1
|
Hamilton G, Hochmair MJ, Stickler S. Overcoming resistance in small-cell lung cancer. Expert Rev Respir Med 2024; 18:569-580. [PMID: 39099310 DOI: 10.1080/17476348.2024.2388288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/16/2024] [Accepted: 07/31/2024] [Indexed: 08/06/2024]
Abstract
INTRODUCTION Small-cell lung cancer (SCLC) accounts for 15% of lung cancers and has a dismal prognosis due to early dissemination and acquired chemoresistance. The initial good response to chemotherapy is followed by refractory relapses within 1-2 years. Mechanisms leading to chemoresistance are not clear and progress is poor. AREAS COVERED This article reviews the current evidence of the resistance of SCLCs at the cellular level including alteration of key proteins and the possible presence of cancer stem cells (CSCs). Without compelling evidence for cellular mechanisms and clinical failures of novel approaches, the study of SCLC has advanced to the role of 3D tumor cell aggregates in chemoresistance. EXPERT OPINION The scarcity of viable tumor specimen from relapsed SCLC patients has hampered the investigations of acquired chemoresistance but a panel of nine SCLC circulating tumor cell (CTC) cell lines have revealed characteristics of SCLC in the advanced refractory states. The chemoresistance of relapsed SCLC seems to be linked to the spontaneous formation of large spheroids, termed tumorospheres, which contain resistant quiescent and hypoxic cells shielded by a physical barrier. So far, drugs to tackle large tumor spheroids are in preclinical and early clinical development.
Collapse
Affiliation(s)
- Gerhard Hamilton
- Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Maximilian J Hochmair
- Department of Pneumonology, Karl Landsteiner Institute for Lung Research and Pulmonary Oncology, Klinik Floridsdorf, Vienna, Austria
| | - Sandra Stickler
- Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
2
|
Lin A, Yang H, Zhang J, Luo P. CD209 signaling pathway as a biomarker for cisplatin chemotherapy response in small cell lung cancer. Genes Dis 2024; 11:101038. [PMID: 38274378 PMCID: PMC10806268 DOI: 10.1016/j.gendis.2023.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/27/2023] [Accepted: 06/09/2023] [Indexed: 01/27/2024] Open
Affiliation(s)
- Anqi Lin
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, China
| | - Hong Yang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, China
- The First Clinical Medical School, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, China
| |
Collapse
|
3
|
El-Sayed ASA, Shindia A, Ammar H, Seadawy MG, Khashana SA. Bioprocessing of Epothilone B from Aspergillus fumigatus under solid state fermentation: Antiproliferative activity, tubulin polymerization and cell cycle analysis. BMC Microbiol 2024; 24:43. [PMID: 38291363 PMCID: PMC10829302 DOI: 10.1186/s12866-024-03184-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 01/08/2024] [Indexed: 02/01/2024] Open
Abstract
Epothilone derivatives have been recognized as one of the most powerful anticancer drugs towards solid tumors, for their unique affinity to bind with β-tubulin microtubule arrays, stabilizing their disassembly, causing cell death. Sornagium cellulosum is the main source for Epothilone, however, the fermentation bioprocessing of this myxobacteria is the main challenge for commercial production of Epothilone. The metabolic biosynthetic potency of epothilone by Aspergillus fumigatus, an endophyte of Catharanthus roseus, raises the hope for commercial epothilone production, for their fast growth rate and feasibility of manipulating their secondary metabolites. Thus, nutritional optimization of A. fumigatus for maximizing their epothilone productivity under solid state fermentation process is the objective. The highest yield of epothilone was obtained by growing A. fumigatus on orange peels under solid state fermentation (2.2 μg/g), bioprocessed by the Plackett-Burman design. The chemical structure of the extracted epothilone was resolved from the HPLC and LC-MS/MS analysis, with molecular mass 507.2 m/z and identical molecular fragmentation pattern of epothilone B of S. cellulosum. The purified A. fumigatus epothilone had a significant activity towards HepG2 (IC50 0.98 μg/ml), Pancl (IC50 1.5 μg/ml), MCF7 (IC50 3.7 μg/ml) and WI38 (IC50 4.6 μg/ml), as well as a strong anti-tubulin polymerization activity (IC50 0.52 μg/ml) compared to Paclitaxel (2.0 μg/ml). The effect of A. fumigatus epothilone on the immigration ability of HepG2 cells was assessed, as revealed from the wound closure of the monolayer cells that was estimated by ~ 63.7 and 72.5%, in response to the sample and doxorubicin, respectively, compared to negative control. From the Annexin V-PI flow cytometry results, a significant shift of the normal cells to the apoptosis was observed in response to A. fumigatus epothilone by ~ 20 folds compared to control cells, with the highest growth arrest of the HepG2 cells at the G0-G1 stage.
Collapse
Affiliation(s)
- Ashraf S A El-Sayed
- Enzymology and Fungal Biotechnology lab, Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt.
| | - Ahmed Shindia
- Enzymology and Fungal Biotechnology lab, Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Hala Ammar
- Enzymology and Fungal Biotechnology lab, Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Mohamed G Seadawy
- Biological Prevention Department, Egyptian Ministry of Defense, Cairo, Egypt
| | - Samar A Khashana
- Enzymology and Fungal Biotechnology lab, Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| |
Collapse
|
4
|
Ei ZZ, Racha S, Yokoya M, Hotta D, Zou H, Chanvorachote P. Simplified Synthesis of Renieramycin T Derivatives to Target Cancer Stem Cells via β-Catenin Proteasomal Degradation in Human Lung Cancer. Mar Drugs 2023; 21:627. [PMID: 38132948 PMCID: PMC10744608 DOI: 10.3390/md21120627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 11/28/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023] Open
Abstract
Cancer stem cells (CSCs) found within cancer tissue play a pivotal role in its resistance to therapy and its potential to metastasize, contributing to elevated mortality rates among patients. Significant strides in understanding the molecular foundations of CSCs have led to preclinical investigations and clinical trials focused on CSC regulator β-catenin signaling targeted interventions in malignancies. As part of the ongoing advancements in marine-organism-derived compound development, it was observed that among the six analogs of Renieramycin T (RT), a potential lead alkaloid from the blue sponge Xestospongia sp., the compound DH_32, displayed the most robust anti-cancer activity in lung cancer A549, H23, and H292 cells. In various lung cancer cell lines, DH_32 exhibited the highest efficacy, with IC50 values of 4.06 ± 0.24 μM, 2.07 ± 0.11 μM, and 1.46 ± 0.06 μM in A549, H23, and H292 cells, respectively. In contrast, parental RT compounds had IC50 values of 5.76 ± 0.23 μM, 2.93 ± 0.07 μM, and 1.52 ± 0.05 μM in the same order. Furthermore, at a dosage of 25 nM, DH_32 showed a stronger ability to inhibit colony formation compared to the lead compound, RT. DH_32 was capable of inducing apoptosis in lung cancer cells, as demonstrated by increased PARP cleavage and reduced levels of the proapoptotic protein Bcl2. Our discovery confirms that DH_32 treatment of lung cancer cells led to a reduced level of CD133, which is associated with the suppression of stem-cell-related transcription factors like OCT4. Moreover, DH_32 significantly suppressed the ability of tumor spheroids to form compared to the original RT compound. Additionally, DH_32 inhibited CSCs by promoting the degradation of β-catenin through ubiquitin-proteasomal pathways. In computational molecular docking, a high-affinity interaction was observed between DH_32 (grid score = -35.559 kcal/mol) and β-catenin, indicating a stronger binding interaction compared to the reference compound R9Q (grid score = -29.044 kcal/mol). In summary, DH_32, a newly developed derivative of the right-half analog of RT, effectively inhibited the initiation of lung cancer spheroids and the self-renewal of lung cancer cells through the upstream process of β-catenin ubiquitin-proteasomal degradation.
