.G.)
- TRIAL Mixed Unit, Centro Investigación Príncipe Felipe—Fundación Investigación Hospital General Universitario de Valencia, 46014 Valencia, Spain;
- Centro de Investigación Biomédica en Red Cáncer, CIBERONC, 28029 Madrid, Spain; (R.G.); (C.S.-C.); (J.M.P.)
| | - Silvia Calabuig-Fariñas
- Molecular Oncology Laboratory, Fundación Investigación Hospital General Universitario de Valencia, 46014 Valencia, Spain; (E.D.-S.); (S.C.-F.); (S.T.-M.); (A.M.-M.); (A.H.-P.); (E.E.); (M.M.); (S.G.)
- TRIAL Mixed Unit, Centro Investigación Príncipe Felipe—Fundación Investigación Hospital General Universitario de Valencia, 46014 Valencia, Spain;
- Centro de Investigación Biomédica en Red Cáncer, CIBERONC, 28029 Madrid, Spain; (R.G.); (C.S.-C.); (J.M.P.)
- Department of Pathology, Universitat de València, 46010 Valencia, Spain
| | - Susana Torres-Martínez
- Molecular Oncology Laboratory, Fundación Investigación Hospital General Universitario de Valencia, 46014 Valencia, Spain; (E.D.-S.); (S.C.-F.); (S.T.-M.); (A.M.-M.); (A.H.-P.); (E.E.); (M.M.); (S.G.)
- TRIAL Mixed Unit, Centro Investigación Príncipe Felipe—Fundación Investigación Hospital General Universitario de Valencia, 46014 Valencia, Spain;
- Centro de Investigación Biomédica en Red Cáncer, CIBERONC, 28029 Madrid, Spain; (R.G.); (C.S.-C.); (J.M.P.)
| | - Andrea Moreno-Manuel
- Molecular Oncology Laboratory, Fundación Investigación Hospital General Universitario de Valencia, 46014 Valencia, Spain; (E.D.-S.); (S.C.-F.); (S.T.-M.); (A.M.-M.); (A.H.-P.); (E.E.); (M.M.); (S.G.)
- TRIAL Mixed Unit, Centro Investigación Príncipe Felipe—Fundación Investigación Hospital General Universitario de Valencia, 46014 Valencia, Spain;
- Centro de Investigación Biomédica en Red Cáncer, CIBERONC, 28029 Madrid, Spain; (R.G.); (C.S.-C.); (J.M.P.)
| | - Alejandro Herreros-Pomares
- Molecular Oncology Laboratory, Fundación Investigación Hospital General Universitario de Valencia, 46014 Valencia, Spain; (E.D.-S.); (S.C.-F.); (S.T.-M.); (A.M.-M.); (A.H.-P.); (E.E.); (M.M.); (S.G.)
- Centro de Investigación Biomédica en Red Cáncer, CIBERONC, 28029 Madrid, Spain; (R.G.); (C.S.-C.); (J.M.P.)
- Department of Biotechnology, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Eva Escorihuela
- Molecular Oncology Laboratory, Fundación Investigación Hospital General Universitario de Valencia, 46014 Valencia, Spain; (E.D.-S.); (S.C.-F.); (S.T.-M.); (A.M.-M.); (A.H.-P.); (E.E.); (M.M.); (S.G.)
- TRIAL Mixed Unit, Centro Investigación Príncipe Felipe—Fundación Investigación Hospital General Universitario de Valencia, 46014 Valencia, Spain;
- Centro de Investigación Biomédica en Red Cáncer, CIBERONC, 28029 Madrid, Spain; (R.G.); (C.S.-C.); (J.M.P.)
| | - Marais Mosqueda
- Molecular Oncology Laboratory, Fundación Investigación Hospital General Universitario de Valencia, 46014 Valencia, Spain; (E.D.-S.); (S.C.-F.); (S.T.-M.); (A.M.-M.); (A.H.-P.); (E.E.); (M.M.); (S.G.)
