1
|
Ma Y, Wang Y, He L, Du J, Li L, Bie Z, Li Y, Xu X, Zhou W, Wu X, Yang L, Di J, Li C, Li X, Liu D, Wang Z. Preservation of cfRNA in cytological supernatants for cfDNA & cfRNA double detection in non-small cell lung cancer patients. Cancer Med 2024; 13:e70197. [PMID: 39233657 PMCID: PMC11375324 DOI: 10.1002/cam4.70197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/06/2024] Open
Abstract
BACKGROUD Supernatants from various cytological samples, including body cavity effusion, sputum, bronchoalveolar lavage fluid (BALF), and needle aspiration, have been validated for detecting genetic alterations using cell-free DNA (cfDNA) in patients with non-small cell lung cancer (NSCLC). However, the sensitivity of fusion variations detection remains challenging. The protection of cell-free RNA (cfRNA) is critical for resolving the issue. METHODS A protective solution (PS) was applied for preserving cfRNA in cytological supernatant (CS), and the quality of protected cfRNA was assessed by cycle threshold (CT) values from reverse transcription quantitative polymerase chain reaction (RT-qPCR). Furthermore, we collected an additional set of malignant cytological and matched tumor samples from 84 NSCLC patients, cfDNA & cfRNA extraction and double detection for driver gene mutations was validated using the multi-gene mutations detection by RT-qPCR. RESULTS Under the optimal protection system, 91.0% (101/111) of cfRNA were protected effectively. Among the 84 NSCLC patient samples, seven cytological samples failed the tests. In comparison with tumor samples, the overall sensitivity and specificity of detecting driver genes of supernatant cfDNA and cfRNA were 93.8% (74/77) and 100% (77/77), respectively. Notably, when focusing exclusively on patients with fusion gene changes, both sensitivity and specificity reached 100% (11/11) for EML4-ALK, ROS1, RET fusions, and MET ex14 skipping. CONCLUSION These findings suggest that cfDNA & cfRNA extraction and double detection strategy recommended in this study improve the accuracy of driver genes mutations test, especially for RNA-based assay.
Collapse
Affiliation(s)
- Yidan Ma
- Department of Pathology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Yifei Wang
- Department of Pathology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Lei He
- Department of Pathology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Jun Du
- Department of Pathology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Lin Li
- Department of Oncology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Zhixin Bie
- Department of Minimally Invasive Tumor Therapies Center, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Yuanming Li
- Department of Minimally Invasive Tumor Therapies Center, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Xiaomao Xu
- Department of Respiratory and Critical Care Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Wei Zhou
- Department of Respiratory and Critical Care Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Xiaonan Wu
- Department of Oncology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Li Yang
- Department of Pathology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Jing Di
- Department of Pathology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Chenyang Li
- Department of Pathology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Xiaoguang Li
- Department of Minimally Invasive Tumor Therapies Center, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Dongge Liu
- Department of Pathology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Zheng Wang
- Department of Pathology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| |
Collapse
|
2
|
Li H, Xu L, Cao H, Wang T, Yang S, Tong Y, Wang L, Liu Q. Analysis on the pathogenesis and treatment progress of NRG1 fusion-positive non-small cell lung cancer. Front Oncol 2024; 14:1405380. [PMID: 38957319 PMCID: PMC11217482 DOI: 10.3389/fonc.2024.1405380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/06/2024] [Indexed: 07/04/2024] Open
Abstract
Lung cancer persistently leads as the primary cause of morbidity and mortality among malignancies. A notable increase in the prevalence of lung adenocarcinoma has become evident in recent years. Although targeted therapies have shown in treating certain subsets of non-small cell lung cancers (NSCLC), a significant proportion of patients still face suboptimal therapeutic outcomes. Neuregulin-1 (NRG1), a critical member of the NRG gene family, initially drew interest due to its distribution within the nascent ventricular endocardium, showcasing an exclusive presence in the endocardium and myocardial microvessels. Recent research has highlighted NRG1's pivotal role in the genesis and progression across a spectrum of tumors, influencing molecular perturbations across various tumor-associated signaling pathways. This review provides a concise overview of NRG1, including its expression patterns, configuration, and fusion partners. Additionally, we explore the unique features and potential therapeutic strategies for NRG1 fusion-positive occurrences within the context of NSCLC.