Collapse
Affiliation(s)
- Zin Zin Ei
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (Z.Z.E.); (S.R.)
- Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Satapat Racha
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (Z.Z.E.); (S.R.)
- Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Interdisciplinary Program in Pharmacology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
| | - Masashi Yokoya
- Department of Pharmaceutical Chemistry, Meiji Pharmaceutical University, 2-522-1, Noshio, Kiyose, Tokyo 204-8588, Japan; (M.Y.); (D.H.)
| | - Daiki Hotta
- Department of Pharmaceutical Chemistry, Meiji Pharmaceutical University, 2-522-1, Noshio, Kiyose, Tokyo 204-8588, Japan; (M.Y.); (D.H.)
| | - Hongbin Zou
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China;
| | - Pithi Chanvorachote
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (Z.Z.E.); (S.R.)
- Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
5
|
Fu Z, Li D, Deng C, Zhang J, Bai J, Li Y, Chen H, Zhang Y. Excellent survival of pathological N0 small cell lung cancer patients following surgery. Eur J Med Res 2023; 28:91. [PMID: 36810128 PMCID: PMC9942372 DOI: 10.1186/s40001-023-01044-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 02/05/2023] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND Current clinical guidelines recommend surgery only for cT1-2N0M0 small cell lung cancer (SCLC) patients. In light of recent studies, the role of surgery in the treatment of SCLC needs to be reconsidered. METHODS We reviewed all SCLC patients who underwent surgery from November 2006 to April 2021. Clinicopathological characteristics were retrospectively collected from medical records. Survival analysis was performed by the Kaplan-Meier method. Independent prognostic factors were evaluated by Cox proportional hazard model. RESULTS 196 SCLC patients undergoing surgical resection were enrolled. The 5-year overall survival for the entire cohort was 49.0% (95% CI: 40.1-58.5%). PN0 patients had significantly superior survival to pN1-2 patients (p < 0.001). The 5-year survival rate of pN0 and pN1-2 patients were 65.5% (95% CI: 54.0-80.8%) and 35.1% (95% CI: 23.3-46.6%), respectively. Multivariate analysis revealed that smoking, older age, and advanced pathological T and N stages were independently associated with poor prognosis. Subgroup analyses demonstrated similar survival among pN0 SCLC patients regardless of pathological T stages (p = 0.416). Furthermore, multivariate analysis showed factors, including age, smoking history, type of surgery, and range of resection, were not independently prognostic factors for the pN0 SCLC patients. CONCLUSION Pathological N0 stage SCLC patients have significantly superior survival to pN1-2 patients, regardless of features, including T stage. Thorough preoperative evaluation should be applied to estimate the status of lymph node involvement to achieve better selection of patients who might be candidate for surgery. Studies with larger cohort might help verify the benefit of surgery, especially for T3/4 patients.
Collapse
Affiliation(s)
- Zichen Fu
- grid.452404.30000 0004 1808 0942Departments of Thoracic Surgery and State Key Laboratory of Genetic Engineering, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai, 200032 China ,grid.8547.e0000 0001 0125 2443Institute of Thoracic Oncology, Fudan University, Shanghai, 200032 China ,grid.11841.3d0000 0004 0619 8943Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Di Li
- grid.452404.30000 0004 1808 0942Departments of Thoracic Surgery and State Key Laboratory of Genetic Engineering, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai, 200032 China ,grid.8547.e0000 0001 0125 2443Institute of Thoracic Oncology, Fudan University, Shanghai, 200032 China ,grid.11841.3d0000 0004 0619 8943Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Chaoqiang Deng
- grid.452404.30000 0004 1808 0942Departments of Thoracic Surgery and State Key Laboratory of Genetic Engineering, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai, 200032 China ,grid.8547.e0000 0001 0125 2443Institute of Thoracic Oncology, Fudan University, Shanghai, 200032 China ,grid.11841.3d0000 0004 0619 8943Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Jingshun Zhang
- Department of Thoracic Surgery, Guanxian Xinhua Hospital, Liaocheng, 371525 China
| | - Jinsong Bai
- grid.452404.30000 0004 1808 0942Departments of Thoracic Surgery and State Key Laboratory of Genetic Engineering, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai, 200032 China ,grid.8547.e0000 0001 0125 2443Institute of Thoracic Oncology, Fudan University, Shanghai, 200032 China ,grid.11841.3d0000 0004 0619 8943Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Yuan Li
- grid.8547.e0000 0001 0125 2443Institute of Thoracic Oncology, Fudan University, Shanghai, 200032 China ,grid.11841.3d0000 0004 0619 8943Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China ,grid.452404.30000 0004 1808 0942Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032 China
| | - Haiquan Chen
- Departments of Thoracic Surgery and State Key Laboratory of Genetic Engineering, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai, 200032, China. .,Institute of Thoracic Oncology, Fudan University, Shanghai, 200032, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Yang Zhang
- Departments of Thoracic Surgery and State Key Laboratory of Genetic Engineering, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai, 200032, China. .,Institute of Thoracic Oncology, Fudan University, Shanghai, 200032, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
6
|
Kim YJ, Li W, Zhelev DV, Mellors JW, Dimitrov DS, Baek DS. Chimeric antigen receptor-T cells are effective against CEACAM5 expressing non-small cell lung cancer cells resistant to antibody-drug conjugates. Front Oncol 2023; 13:1124039. [PMID: 36923424 PMCID: PMC10010383 DOI: 10.3389/fonc.2023.1124039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/08/2023] [Indexed: 03/02/2023] Open
Abstract
Chimeric antigen receptor-T (CAR-T) cells and antibody-drug conjugates (ADCs) are promising therapeutic strategies in oncology. The carcinoembryonic antigen-related cell adhesion molecule 5 (CEACAM5) is overexpressed in tumors including non-small cell lung cancer (NSCLC) and pancreatic ductal adenocarcinoma (PDAC), and is an attractive target for therapies based on CAR-T cell or/and ADCs. We previously developed a highly specific antibody-based CAR-T cells targeting CEACAM5 and the tumoricidal effect of CAR-T cells was proved against neuro-endocrine prostate cancer (NEPC) cells expressing CEACAM5. Here, we compare the anti-tumor efficacy of our CAR-T cells with that of an anti-CEACAM5 ADC being clinically evaluated against NSCLC. Our anti-CEACAM5 CAR-T cells showed cytotoxicity in a CEACAM5 surface concentration dependent manner and reduced tumor growth in both ADC-responsive and -non-responsive CEACAM5-expressing NSCLC cells in vitro and in vivo. In contrast, the ADC exhibited cytotoxicity independent on the CEACAM5 cell surface concentration. Even though clinical translation of CEACAM5 targeting CAR-T cell therapies is still in preclinical stage, our CAR-T cell approach could provide a potential therapeutic strategy for CEACAM5-positive cancer patients with resistance to ADCs.