- TRIAL Mixed Unit, Centro Investigación Príncipe Felipe—Fundación Investigación Hospital General Universitario de Valencia, 46014 Valencia, Spain;
| | - Sandra Gallach
- Molecular Oncology Laboratory, Fundación Investigación Hospital General Universitario de Valencia, 46014 Valencia, Spain; (E.D.-S.); (S.C.-F.); (S.T.-M.); (A.M.-M.); (A.H.-P.); (E.E.); (M.M.); (S.G.)
- TRIAL Mixed Unit, Centro Investigación Príncipe Felipe—Fundación Investigación Hospital General Universitario de Valencia, 46014 Valencia, Spain;
- Centro de Investigación Biomédica en Red Cáncer, CIBERONC, 28029 Madrid, Spain; (R.G.); (C.S.-C.); (J.M.P.)
| | - Ricardo Guijarro
- Centro de Investigación Biomédica en Red Cáncer, CIBERONC, 28029 Madrid, Spain; (R.G.); (C.S.-C.); (J.M.P.)
- Department of Surgery, Universitat de València, 46010 Valencia, Spain
- Department of Thoracic Surgery, Hospital General Universitario de Valencia, 46014 Valencia, Spain
| | - Eva Serna
- Freshage Research Group, Department of Physiology, Universitat de València, 46010 Valencia, Spain;
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, 46010 Valencia, Spain
| | - Cristian Suárez-Cabrera
- Centro de Investigación Biomédica en Red Cáncer, CIBERONC, 28029 Madrid, Spain; (R.G.); (C.S.-C.); (J.M.P.)
- Biomedical Research Institute i+12, Hospital Universitario “12 de Octubre”, 28040 Madrid, Spain
- Molecular Oncology Unit, CIEMAT, 28045 Madrid, Spain
| | - Jesús M. Paramio
- Centro de Investigación Biomédica en Red Cáncer, CIBERONC, 28029 Madrid, Spain; (R.G.); (C.S.-C.); (J.M.P.)
- Biomedical Research Institute i+12, Hospital Universitario “12 de Octubre”, 28040 Madrid, Spain
- Molecular Oncology Unit, CIEMAT, 28045 Madrid, Spain
| | - Ana Blasco
- TRIAL Mixed Unit, Centro Investigación Príncipe Felipe—Fundación Investigación Hospital General Universitario de Valencia, 46014 Valencia, Spain;
- Centro de Investigación Biomédica en Red Cáncer, CIBERONC, 28029 Madrid, Spain; (R.G.); (C.S.-C.); (J.M.P.)
- Department of Medical Oncology, Hospital General Universitario de Valencia, 46014 Valencia, Spain
| | - Carlos Camps
- Molecular Oncology Laboratory, Fundación Investigación Hospital General Universitario de Valencia, 46014 Valencia, Spain; (E.D.-S.); (S.C.-F.); (S.T.-M.); (A.M.-M.); (A.H.-P.); (E.E.); (M.M.); (S.G.)
- TRIAL Mixed Unit, Centro Investigación Príncipe Felipe—Fundación Investigación Hospital General Universitario de Valencia, 46014 Valencia, Spain;
- Centro de Investigación Biomédica en Red Cáncer, CIBERONC, 28029 Madrid, Spain; (R.G.); (C.S.-C.); (J.M.P.)
- Department of Medical Oncology, Hospital General Universitario de Valencia, 46014 Valencia, Spain
- Department of Medicine, Universitat de València, 46010 Valencia, Spain
- Correspondence: (C.C.); (E.J.-L.)
| | - Eloisa Jantus-Lewintre
- Molecular Oncology Laboratory, Fundación Investigación Hospital General Universitario de Valencia, 46014 Valencia, Spain; (E.D.-S.); (S.C.-F.); (S.T.-M.); (A.M.-M.); (A.H.-P.); (E.E.); (M.M.); (S.G.)