Collapse
Affiliation(s)
- Hongyan Li
- Oncology Department of Integrated Traditional Chinese and Western Medicine, Shenyang Chest Hospital & Tenth People’s Hospital, Shenyang, Liaoning, China
| | - Lina Xu
- Oncology Department of Integrated Traditional Chinese and Western Medicine, Shenyang Chest Hospital & Tenth People’s Hospital, Shenyang, Liaoning, China
| | - Hongshun Cao
- Oncology Department of Integrated Traditional Chinese and Western Medicine, Shenyang Chest Hospital & Tenth People’s Hospital, Shenyang, Liaoning, China
| | - Tianyi Wang
- Oncology Department of Integrated Traditional Chinese and Western Medicine, Shenyang Chest Hospital & Tenth People’s Hospital, Shenyang, Liaoning, China
| | - Siwen Yang
- Oncology Department of Integrated Traditional Chinese and Western Medicine, Shenyang Chest Hospital & Tenth People’s Hospital, Shenyang, Liaoning, China
| | - Yixin Tong
- Oncology Department of Integrated Traditional Chinese and Western Medicine, Shenyang Chest Hospital & Tenth People’s Hospital, Shenyang, Liaoning, China
| | - Linlin Wang
- Department of Thoracic Surgery, Shenyang Chest Hospital & Tenth People’s Hospital, Shenyang, Liaoning, China
| | - Qiang Liu
- Oncology Department of Integrated Traditional Chinese and Western Medicine, Shenyang Chest Hospital & Tenth People’s Hospital, Shenyang, Liaoning, China
| |
Collapse
|
3
|
Lee B, Chern A, Fu AY, Zhang A, Sha MY. A Highly Sensitive XNA-Based RT-qPCR Assay for the Identification of ALK, RET, and ROS1 Fusions in Lung Cancer. Diagnostics (Basel) 2024; 14:488. [PMID: 38472960 DOI: 10.3390/diagnostics14050488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Lung cancer is often triggered by genetic alterations that result in the expression of oncogenic tyrosine kinases. Specifically, ALK, RET, and ROS1 chimeric receptor tyrosine kinases are observed in approximately 5-7%, 1-2%, and 1-2% of NSCLC patients, respectively. The presence of these fusion genes determines the response to tyrosine kinase inhibitors. Thus, accurate detection of these gene fusions is essential in cancer research and precision oncology. To address this need, we have developed a multiplexed RT-qPCR assay using xeno nucleic acid (XNA) molecular clamping technology to detect lung cancer fusions. This assay can quantitatively detect thirteen ALK, seven ROS1, and seven RET gene fusions in FFPE samples. The sensitivity of the assay was established at a limit of detection of 50 copies of the synthetic template. Our assay has successfully identified all fusion transcripts using 50 ng of RNA from both reference FFPE samples and cell lines. After validation, a total of 77 lung cancer patient FFPE samples were tested, demonstrating the effectiveness of the XNA-based fusion gene assay with clinical samples. Importantly, this assay is adaptable to highly degraded RNA samples with low input amounts. Future steps involve expanding the testing to include a broader range of clinical samples as well as cell-free RNAs to further validate its applicability and reliability.