Collapse
Affiliation(s)
- Ye-Jin Kim
- Center for Antibody Therapeutics, Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Wei Li
- Center for Antibody Therapeutics, Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Doncho V Zhelev
- Center for Antibody Therapeutics, Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - John W Mellors
- Center for Antibody Therapeutics, Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.,Abound Bio, Pittsburgh, PA, United States
| | - Dimiter S Dimitrov
- Center for Antibody Therapeutics, Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.,Abound Bio, Pittsburgh, PA, United States
| | - Du-San Baek
- Center for Antibody Therapeutics, Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
7
|
Plasma Extracellular Vesicle Long RNA in Diagnosis and Prediction in Small Cell Lung Cancer. Cancers (Basel) 2022; 14:cancers14225493. [PMID: 36428585 PMCID: PMC9688902 DOI: 10.3390/cancers14225493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/23/2022] [Accepted: 10/26/2022] [Indexed: 11/11/2022] Open
Abstract
(1) Introduction: The aim of this study was to identify the plasma extracellular vesicle (EV)-specific transcriptional profile in small-cell lung cancer (SCLC) and to explore the application value of plasma EV long RNA (exLR) in SCLC treatment prediction and diagnosis. (2) Methods: Plasma samples were collected from 57 SCLC treatment-naive patients, 104 non-small-cell lung cancer (NSCLC) patients and 59 healthy participants. The SCLC patients were divided into chemo-sensitive and chemo-refractory groups based on the therapeutic effects. The exLR profiles of the plasma samples were analyzed by high-throughput sequencing. Bioinformatics approaches were used to investigate the differentially expressed exLRs and their biofunctions. Finally, a t-signature was constructed using logistic regression for SCLC treatment prediction and diagnosis. (3) Results: We obtained 220 plasma exLRs profiles in all the participants. Totals of 5787 and 1207 differentially expressed exLRs were identified between SCLC/healthy controls, between the chemo-sensitive/chemo-refractory groups, respectively. Furthermore, we constructed a t-signature that comprised ten exLRs, including EPCAM, CCNE2, CDC6, KRT8, LAMB1, CALB2, STMN1, UCHL1, HOXB7 and CDCA7, for SCLC treatment prediction and diagnosis. The exLR t-score effectively distinguished the chemo-sensitive from the chemo-refractory group (p = 9.268 × 10-9) with an area under the receiver operating characteristic curve (AUC) of 0.9091 (95% CI: 0.837 to 0.9811) and distinguished SCLC from healthy controls (AUC: 0.9643; 95% CI: 0.9256-1) and NSCLC (AUC: 0.721; 95% CI: 0.6384-0.8036). (4) Conclusions: This study firstly characterized the plasma exLR profiles of SCLC patients and verified the feasibility and value of identifying biomarkers based on exLR profiles in SCLC diagnosis and treatment prediction.
Collapse
|
8
|
Yu W, Xie X, Ma Y, Fang S, Dong Y, Liu G. Identification of 1,4-Benzodiazepine-2,5-dione Derivatives as Potential Protein Synthesis Inhibitors with Highly Potent Anticancer Activity. J Med Chem 2022; 65:14891-14915. [PMID: 36260776 DOI: 10.1021/acs.jmedchem.2c01431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In this study, a random multiple human tumor cell line screening of an in-stock small-molecule chemical library was performed, and a hit compound, 1,4-benzodiazepine-2,5-dione (BZD, 11a; average 50% growth inhibitory concentration (GI50 = 0.24 μM)) to 60 tumor cell lines of nine types of human cancers, was identified. Subsequent structure-activity relationship (SAR) investigation disclosed a highly potent antitumor compound, 52b, that was shown to exert promising effects against lung cancer cells by inducing cell cycle arrest and apoptosis. Further polysome profile analysis revealed that 52b inhibited protein synthesis in cancer cells. Moreover, 52b significantly prevented tumor growth in a human non-small-cell lung cancer (NCI-H522) xenograft mouse model with no observable toxic effects. These findings are the first report of the synthetic compound 52b with a 1,4-benzodiazepine-2,5-dione skeleton that acts as a potential protein synthesis inhibitor to effectively inhibit tumor growth.
Collapse
Affiliation(s)
- Wenjun Yu
- School of Pharmaceutical Sciences, Tsinghua University, Haidian Dist, Beijing 100084, P. R. China
| | - Xilei Xie
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 2A Nanwei Rd, Xicheng Dist, Beijing 100050, P. R. China.,College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Yao Ma
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 2A Nanwei Rd, Xicheng Dist, Beijing 100050, P. R. China
| | - Shiping Fang
- School of Pharmaceutical Sciences, Tsinghua University, Haidian Dist, Beijing 100084, P. R. China
| | - Yi Dong
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 2A Nanwei Rd, Xicheng Dist, Beijing 100050, P. R. China
| | - Gang Liu
- School of Pharmaceutical Sciences, Tsinghua University, Haidian Dist, Beijing 100084, P. R. China.,Key laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education; Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, P. R. China
| |
Collapse
|
9
|
Ashrafi A, Akter Z, Modareszadeh P, Modareszadeh P, Berisha E, Alemi PS, Chacon Castro MDC, Deese AR, Zhang L. Current Landscape of Therapeutic Resistance in Lung Cancer and Promising Strategies to Overcome Resistance. Cancers (Basel) 2022; 14:4562. [PMID: 36230484 PMCID: PMC9558974 DOI: 10.3390/cancers14194562] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 02/06/2023] Open
Abstract
Lung cancer is one of the leading causes of cancer-related deaths worldwide with a 5-year survival rate of less than 18%. Current treatment modalities include surgery, chemotherapy, radiation therapy, targeted therapy, and immunotherapy. Despite advances in therapeutic options, resistance to therapy remains a major obstacle to the effectiveness of long-term treatment, eventually leading to therapeutic insensitivity, poor progression-free survival, and disease relapse. Resistance mechanisms stem from genetic mutations and/or epigenetic changes, unregulated drug efflux, tumor hypoxia, alterations in the tumor microenvironment, and several other cellular and molecular alterations. A better understanding of these mechanisms is crucial for targeting factors involved in therapeutic resistance, establishing novel antitumor targets, and developing therapeutic strategies to resensitize cancer cells towards treatment. In this review, we summarize diverse mechanisms driving resistance to chemotherapy, radiotherapy, targeted therapy, and immunotherapy, and promising strategies to help overcome this therapeutic resistance.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Li Zhang