- TRIAL Mixed Unit, Centro Investigación Príncipe Felipe—Fundación Investigación Hospital General Universitario de Valencia, 46014 Valencia, Spain;
- Centro de Investigación Biomédica en Red Cáncer, CIBERONC, 28029 Madrid, Spain; (R.G.); (C.S.-C.); (J.M.P.)
- Department of Biotechnology, Universitat Politècnica de València, 46022 Valencia, Spain
- Joint Unit: Nanomedicine, Centro Investigación Príncipe Felipe—Universitat Politècnica de Valencia, 46022 Valencia, Spain
- Correspondence: (C.C.); (E.J.-L.)
| |
Collapse
|
10
|
Du P, Chai Y, Zong S, Yue J, Xiao H. Identification of a Prognostic Model Based on Fatty Acid Metabolism-Related Genes of Head and Neck Squamous Cell Carcinoma. Front Genet 2022; 13:888764. [PMID: 35846149 PMCID: PMC9280184 DOI: 10.3389/fgene.2022.888764] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/09/2022] [Indexed: 01/12/2023] Open
Abstract
The fatty acid metabolism (FAM) is known to impact tumorigenesis, tumor progression and treatment resistance via enhancing lipid synthesis, storage and catabolism. However, the role of FAM in head and neck squamous cell carcinoma (HNSCC) has remained elusive. In the present study, we obtained a total of 69 differentially expressed FAM-related genes between 502 HNSCC samples and 44 normal samples from The Cancer Genome Atlas (TCGA) database. The HNSCC samples were divided into 2 clusters according to 69 differentially expressed genes (DEGs) via cluster analysis. Then DEGs in the two clusters were found, and 137 prognostic DEGs were identified by univariate analysis. Subsequently, combined with the clinical information of 546 HNSCC patients from TCGA database, a 12-gene prognostic risk model was established (FEPHX3, SPINK7, FCRLA, MASP1, ZNF541, CD5, BEST2 and ZAP70 were down-regulation, ADPRHL1, DYNC1I1, KCNG1 and LINC00460 were up-regulation) using multivariate Cox regression and LASSO regression analysis. The risk scores of 546 HNSCC samples were calculated. According to the median risk score, 546 HNSCC patients were divided into the high- and low-risk (high- and low score) groups. The Kaplan-Meier survival analysis showed that the survival time of HNSCC patients was significantly shorter in the high-risk group than that in the low-risk group (p < 0.001). The same conclusion was obtained in the Gene Expression Omnibus (GEO) dataset. After that, the multivariate Cox regression analysis indicated that the risk score was an independent factor for patients with HNSCC in the TCGA cohort. In addition, single-sample gene set enrichment analysis (ssGSEA) indicated that the level of infiltrating immune cells was relatively low in the high-risk group compared with the low-risk group. In summary, FAM-related gene expression-based risk signature could predict the prognosis of HNSCC independently.
Collapse
Affiliation(s)
- Peiyu Du
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yue Chai
- Department of Medical Oncology, National Cancer Cente, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shimin Zong
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianxin Yue
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Jianxin Yue, ; Hongjun Xiao,
| | - Hongjun Xiao
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Jianxin Yue, ; Hongjun Xiao,
| |
Collapse
|
11
|
Kausaite-Minkstimiene A, Popov A, Ramanaviciene A. Surface Plasmon Resonance Immunosensor with Antibody-Functionalized Magnetoplasmonic Nanoparticles for Ultrasensitive Quantification of the CD5 Biomarker. ACS APPLIED MATERIALS & INTERFACES 2022; 14:20720-20728. [PMID: 35499973 PMCID: PMC9100489 DOI: 10.1021/acsami.2c02936] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
A surface plasmon resonance (SPR) immunosensor signal amplification strategy based on antibody-functionalized gold-coated magnetic nanoparticles (mAuNPs) was developed for ultrasensitive and quantitative detection of the CD5 biomarker using an indirect sandwich immunoassay format. The gold surface of the SPR sensor disk and mAuNPs was modified with a self-assembled monolayer of 11-mercaptoundecanoic acid (11-MUA), and the coupling method using N-(3-(dimethylamino)propyl)-N'-ethylcarbodiimide hydrochloride and N-hydroxysuccinimide was used to immobilize capture antibodies against human CD5 (anti-CD52A) and detection antibodies against human CD5 (anti-CD52B), respectively. The mAuNPs and anti-CD52B conjugates (mAuNPs-anti-CD52B) were separated by an external magnetic field and used to amplify the SPR signal after the formation of the anti-CD52A/CD5 immune complex on the SPR sensor disk. Compared to the direct CD5 detection with a limit of detection (LOD) of 1.04 nM and a limit of quantification (LOQ) of 3.47 nM, the proposed sandwich immunoassay utilizing mAuNPs-anti-CD52B significantly improved the LOD up to 8.31 fM and the LOQ up to 27.70 fM. In addition, it showed satisfactory performance in human blood serum (recovery of 1.04 pM CD5 was 109.62%). These results suggest that the proposed signal amplification strategy has superior properties and offers the potential to significantly increase the sensitivity of the analysis.