Collapse
Affiliation(s)
- Bongyong Lee
- DiaCarta Inc., 4385 Hopyard Rd., Suite 100, Pleasanton, CA 94588, USA
| | - Andrew Chern
- DiaCarta Inc., 4385 Hopyard Rd., Suite 100, Pleasanton, CA 94588, USA
| | - Andrew Y Fu
- DiaCarta Inc., 4385 Hopyard Rd., Suite 100, Pleasanton, CA 94588, USA
| | - Aiguo Zhang
- DiaCarta Inc., 4385 Hopyard Rd., Suite 100, Pleasanton, CA 94588, USA
| | - Michael Y Sha
- DiaCarta Inc., 4385 Hopyard Rd., Suite 100, Pleasanton, CA 94588, USA
| |
Collapse
|
4
|
Marghescu AȘ, Leonte DG, Radu AD, Măgheran ED, Tudor AV, Teleagă C, Țigău M, Georgescu L, Costache M. Atypical Histopathological Aspects of Common Types of Lung Cancer-Our Experience and Literature Review. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:112. [PMID: 38256374 PMCID: PMC10818882 DOI: 10.3390/medicina60010112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/01/2024] [Accepted: 01/04/2024] [Indexed: 01/24/2024]
Abstract
Lung cancer is among the most common oncological diseases regarding incidence and mortality, with most of these having epithelial origins. Pathological reporting of these tumors is conducted according to the 5th edition of the World Health Organisation (WHO) classification of thoracic tumours. This study aims to draw the pathologist's attention to four rare, atypical microscopic aspects that some of the most common types of lung malignancies reveal upon standard evaluation (hematoxylin-eosin stain) that make histopathological diagnosis challenging: acantholytic, pseudoangiosarcomatous, signet ring cell, and clear cell features. Each of these aspects was exemplified by a case diagnosed in the pathology department of the "Marius Nasta" Institute. Furthermore, we analyzed the classification dynamics of different WHO editions and used PubMed to review articles written in English and published in the last eleven years on this subject. Pathologists should be familiar with these unusual aspects to avoid misdiagnoses and to ensure the correct classification of tumors, which is extremely important because these tumor phenotypes have been associated with specific molecular alterations and a worse clinical evolution. There is a need to clarify the histogenesis and associated genetic mutations, given the fact that the rarity of these tumor phenotypes makes their study difficult. Some authors consider these to be overlapping entities; however, we do not encourage this, as they may exhibit different prognoses and various molecular alterations with important therapeutic implications. The signet ring cell feature was associated with ALK rearrangement in lung adenocarcinoma; thus, these patients can benefit from tailored therapy with ALK-tyrosine kinase inhibitors (ALK-TKI). Recent studies associated clear cell morphology with FGFR3-TACC3 fusion, suggesting that patients with this diagnosis may be potentially eligible for FGFR inhibitors. We described, for the first time, the pseudoangiosarcomatous pattern in a case of lung adenocarcinoma; to our knowledge this aspect has only been described until now in the context of squamous cell carcinomas.
Collapse
Affiliation(s)
- Angela-Ștefania Marghescu
- Research Department, “Marius Nasta” Institute of Pneumophthisiology, 050159 Bucharest, Romania; (A.D.R.); (C.T.); (M.Ț.); (L.G.)
- Pathology Department, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| | - Diana Gabriela Leonte
- Pathology Department, “Marius Nasta” Institute of Pneumophthisiology, 050159 Bucharest, Romania; (D.G.L.); (E.D.M.); (A.V.T.)
| | - Alexandru Daniel Radu
- Research Department, “Marius Nasta” Institute of Pneumophthisiology, 050159 Bucharest, Romania; (A.D.R.); (C.T.); (M.Ț.); (L.G.)
| | - Elena Doina Măgheran
- Pathology Department, “Marius Nasta” Institute of Pneumophthisiology, 050159 Bucharest, Romania; (D.G.L.); (E.D.M.); (A.V.T.)
| | - Adrian Vasilică Tudor
- Pathology Department, “Marius Nasta” Institute of Pneumophthisiology, 050159 Bucharest, Romania; (D.G.L.); (E.D.M.); (A.V.T.)
| | - Cristina Teleagă
- Research Department, “Marius Nasta” Institute of Pneumophthisiology, 050159 Bucharest, Romania; (A.D.R.); (C.T.); (M.Ț.); (L.G.)