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX 75080, USA
| |
Collapse
|
10
|
Lukinović V, Hausmann S, Roth GS, Oyeniran C, Ahmad T, Tsao N, Brickner JR, Casanova AG, Chuffart F, Benitez AM, Vayr J, Rodell R, Tardif M, Jansen PW, Couté Y, Vermeulen M, Hainaut P, Mazur PK, Mosammaparast N, Reynoird N. SMYD3 Impedes Small Cell Lung Cancer Sensitivity to Alkylation Damage through RNF113A Methylation-Phosphorylation Cross-talk. Cancer Discov 2022; 12:2158-2179. [PMID: 35819319 PMCID: PMC9437563 DOI: 10.1158/2159-8290.cd-21-0205] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 02/16/2022] [Accepted: 07/07/2022] [Indexed: 01/07/2023]
Abstract
Small cell lung cancer (SCLC) is the most fatal form of lung cancer, with dismal survival, limited therapeutic options, and rapid development of chemoresistance. We identified the lysine methyltransferase SMYD3 as a major regulator of SCLC sensitivity to alkylation-based chemotherapy. RNF113A methylation by SMYD3 impairs its interaction with the phosphatase PP4, controlling its phosphorylation levels. This cross-talk between posttranslational modifications acts as a key switch in promoting and maintaining RNF113A E3 ligase activity, essential for its role in alkylation damage response. In turn, SMYD3 inhibition restores SCLC vulnerability to alkylating chemotherapy. Our study sheds light on a novel role of SMYD3 in cancer, uncovering this enzyme as a mediator of alkylation damage sensitivity and providing a rationale for small-molecule SMYD3 inhibition to improve responses to established chemotherapy. SIGNIFICANCE SCLC rapidly becomes resistant to conventional chemotherapy, leaving patients with no alternative treatment options. Our data demonstrate that SMYD3 upregulation and RNF113A methylation in SCLC are key mechanisms that control the alkylation damage response. Notably, SMYD3 inhibition sensitizes cells to alkylating agents and promotes sustained SCLC response to chemotherapy. This article is highlighted in the In This Issue feature, p. 2007.
Collapse
Affiliation(s)
- Valentina Lukinović
- Institute for Advanced Biosciences, Grenoble Alpes University, CNRS UMR5309, INSERM U1209, Grenoble, France
| | - Simone Hausmann
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Gael S. Roth
- Institute for Advanced Biosciences, Grenoble Alpes University, CNRS UMR5309, INSERM U1209, Grenoble, France
- Clinique universitaire d'Hépato-gastroentérologie et Oncologie digestive, CHU Grenoble Alpes, Grenoble, France
| | - Clement Oyeniran
- Department of Pathology and Immunology and Department of Medicine, Center for Genome Integrity, Washington University in St. Louis School of Medicine, St. Louis, Missouri
| | - Tanveer Ahmad
- Institute for Advanced Biosciences, Grenoble Alpes University, CNRS UMR5309, INSERM U1209, Grenoble, France
| | - Ning Tsao
- Department of Pathology and Immunology and Department of Medicine, Center for Genome Integrity, Washington University in St. Louis School of Medicine, St. Louis, Missouri
| | - Joshua R. Brickner
- Department of Pathology and Immunology and Department of Medicine, Center for Genome Integrity, Washington University in St. Louis School of Medicine, St. Louis, Missouri
| | - Alexandre G. Casanova
- Institute for Advanced Biosciences, Grenoble Alpes University, CNRS UMR5309, INSERM U1209, Grenoble, France
| | - Florent Chuffart
- Institute for Advanced Biosciences, Grenoble Alpes University, CNRS UMR5309, INSERM U1209, Grenoble, France
| | - Ana Morales Benitez
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jessica Vayr
- Institute for Advanced Biosciences, Grenoble Alpes University, CNRS UMR5309, INSERM U1209, Grenoble, France
| | - Rebecca Rodell
- Department of Pathology and Immunology and Department of Medicine, Center for Genome Integrity, Washington University in St. Louis School of Medicine, St. Louis, Missouri
| | - Marianne Tardif
- Univ. Grenoble Alpes, CEA, INSERM, IRIG, BGE, Grenoble, France
| | - Pascal W.T.C. Jansen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Yohann Couté
- Univ. Grenoble Alpes, CEA, INSERM, IRIG, BGE, Grenoble, France
| | - Michiel Vermeulen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Pierre Hainaut
- Institute for Advanced Biosciences, Grenoble Alpes University, CNRS UMR5309, INSERM U1209, Grenoble, France
| | - Pawel K. Mazur
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Corresponding Authors: Nicolas Reynoird, Institute for Advanced Biosciences, INSERM U1209—CNRS UMR5309—Université Grenoble Alpes, Site santé, Allée des Alpes, 38700 La Tronche, France. 33 4 76 54 95 76; E-mail: ; Pawel K. Mazur, The University of Texas MD Anderson Cancer Center, Department of Experimental Radiation Oncology, Zayed Building Room Z7.2024, 6565 MD Anderson Boulevard, Houston, TX 77030-4009. Phone: 832-751-9825; E-mail: ; and Nima Mosammaparast, Washington University School of Medicine, Department of Pathology and Immunology, Clinical Sciences Research Building (CSRB), 7th Floor, Room 7730, 4940 Parkview Place, St. Louis, MO 63110. Phone: 314-747-5472; E-mail:
| | - Nima Mosammaparast
- Department of Pathology and Immunology and Department of Medicine, Center for Genome Integrity, Washington University in St. Louis School of Medicine, St. Louis, Missouri
- Corresponding Authors: Nicolas Reynoird, Institute for Advanced Biosciences, INSERM U1209—CNRS UMR5309—Université Grenoble Alpes, Site santé, Allée des Alpes, 38700 La Tronche, France. 33 4 76 54 95 76; E-mail: ; Pawel K. Mazur, The University of Texas MD Anderson Cancer Center, Department of Experimental Radiation Oncology, Zayed Building Room Z7.2024, 6565 MD Anderson Boulevard, Houston, TX 77030-4009. Phone: 832-751-9825; E-mail: ; and Nima Mosammaparast, Washington University School of Medicine, Department of Pathology and Immunology, Clinical Sciences Research Building (CSRB), 7th Floor, Room 7730, 4940 Parkview Place, St. Louis, MO 63110. Phone: 314-747-5472; E-mail:
| | - Nicolas Reynoird
- Institute for Advanced Biosciences, Grenoble Alpes University, CNRS UMR5309, INSERM U1209, Grenoble, France
- Corresponding Authors: Nicolas Reynoird, Institute for Advanced Biosciences, INSERM U1209—CNRS UMR5309—Université Grenoble Alpes, Site santé, Allée des Alpes, 38700 La Tronche, France. 33 4 76 54 95 76; E-mail: ; Pawel K. Mazur, The University of Texas MD Anderson Cancer Center, Department of Experimental Radiation Oncology, Zayed Building Room Z7.2024, 6565 MD Anderson Boulevard, Houston, TX 77030-4009. Phone: 832-751-9825; E-mail: ; and Nima Mosammaparast, Washington University School of Medicine, Department of Pathology and Immunology, Clinical Sciences Research Building (CSRB), 7th Floor, Room 7730, 4940 Parkview Place, St. Louis, MO 63110. Phone: 314-747-5472; E-mail:
| |
Collapse
|
11
|
Liu C, Liao J, Wu X, Zhao X, Sun S, Wang H, Hu Z, Zhang Y, Yu H, Wang J. A phase II study of anlotinib combined with etoposide and platinum-based regimens in the first-line treatment of extensive-stage small cell lung cancer. Thorac Cancer 2022; 13:1463-1470. [PMID: 35388976 PMCID: PMC9108065 DOI: 10.1111/1759-7714.14414] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND The aim of this prospective, pilot, single-arm phase II trial was to evaluate the safety and efficacy of anlotinib combined with etoposide and platinum-based regimens in the first-line treatment of extensive-stage small cell lung cancer (ES-SCLC). METHODS This phase II study was conducted at Fudan University Shanghai Cancer Center between December 2018 and December 2020. All patients received standard chemotherapy (etoposide plus cisplatin/carboplatin) consisting of four courses and anlotinib at 12 mg once per day for 2 weeks followed by a one-week rest. Anlotinib administration was continued until disease progression, intolerable adverse events (AEs) or patient withdrawal from the study. The primary outcome measure was progression-free survival (PFS). The secondary outcome measures were overall survival (OS), objective control rate (ORR), disease control rate (DCR) and AEs. RESULTS Thirty-seven patients were included in this study, and 30 patients were eligible for efficacy analysis. ORR and DCR were 90.0% and 96.7%, respectively. The estimated PFS and OS were 6.0 months (95% CI: 1.1-11.9 months) and 14.0 months (95% CI: 8.6-19.4 months), respectively. No unexpected adverse effects were reported. Hypertension (20/37, 54.1%), anemia (16/37, 43.2%), alopecia (15/37, 40.5%), elevated transaminases (9/37, 24.3%) and alkaline phosphatase (9/37, 24.3%) were the most commonly reported AEs. Thirteen patients (35.1%) reported grade 3-5 AEs. No treatment-related deaths occurred during this study. CONCLUSION The addition of anlotinib to standard etoposide/platinum chemotherapy achieved encouraging PFS and OS in previously untreated ES-SCLC patients, with an acceptable tolerability profile and no new safety signals observed.
Collapse
Affiliation(s)
- Chang Liu
- Department of Thoracic Medical OncologyFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
- Institute of Thoracic OncologyFudan University Shanghai Cancer CenterShanghaiChina
| | - Jiatao Liao
- Department of Thoracic Medical OncologyFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
- Institute of Thoracic OncologyFudan University Shanghai Cancer CenterShanghaiChina
| | - Xianghua Wu
- Department of Thoracic Medical OncologyFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
- Institute of Thoracic OncologyFudan University Shanghai Cancer CenterShanghaiChina
| | - Xinmin Zhao
- Department of Thoracic Medical OncologyFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
- Institute of Thoracic OncologyFudan University Shanghai Cancer CenterShanghaiChina
| | - Si Sun
- Department of Thoracic Medical OncologyFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
- Institute of Thoracic OncologyFudan University Shanghai Cancer CenterShanghaiChina
| | - Huijie Wang
- Department of Thoracic Medical OncologyFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
- Institute of Thoracic OncologyFudan University Shanghai Cancer CenterShanghaiChina
| | - Zhihuang Hu
- Department of Thoracic Medical OncologyFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
- Institute of Thoracic OncologyFudan University Shanghai Cancer CenterShanghaiChina
| | - Yao Zhang
- Department of Thoracic Medical OncologyFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
- Institute of Thoracic OncologyFudan University Shanghai Cancer CenterShanghaiChina
| | - Hui Yu
- Department of Thoracic Medical OncologyFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
- Institute of Thoracic OncologyFudan University Shanghai Cancer CenterShanghaiChina
| | - Jialei Wang
- Department of Thoracic Medical OncologyFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
- Institute of Thoracic OncologyFudan University Shanghai Cancer CenterShanghaiChina
| |
Collapse
|
12
|
Liu Q, Zhang Y, Liu M, Xu R, Yi F, Wei Y, Zhu S, Zhang W. The benefits and risks of pembrolizumab in combination with chemotherapy as first-line therapy in small-cell lung cancer: a single-arm meta-analysis of noncomparative clinical studies and randomized control trials. World J Surg Oncol 2021; 19:298. [PMID: 34645484 PMCID: PMC8515717 DOI: 10.1186/s12957-021-02410-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/25/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Although pembrolizumab has shown clinical benefit in patients with small-cell lung cancer (SCLC), its actual efficacy in combination with a conventional chemotherapy drug has not been determined. We performed this study to discern the efficacy and risk of pembrolizumab in combination with chemotherapy as first-line therapy in SCLC patients. METHODS We systematically searched the PubMed, ScienceDirect, Cochrane Library, Scopus, Ovid MEDLINE, Embase, Web of Science, and Google Scholar databases for relevant studies. The main outcomes were overall survival (OS) and progression-free survival (PFS). RESULTS We identified 2980 articles and included 6 studies (5 were noncomparative open-label studies and 1 was a randomized controlled trial [RCT]) involving 396 patients in our meta-analysis. The pooled median OS (mOS) was 9.6 months (95% CI, 8.0-11.2), and the pooled median PFS (mPFS) was 4.2 months (95% CI, 2.2-6.1). The 1-year overall survival rate (OSR-1y) and 6-month progression-free survival rate (PFSR-6m) were 45.1% (95% CI, 33-57.2%) and 41.6% (95% CI, 24.3-59%), respectively. The objective response rate (ORR) was 38.8% (95% CI, 11.9-65.67%), disease control rate (DCR) was 69.30% (95% CI, 51.6-87.0%), complete response (CR) was 2.20% (95% CI, 0.8-3.7%), partial response (PR) was 34.70% (95% CI, 7.8-61.5%), and stable disease (SD) was 20.90% (95% CI, 9.1-32.6%). The grade 3-4 adverse effect (AE) rate was 20.88% (95% CI, 1.22-54.85%). The most common AEs were neutropenia (90.16%), anemia (53.21%), dysphagia (41.96%), platelet count decrease (34.87%), and esophagitis (32.89%); severe AEs included neutropenia, respiratory failure, pneumonitis, acute coronary syndrome, and colitis/intestinal ischemia. CONCLUSIONS The combination of pembrolizumab with conventional chemotherapy is an effective therapeutic schedule with acceptable and manageable efficacy and toxicity in patients with SCLC. More high-quality and well-designed RCTs with large sample sizes are warranted to further validate our findings.