Collapse
Affiliation(s)
- Asta Kausaite-Minkstimiene
- Nanotechnas
− Center of Nanotechnology and Materials Science, Institute
of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko street 24, LT-03225 Vilnius, Lithuania
- Department
of Immunology, State Research Institute
Centre for Innovative Medicine, Santariskiu street 5, LT-08406 Vilnius, Lithuania
| | - Anton Popov
- Nanotechnas
− Center of Nanotechnology and Materials Science, Institute
of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko street 24, LT-03225 Vilnius, Lithuania
- Department
of Immunology, State Research Institute
Centre for Innovative Medicine, Santariskiu street 5, LT-08406 Vilnius, Lithuania
| | - Almira Ramanaviciene
- Nanotechnas
− Center of Nanotechnology and Materials Science, Institute
of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko street 24, LT-03225 Vilnius, Lithuania
- Department
of Immunology, State Research Institute
Centre for Innovative Medicine, Santariskiu street 5, LT-08406 Vilnius, Lithuania
| |
Collapse
|
12
|
Wang L, Yang Y, Feng L, Tan C, Ma H, He S, Lian M, Wang R, Fang J. A novel seven-gene panel predicts the sensitivity and prognosis of head and neck squamous cell carcinoma treated with platinum-based radio(chemo)therapy. Eur Arch Otorhinolaryngol 2021; 278:3523-3531. [PMID: 33682046 DOI: 10.1007/s00405-021-06717-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 02/23/2021] [Indexed: 01/10/2023]
Abstract
PURPOSE The aim of the study is to identify a reliable gene panel to predict the prognosis of HNSCC patients by integrated genomic analysis. METHODS Co-expression gene networks were constructed by WGCNA using GSE113282 gene expression profile. The biological functional investigation was performed by GO and KEGG function enrichment analysis. The hub gene module was screened by PPI. The prognostic gene panel was established by Lasso regression analysis, and further progression-free survival (PFS) analysis was validated by Kaplan-Meier survival analysis using GSE102995 data. RESULTS We identified 195 genes associated with the overall survival (OS) status (correlation coefficients: - 0.42, and p value: 2e-05) by WGCNA. These genes were enriched in immune-related cytokines and pathways analyzed by GO and KEGG. Among the 195 genes, the module (42 genes) with the highest score was screened by PPI. A novel seven-gene predictive panel (CD19, CD40LG, CD5, CXCR6, FPR2, NCAM1, and SELL) was established by Lasso regression analysis, and the area under ROC curve (AUC) for 3-year OS status was 0.8298 and 0.7571, respectively, in the training set and the test set. The PFS time of the low-risk patients was significantly longer than the high-risk patients (p < 0.0001; log-rank test) by further validation using GSE102995 data. CONCLUSION The seven-gene panel may serve as a reliable predictive tool for HNSCC patients treated with platinum-based radio (chemo) therapy, and may be potential therapeutic targets for HNSCC patients.