| | - Mirela Țigău
- Research Department, “Marius Nasta” Institute of Pneumophthisiology, 050159 Bucharest, Romania; (A.D.R.); (C.T.); (M.Ț.); (L.G.)
| | - Livia Georgescu
- Research Department, “Marius Nasta” Institute of Pneumophthisiology, 050159 Bucharest, Romania; (A.D.R.); (C.T.); (M.Ț.); (L.G.)
| | - Mariana Costache
- Pathology Department, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
- Pathology Department, University Emergency Hospital, 050098 Bucharest, Romania
| |
Collapse
|
5
|
Luna HGC, Imasa MS, Juat N, Hernandez KV, Sayo TM, Cristal-Luna G, Asur-Galang SM, Bellengan M, Duga KJ, Buenaobra BB, De los Santos MI, Medina D, Samo J, Literal VM, Bascos NA, Sy-Naval S. The differential prognostic implications of PD-L1 expression in the outcomes of Filipinos with EGFR-mutant NSCLC treated with tyrosine kinase inhibitors. Transl Lung Cancer Res 2023; 12:1896-1911. [PMID: 37854154 PMCID: PMC10579834 DOI: 10.21037/tlcr-23-118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 07/20/2023] [Indexed: 10/20/2023]
Abstract
Background The tumor immune microenvironment influences tumor evolution in non-small cell lung cancer (NSCLC). Yet, the prognostic value of programmed death-ligand 1 (PD-L1) in epidermal growth factor receptor (EGFR)-mutant NSCLC remains controversial. Additionally, prognostic studies in Filipinos with EGFR-mutant NSCLC remain unexplored to this day. Methods We prospectively studied the outcomes of EGFR-mutant NSCLC in Filipino cohort, and retrospectively verified the survival trend using The Cancer Genome Atlas (TCGA) cohort. Kaplan-Meier method and generalized linear regression were used to assess survival. Expression and DNA methylation of cluster of differentiation 274 (CD274, gene that codes for PD-L1) were examined from TCGA tumor profiles. Pearson's correlation was used to correlate PD-L1 expression with outcomes associated with occurrence of EGFR mutations, tyrosine kinase inhibitor (TKI) types, and programmed cell death protein 1 (PD-1) expression. Proteome network analysis was used to examine the correlation between drug resistance and PD-L1. Results PD-L1 positivity was associated with significantly longer progression-free survival (PFS; P=0.0096) but had a significantly contrasting influence in the overall survival (OS; P=0.0011). PD-L1 positivity (in both protein and RNA) was associated with longer median OS (mOS) in exon21 L858R, whereas, negativity was associated with longer mOS in exon19 deletion (exon19del). Stratification (high, low, negative) of PD-L1 expression lacked significant prognostic value (all P>0.05). PD-L1/CD274 expression (P<0.05) and DNA methylation (P<0.001) vary significantly among NSCLC subtypes and in different disease stages. Erlotinib treatment produced the longest median progression-free survival (mPFS; 874 days) relative to other EGFR-TKIs (137-311 days). PD-L1 lacked a significant correlation with EGFR-TKIs. Consistent with the immune-regulation activities of PD-1, higher expression leads to relatively shorter mOS. PD-1 correlated positively with PD-L1 expression and occurrence of exon21 L858R. Conclusions PD-L1 differentially influenced the outcomes of Filipinos with EGFR-mutant NSCLC. NSCLC subtypes, disease stage, and PD-1 expression may impact the collective outcomes associated with PD-L1 and EGFR-sensitizing mutations.