Collapse
Affiliation(s)
- Qiangyun Liu
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang, 330006, China
- Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Yixuan Zhang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang, 330006, China
- Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Miaowen Liu
- Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang, 330006, China
| | - Ruoxin Xu
- Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang, 330006, China
| | - Fengming Yi
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang, 330006, China
| | - Yiping Wei
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang, 330006, China
| | - Shuqiang Zhu
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
| | - Wenxiong Zhang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang, 330006, China.
| |
Collapse
|
13
|
Chen P, Wu S, Yu J, Tang X, Dai C, Qi H, Zhu J, Li W, Chen B, Zhu J, Wang H, Zhao S, Liu H, Kuang P, He Y. mRNA Network: Solution for Tracking Chemotherapy Insensitivity in Small-Cell Lung Cancer. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:2105176. [PMID: 34621500 PMCID: PMC8492269 DOI: 10.1155/2021/2105176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/14/2021] [Accepted: 08/05/2021] [Indexed: 12/25/2022]
Abstract
Background Small-cell lung cancer (SCLC) has poor prognosis and is prone to drug resistance. It is necessary to search for possible influencing factors for SCLC chemotherapy insensitivity. Therefore, we proposed an mRNA network to track the chemotherapy insensitivity in SCLC. Methods Six samples of patients with SCLC were recruited for RNA sequencing. TopHat2 and Cufflinks were used to make differential analysis. Functional analysis was applied as well. Finally, multidimensional validation was applied for verifying the results we obtained by experiment. Results This study was a trial of drug resistance in 6 SCLC patients after first-line chemotherapy. The top 10 downregulated genes differentially expressed in the chemo-insensitive group were SERPING1, DRD5, PARVG, PRAME, NKX1-1, MCTP2, PID1, PLEKHA4, SPP1, and SLN. Cell-cell signaling by Wnt (p=6.98E - 21) was the most significantly enriched GO term in biological process, while systemic lupus erythematosus (p=6.97E - 10), alcoholism (p=1.01E - 09), and transcriptional misregulation in cancer (p=0.00227988) were the top three ones of KEGG pathways. In multiple public databases, we also highlighted and verified the vital role of glycolysis/gluconeogenesis pathway and corresponding genes in chemo-insensitivity in SCLC. Conclusion Our study confirmed some SCLC chemotherapy insensitivity-related genes, biological processes, and pathways, thus constructing the chemotherapy-insensitive network for SCLC.
Collapse
Affiliation(s)
- Peixin Chen
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai 200433, China
- Medical School, Tongji University, Shanghai 200433, China
| | - Shengyu Wu
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai 200433, China
- Medical School, Tongji University, Shanghai 200433, China
| | - Jia Yu
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai 200433, China
- Medical School, Tongji University, Shanghai 200433, China
| | - Xuzhen Tang
- Oncology and Immunology BU, Research Service Division, WuXi Apptec, Shanghai, China
| | - Chunlei Dai
- Oncology and Immunology BU, Research Service Division, WuXi Apptec, Shanghai, China
| | - Hui Qi
- Oncology and Immunology BU, Research Service Division, WuXi Apptec, Shanghai, China
| | - Junjie Zhu
- Department of Surgery, Shanghai Pulmonary Hospital, Tongji University, Tongji University School of Medicine, Shanghai 200433, China
| | - Wei Li
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai 200433, China
- Medical School, Tongji University, Shanghai 200433, China
| | - Bin Chen
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai 200433, China
- Medical School, Tongji University, Shanghai 200433, China
| | - Jun Zhu
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai 200433, China
- Medical School, Tongji University, Shanghai 200433, China
| | - Hao Wang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai 200433, China
- Medical School, Tongji University, Shanghai 200433, China
| | - Sha Zhao
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai 200433, China
- Medical School, Tongji University, Shanghai 200433, China
| | - Hongcheng Liu
- Department of Surgery, Shanghai Pulmonary Hospital, Tongji University, Tongji University School of Medicine, Shanghai 200433, China
| | - Peng Kuang
- Department of Medical Oncology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Yayi He
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai 200433, China
- Medical School, Tongji University, Shanghai 200433, China
| |
Collapse
|
14
|
Zhu L, Jiang M, Wang H, Sun H, Zhu J, Zhao W, Fang Q, Yu J, Chen P, Wu S, Zheng Z, He Y. A narrative review of tumor heterogeneity and challenges to tumor drug therapy. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1351. [PMID: 34532488 PMCID: PMC8422119 DOI: 10.21037/atm-21-1948] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 06/17/2021] [Indexed: 12/31/2022]
Abstract
Objective To accurately evaluate tumor heterogeneity, make multidimensional diagnosis according to the causes and phenotypes of tumor heterogeneity, and assist in the individualized treatment of tumors. Background Tumor heterogeneity is one of the most essential characteristics of malignant tumors. In tumor recurrence, development, and evolution, tumor heterogeneity can lead to the formation of different cell groups with other molecular characteristics. Tumor heterogeneity can be characterized by the uneven distribution of tumor cell subsets of other genes between and within the disease site (spatial heterogeneity) or the time change of cancer cell molecular composition (temporal heterogeneity). The discovery of tumor targeting drugs has dramatically promoted tumor therapy. However, the existence of heterogeneity seriously affects the effect of tumor treatment and the prognosis of patients. Methods The literature discussing tumor heterogeneity and its resistance to tumor therapy was broadly searched to analyze tumor heterogeneity as well as the challenges and solutions for gene detection and tumor drug therapy. Conclusions Tumor heterogeneity is affected by many factors consist of internal cell factors and cell microenvironment. Tumor heterogeneity greatly hinders effective and individualized tumor treatment. Understanding the fickle of tumors in multiple dimensions and flexibly using a variety of detection methods to capture the changes of tumors can help to improve the design of diagnosis and treatment plans for cancer and benefit millions of patients.
Collapse
Affiliation(s)
- Liang Zhu
- Tongji University, Shanghai, China.,Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Minlin Jiang
- Tongji University, Shanghai, China.,Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Hao Wang
- Tongji University, Shanghai, China.,Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Hui Sun
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Jun Zhu
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Wencheng Zhao
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Qiyu Fang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Jia Yu
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Peixin Chen
- Tongji University, Shanghai, China.,Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Shengyu Wu
- Tongji University, Shanghai, China.,Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Zixuan Zheng
- Tongji University, Shanghai, China.,Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Yayi He
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
15
|
Choi YJ, Lee H, Kim DS, Kim DH, Kang MH, Cho YH, Choi CM, Yoo J, Lee KO, Choi EK, Lee JC, Rho JK. Discovery of a novel CDK7 inhibitor YPN-005 in small cell lung cancer. Eur J Pharmacol 2021; 907:174298. [PMID: 34224696 DOI: 10.1016/j.ejphar.2021.174298] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/22/2021] [Accepted: 06/29/2021] [Indexed: 02/05/2023]
Abstract
In contrast to non-small cell lung cancer, there has been no significant progress in the development of therapies for the small cell lung cancer (SCLC) in recent decades. Although various targeted agents, including immunotherapies, have recently been developed for testing in clinical trials, novel therapeutic agents are still needed for SCLC. We developed a potent inhibitor of cyclin-dependent kinase 7 (CDK7), designated YPN-005, and sought to determine whether it showed any anticancer effects in SCLC cells, cisplatin or etoposide-resistant cells, or organoids derived from SCLC patients. In a panel of kinases assay, YPN-005 was highly selective for CDK7 and showed antiproliferative effects in SCLC and cells with acquired resistance to conventional anticancer drugs. Similar to other CDK7 inhibitors, YPN-005 treatment significantly decreased the phosphorylation of the carboxyl-terminal domain of RNA polymerase II. Consistent with the in vitro results, YPN-005 treatment showed a significant inhibition of tumor growth through the suppression of RNA polymerase II phosphorylation. Finally, YPN-005 showed potent anticancer effects in organoids derived from SCLC patients compared to another CDK7 inhibitor, THZ1. Therapeutic targeting of CDK7 in SCLC might be suitable for clinical investigation, and YPN-005 may be a promising therapeutic option for primary SCLC and SCLC with acquired resistance to conventional therapy.