Collapse
Affiliation(s)
- Lingwa Wang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Yifan Yang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Ling Feng
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Chen Tan
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Hongzhi Ma
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Shizhi He
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Meng Lian
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Ru Wang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China.
| | - Jugao Fang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China.
| |
Collapse
|
13
|
Velasco-de Andrés M, Casadó-Llombart S, Català C, Leyton-Pereira A, Lozano F, Aranda F. Soluble CD5 and CD6: Lymphocytic Class I Scavenger Receptors as Immunotherapeutic Agents. Cells 2020; 9:cells9122589. [PMID: 33287301 PMCID: PMC7761703 DOI: 10.3390/cells9122589] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 12/11/2022] Open
Abstract
CD5 and CD6 are closely related signal-transducing class I scavenger receptors mainly expressed on lymphocytes. Both receptors are involved in the modulation of the activation and differentiation cell processes triggered by clonotypic antigen-specific receptors present on T and B cells (TCR and BCR, respectively). To serve such a relevant immunomodulatory function, the extracellular region of CD5 and CD6 interacts with soluble and/or cell-bound endogenous counterreceptors but also microbial-associated molecular patterns (MAMPs). Evidence from genetically-modified mouse models indicates that the absence or blockade of CD5- and CD6-mediated signals results in dysregulated immune responses, which may be deleterious or advantageous in some pathological conditions, such as infection, cancer or autoimmunity. Bench to bedside translation from transgenic data is constrained by ethical concerns which can be overcome by exogenous administration of soluble proteins acting as decoy receptors and leading to transient “functional knockdown”. This review gathers information currently available on the therapeutic efficacy of soluble CD5 and CD6 receptor infusion in different experimental models of disease. The existing proof-of-concept warrants the interest of soluble CD5 and CD6 as safe and efficient immunotherapeutic agents in diverse and relevant pathological conditions.
Collapse
Affiliation(s)
- María Velasco-de Andrés
- Immunoreceptors del Sistema Innat i Adaptatiu, Institut d’Investigacions Biomèdiques August Pi i Sunyer, 08036 Barcelona, Spain; (M.V.-d.A.); (S.C.-L.); (C.C.); (A.L.-P.)
| | - Sergi Casadó-Llombart
- Immunoreceptors del Sistema Innat i Adaptatiu, Institut d’Investigacions Biomèdiques August Pi i Sunyer, 08036 Barcelona, Spain; (M.V.-d.A.); (S.C.-L.); (C.C.); (A.L.-P.)
| | - Cristina Català
- Immunoreceptors del Sistema Innat i Adaptatiu, Institut d’Investigacions Biomèdiques August Pi i Sunyer, 08036 Barcelona, Spain; (M.V.-d.A.); (S.C.-L.); (C.C.); (A.L.-P.)
| | - Alejandra Leyton-Pereira
- Immunoreceptors del Sistema Innat i Adaptatiu, Institut d’Investigacions Biomèdiques August Pi i Sunyer, 08036 Barcelona, Spain; (M.V.-d.A.); (S.C.-L.); (C.C.); (A.L.-P.)
| | - Francisco Lozano
- Immunoreceptors del Sistema Innat i Adaptatiu, Institut d’Investigacions Biomèdiques August Pi i Sunyer, 08036 Barcelona, Spain; (M.V.-d.A.); (S.C.-L.); (C.C.); (A.L.-P.)
- Servei d’Immunologia, Hospital Clínic de Barcelona, 08036 Barcelona, Spain
- Immunoregulació de la Resposta Innata i Adaptativa, Department de Biomedicina, Universitat de Barcelona, 08036 Barcelona, Spain
- Correspondence: (F.L.); (F.A.)
| | - Fernando Aranda
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain
- Instituto de Investigación de Navarra (IDISNA), 31008 Pamplona, Spain
- Correspondence: (F.L.); (F.A.)
| |
Collapse
|