Collapse
Affiliation(s)
- Herdee Gloriane C. Luna
- Lung Center of the Philippines, Quezon City, Philippines
- National Kidney and Transplant Institute, Quezon City, Philippines
| | | | - Necy Juat
- National Kidney and Transplant Institute, Quezon City, Philippines
| | | | - Treah May Sayo
- Lung Center of the Philippines, Quezon City, Philippines
| | | | - Sheena Marie Asur-Galang
- Clinical Proteomics for Cancer Initiative, Department of Science and Technology-Philippine Council for Health Research and Development, Taguig City, Philippines
| | - Mirasol Bellengan
- Clinical Proteomics for Cancer Initiative, Department of Science and Technology-Philippine Council for Health Research and Development, Taguig City, Philippines
| | - Kent John Duga
- Clinical Proteomics for Cancer Initiative, Department of Science and Technology-Philippine Council for Health Research and Development, Taguig City, Philippines
| | - Bien Brian Buenaobra
- Clinical Proteomics for Cancer Initiative, Department of Science and Technology-Philippine Council for Health Research and Development, Taguig City, Philippines
| | - Marvin I. De los Santos
- Clinical Proteomics for Cancer Initiative, Department of Science and Technology-Philippine Council for Health Research and Development, Taguig City, Philippines
| | - Daniel Medina
- Clinical Proteomics for Cancer Initiative, Department of Science and Technology-Philippine Council for Health Research and Development, Taguig City, Philippines
| | - Jamirah Samo
- Clinical Proteomics for Cancer Initiative, Department of Science and Technology-Philippine Council for Health Research and Development, Taguig City, Philippines
| | - Venus Minerva Literal
- Clinical Proteomics for Cancer Initiative, Department of Science and Technology-Philippine Council for Health Research and Development, Taguig City, Philippines
| | - Neil Andrew Bascos
- National Institute of Molecular Biology and Biotechnology, University of the Philippines Diliman, Quezon City, Philippines
- Protein, Proteomics and Metabolomics Facility, Philippine Genome Center, University of the Philippines System, Quezon City, Philippines
| | | |
Collapse
|
6
|
Giménez‐Capitán A, Sánchez‐Herrero E, Robado de Lope L, Aguilar‐Hernández A, Sullivan I, Calvo V, Moya‐Horno I, Viteri S, Cabrera C, Aguado C, Armiger N, Valarezo J, Mayo‐de‐las‐Casas C, Reguart N, Rosell R, Provencio M, Romero A, Molina‐Vila MA. Detecting ALK, ROS1, and RET fusions and the METΔex14 splicing variant in liquid biopsies of non-small-cell lung cancer patients using RNA-based techniques. Mol Oncol 2023; 17:1884-1897. [PMID: 37243883 PMCID: PMC10483610 DOI: 10.1002/1878-0261.13468] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 04/28/2023] [Accepted: 05/26/2023] [Indexed: 05/29/2023] Open
Abstract
ALK, ROS1, and RET fusions and MET∆ex14 variant associate with response to targeted therapies in non-small-cell lung cancer (NSCLC). Technologies for fusion testing in tissue must be adapted to liquid biopsies, which are often the only material available. In this study, circulating-free RNA (cfRNA) and extracellular vesicle RNA (EV-RNA) were purified from liquid biopsies. Fusion and MET∆ex14 transcripts were analyzed by nCounter (Nanostring) and digital PCR (dPCR) using the QuantStudio® System (Applied Biosystems). We found that nCounter detected ALK, ROS1, RET, or MET∆ex14 aberrant transcripts in 28/40 cfRNA samples from positive patients and 0/16 of control individuals (70% sensitivity). Regarding dPCR, aberrant transcripts were detected in the cfRNA of 25/40 positive patients. Concordance between the two techniques was 58%. Inferior results were obtained when analyzing EV-RNA, where nCounter often failed due to a low amount of input RNA. Finally, results of dPCR testing in serial liquid biopsies of five patients correlated with response to targeted therapy. We conclude that nCounter can be used for multiplex detection of fusion and MET∆ex14 transcripts in liquid biopsies, showing a performance comparable with next-generation sequencing platforms. dPCR could be employed for disease follow-up in patients with a known alteration. cfRNA should be preferred over EV-RNA for these analyses.