Collapse
Affiliation(s)
- Yun Jung Choi
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan, College of Medicine, Seoul 05505, South Korea
| | - Hyeonjeong Lee
- Department of Biomedical Sciences, Asan Medical Center, AMIST, University of Ulsan, College of Medicine, Seoul 05505, South Korea
| | - Da-Som Kim
- Department of Biomedical Sciences, Asan Medical Center, AMIST, University of Ulsan, College of Medicine, Seoul 05505, South Korea
| | - Dong Ha Kim
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan, College of Medicine, Seoul 05505, South Korea
| | - Myoung-Hee Kang
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan, College of Medicine, Seoul 05505, South Korea
| | - Yong-Hee Cho
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan, College of Medicine, Seoul 05505, South Korea
| | - Chang-Min Choi
- Department of Pulmonology and Critical Care Medicine, Asan Medical Center, University of Ulsan, College of Medicine, Seoul 05505, South Korea; Department of Oncology, Asan Medical Center, University of Ulsan, College of Medicine, Seoul 05505, South Korea
| | - Jakyung Yoo
- R&D Institute, Yungjin Pharmaceutical Co., Ltd, 109, Suwon 16229, South Korea
| | - Kwang-Ok Lee
- R&D Institute, Yungjin Pharmaceutical Co., Ltd, 109, Suwon 16229, South Korea
| | - Eun Kyung Choi
- Department of Radiation Oncology, Asan Medical Center, University of Ulsan, College of Medicine, Seoul 05505, South Korea
| | - Jae Cheol Lee
- Department of Oncology, Asan Medical Center, University of Ulsan, College of Medicine, Seoul 05505, South Korea.
| | - Jin Kyung Rho
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan, College of Medicine, Seoul 05505, South Korea.
| |
Collapse
|
16
|
Liguori NR, Lee Y, Borges W, Zhou L, Azzoli C, El-Deiry WS. Absence of Biomarker-Driven Treatment Options in Small Cell Lung Cancer, and Selected Preclinical Candidates for Next Generation Combination Therapies. Front Pharmacol 2021; 12:747180. [PMID: 34531756 PMCID: PMC8438120 DOI: 10.3389/fphar.2021.747180] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 08/09/2021] [Indexed: 12/27/2022] Open
Abstract
Lung cancer is the second most common cancer in the United States, and small cell lung cancer (SCLC) accounts for about 15% of all lung cancers. In SCLC, more than other malignancies, the standard of care is based on clinical demonstration of efficacy, and less on a mechanistic understanding of why certain treatments work better than others. This is in large part due to the virulence of the disease, and lack of clinically or biologically relevant biomarkers beyond routine histopathology. While first line therapies work in the majority of patients with extensive stage disease, development of resistance is nearly universal. Although neuroendocrine features, Rb and p53 mutations are common, the current lack of actionable biomarkers has made it difficult to develop more effective treatments. Some progress has been made with the application of immune checkpoint inhibitors. There are new agents, such as lurbinectedin, that have completed late-phase clinical testing while other agents are still in the pre-clinical phase. ONC201/TIC10 is an imipridone with strong in vivo and in vitro antitumor properties and activity against neuroendocrine tumors in phase 1 clinical testing. ONC201 activates the cellular integrated stress response and induces the TRAIL pro-apoptotic pathway. Combination treatment of lurbinectedin with ONC201 are currently being investigated in preclinical studies that may facilitate translation into clinical trials for SCLC patients.
Collapse
Affiliation(s)
- Nicholas R. Liguori
- Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI, United States
| | - Young Lee
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI, United States
| | - William Borges
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI, United States
| | - Lanlan Zhou
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, RI, United States
- Cancer Center at Brown University, Thoracic Oncology, Providence, RI, United States
| | - Christopher Azzoli
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, RI, United States
- Cancer Center at Brown University, Thoracic Oncology, Providence, RI, United States
- Hematology/Oncology Division, Department of Medicine, Lifespan Health System and Brown University, Providence, RI, United States
| | - Wafik S. El-Deiry
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, RI, United States
- Cancer Center at Brown University, Thoracic Oncology, Providence, RI, United States
- Hematology/Oncology Division, Department of Medicine, Lifespan Health System and Brown University, Providence, RI, United States
| |
Collapse
|
17
|
PNO1 regulates autophagy and apoptosis of hepatocellular carcinoma via the MAPK signaling pathway. Cell Death Dis 2021; 12:552. [PMID: 34050137 PMCID: PMC8163843 DOI: 10.1038/s41419-021-03837-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/13/2021] [Accepted: 05/13/2021] [Indexed: 12/13/2022]
Abstract
Some studies have reported that activated ribosomes are positively associated with malignant tumors, especially in hepatocellular carcinoma (HCC). The RNA-binding protein PNO1 is a critical ribosome rarely reported in human tumors. This study aimed to explore the molecular mechanisms of PNO1 in HCC. Using 150 formalin-fixed and paraffin-embedded samples and 8 fresh samples, we found high PNO1 expression in HCC tumor tissues through Western blotting and RT-PCR. Moreover, the higher PNO1 expression was associated with poor HCC prognosis patients. In vitro and in vivo experiments indicated that PNO1 overexpression promoted the proliferation and depressed the apoptosis of HCC cells. High PNO1 expression also increased the autophagy of HCC cells. The molecular mechanisms underlying PNO1 were examined by RNA-seq analysis and a series of functional experiments. Results showed that PNO1 promoted HCC progression through the MAPK signaling pathway. Therefore, PNO1 was overexpressed in HCC, promoted autophagy, and inhibited the apoptosis of HCC cells through the MAPK signaling pathway.
Collapse
|
18
|
Chen P, Guo H, Liu Y, Chen B, Zhao S, Wu S, Li W, Wang L, Jia K, Wang H, Jiang M, Tang X, Qi H, Dai C, Ye J, He Y. Aberrant methylation modifications reflect specific drug responses in small cell lung cancer. Genomics 2021; 113:1114-1126. [PMID: 33705885 DOI: 10.1016/j.ygeno.2020.12.045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/10/2020] [Accepted: 12/15/2020] [Indexed: 12/14/2022]
Abstract
In the study, Methylated DNA immunoprecipitation sequencing, RNA sequencing, and whole-exome sequencing were employed to clinical small cell lung cancer (SCLC) patients. Then, we verified the therapeutic predictive effects of differentially methylated genes (DMGs) in 62 SCLC cell lines. Of 4552 DMGs between chemo-sensitive and chemo-insensitive group, coding genes constituted the largest percentage (85.08%), followed by lncRNAs (10.52%) and miRNAs (3.56%). Both two groups demonstrated two methylation peaks near transcription start site and transcription end site. Two lncRNA-miRNA-mRNA networks suggested the extensive genome connection between chemotherapy efficacy-related non-coding RNAs (ncRNAs) and mRNAs. Combing miRNAs and lncRNAs could effectively predict chemotherapy response in SCLC. In addition, we also verified the predictive values of mutated genes in SCLC cell lines. This study was the first to evaluate multiple drugs efficacy-related ncRNAs and mRNAs which were modified by methylation in SCLC. DMGs identified in our research might serve as promising therapeutic targets to reverse drugs-insensitivity by complex lncRNA-miRNA-mRNA mechanisms in SCLC.
Collapse
Affiliation(s)
- Peixin Chen
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, No 507 Zhengmin Road, Shanghai 200433, China; Medical School, Tongji University, No 1239 Siping Road, Shanghai 200433, China
| | - Haoyue Guo
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, No 507 Zhengmin Road, Shanghai 200433, China; Medical School, Tongji University, No 1239 Siping Road, Shanghai 200433, China
| | - Yu Liu
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, No 507 Zhengmin Road, Shanghai 200433, China; Medical School, Tongji University, No 1239 Siping Road, Shanghai 200433, China
| | - Bin Chen
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, No 507 Zhengmin Road, Shanghai 200433, China
| | - Sha Zhao
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, No 507 Zhengmin Road, Shanghai 200433, China
| | - Shengyu Wu
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, No 507 Zhengmin Road, Shanghai 200433, China; Medical School, Tongji University, No 1239 Siping Road, Shanghai 200433, China
| | - Wei Li
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, No 507 Zhengmin Road, Shanghai 200433, China
| | - Lei Wang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, No 507 Zhengmin Road, Shanghai 200433, China
| | - Keyi Jia
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, No 507 Zhengmin Road, Shanghai 200433, China; Medical School, Tongji University, No 1239 Siping Road, Shanghai 200433, China
| | - Hao Wang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, No 507 Zhengmin Road, Shanghai 200433, China; Medical School, Tongji University, No 1239 Siping Road, Shanghai 200433, China
| | - Minlin Jiang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, No 507 Zhengmin Road, Shanghai 200433, China; Medical School, Tongji University, No 1239 Siping Road, Shanghai 200433, China
| | - Xuzhen Tang
- Oncology and Immunology BU, Research Service Division, WuXi Apptec, Shanghai, China
| | - Hui Qi
- Oncology and Immunology BU, Research Service Division, WuXi Apptec, Shanghai, China
| | - Chunlei Dai
- Oncology and Immunology BU, Research Service Division, WuXi Apptec, Shanghai, China
| | - Junyan Ye
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, No 507 Zhengmin Road, Shanghai 200433, China
| | - Yayi He
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, No 507 Zhengmin Road, Shanghai 200433, China.
| |
Collapse
|
19
|
Chen S, Wu S, Zhang L, Zhang W, Liu Y, Chen B, Zhao S, Li W, Sun C, Wang L, Jia K, Wang H, Chen P, Wu C, Zhu J, He Y, Zhou C. CD39: the potential target in small cell lung cancer. Transl Lung Cancer Res 2020; 9:1483-1495. [PMID: 32953520 PMCID: PMC7481638 DOI: 10.21037/tlcr-20-798] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background It has been proven that the treatment window of small cell lung cancer (SCLC) is short, so it is vital to find other possible therapeutic targets. CD39 inhibits natural killer (NK) cells and promotes the occurrence and metastasis of tumors. There has been little research about the role of CD39 in SCLC, so we explored the correlation between CD39 and other surface antigens, and its association with survival in SCLC. Methods This study included 75 patients with SCLC from Shanghai Pulmonary Hospital. After paraffin embedding and sectioning, immunohistochemistry (IHC) was applied. Then we identify cutoff value for CD39 and other surface antigens based on the analysis of ROC curve in RFS by SPSS. All statistical analyses were based on SPSS and Graphpad Prism8. Chi-square test, Kendall's tau-b correlation analysis, Logistic regression analysis, Kaplan-Meier method, univariate and multivariate Cox regression analysis were conducted. In all analyses, P = 0.05 distinguished whether they had statistical significance. Results Of the 75 SCLC patients enrolled in this study, 61.33% positively expressed CD39. A correlation between CD39 and programmed cell death-ligand 1 (PD-L1) (P=0.007), CD3 (P<0.001), CD4 (P<0.001), CD8 (P<0.001), and forkhead box P3 (FOXP3) (P<0.001) on tumor-infiltrating lymphocytes (TILs) was identified by correlation analysis and logistic regression analysis. Based on Kaplan-Meier survival analysis, we found that CD39 affected relapse-free survival (RFS) [negative vs. positive, 95% confidence interval (CI): 0.2765-0.9862, P=0.0390]. SCLC patients with high-expressed CD39 and low-expressed PD-L1 had poor prognosis (P<0.001). Positive expression of CD39 and negative expression of CD3, CD4, CD8, and FOXP3 also indicated shorter RFS (P=0.0409). Univariate and multivariate Cox regression analysis was performed to confirm the factors that influenced RFS. Conclusions CD39, programmed cell death-1 (PD-1), and PD-L1 expressed on TILs but not on tumor cells. CD39 has a significant association with PD-L1, CD3, CD4, CD8, and FOXP3 on TILs. The positive expression of CD39 predicts poor prognosis. SCLC patients with low expression of CD39 combined with high expression of PD-L1 or CD3, CD4, CD8, and FOXP3 have a more favorable prognosis.
Collapse
Affiliation(s)
- Shanhao Chen
- Medical College of Soochow University, Suzhou, China
| | - Shengyu Wu
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China.,Medical School, Tongji University, Shanghai, China
| | - Liping Zhang
- Pathology Department, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Wei Zhang
- Pathology Department, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Yu Liu
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China.,Medical School, Tongji University, Shanghai, China
| | - Bin Chen
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Sha Zhao
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Wei Li
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Chenglong Sun
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China.,Anhui No.2 Provincial People's Hospital, Hefei, China
| | - Lei Wang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Keyi Jia
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China.,Medical School, Tongji University, Shanghai, China
| | - Hao Wang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China.,Medical School, Tongji University, Shanghai, China
| | - Peixin Chen
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China.,Medical School, Tongji University, Shanghai, China
| | - Chunyan Wu
- Pathology Department, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Junjie Zhu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Shanghai, China
| | - Yayi He
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Caicun Zhou
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|