Collapse
Affiliation(s)
- Ana Giménez‐Capitán
- Pangaea Oncology, Laboratory of OncologyDexeus University HospitalBarcelonaSpain
| | - Estela Sánchez‐Herrero
- Atrys HealthBarcelonaSpain
- Liquid Biopsy LaboratoryBiomedical Sciences Research Institute Puerta de Hierro‐MajadahondaMadridSpain
| | - Lucía Robado de Lope
- Liquid Biopsy LaboratoryBiomedical Sciences Research Institute Puerta de Hierro‐MajadahondaMadridSpain
| | | | - Ivana Sullivan
- Dr Rosell Oncology InstituteQuirón Dexeus University HospitalBarcelonaSpain
- Hospital de la Santa Creu i Sant PauBarcelonaSpain
| | - Virginia Calvo
- Medical Oncology DepartmentHospital Universitario Puerta de Hierro‐MajadahondaSpain
| | - Irene Moya‐Horno
- Hospital Universitario General de Cataluña Grupo QuirónSant Cugat del VallésSpain
| | | | | | - Cristina Aguado
- Pangaea Oncology, Laboratory of OncologyDexeus University HospitalBarcelonaSpain
| | - Noelia Armiger
- Pangaea Oncology, Laboratory of OncologyDexeus University HospitalBarcelonaSpain
| | - Joselyn Valarezo
- Pangaea Oncology, Laboratory of OncologyDexeus University HospitalBarcelonaSpain
| | | | | | - Rafael Rosell
- Dr Rosell Oncology InstituteQuirón Dexeus University HospitalBarcelonaSpain
- Hospital Germans Trias i PujolHealth Sciences Institute and Hospital (IGTP)BarcelonaSpain
| | - Mariano Provencio
- Medical Oncology DepartmentHospital Universitario Puerta de Hierro‐MajadahondaSpain
| | - Atocha Romero
- Liquid Biopsy LaboratoryBiomedical Sciences Research Institute Puerta de Hierro‐MajadahondaMadridSpain
- Medical Oncology DepartmentHospital Universitario Puerta de Hierro‐MajadahondaSpain
| | | |
Collapse
|
7
|
Yang Y, Zheng Q, Wang X, Zhao S, Huang W, Jia L, Ma C, Liu S, Zhang Y, Xin Q, Sun Y, Zheng S. Iruplinalkib (WX‑0593), a novel ALK/ROS1 inhibitor, overcomes crizotinib resistance in preclinical models for non-small cell lung cancer. Invest New Drugs 2023; 41:254-266. [PMID: 37036582 PMCID: PMC10140010 DOI: 10.1007/s10637-023-01350-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 03/16/2023] [Indexed: 04/11/2023]
Abstract
Despite remarkable initial responses of anaplastic lymphoma kinase (ALK) inhibitors in ALK-positive non-small cell lung cancer (NSCLC) patients, cancers eventually develop resistance within one to two years. This study aimed to compare the properties of iruplinalkib (WX‑0593) with other ALK inhibitors and report the comprehensive characterization of iruplinalkib against the crizotinib resistance. The inhibitory effect of iruplinalkib on kinase activity was detected. A kinase screen was performed to evaluate the selectivity of iruplinalkib. The effect of iruplinalkib on related signal transduction pathways of ALK and c-ros oncogene 1 (ROS1) kinases was examined. The cellular and in vivo activities of ALK inhibitors were compared in engineered cancer-derived cell lines and in mice xenograft models, respectively. Human hepatocytes derived from three donors were used for evaluating hepatic enzyme inducing activity. HEK293 cell lines expressing transportors were used to invesigated the drug interaction potential mediated by several transporters. The results showed iruplinalkib potently inhibited the tyrosine autophosphorylation of wild-type ALK, ALKL1196M, ALKC1156Y and epidermal growth factor receptor (EGFR)L858R/T790M. The inhibitory effects of iruplinalkib in patient-derived xenograft and cell line-derived xenograft models were observed. Moreover, iruplinalkib showed robust antitumor effects in BALB/c nude mice xenograft models with ALK-/ROS1-positive tumors implanted subcutaneously, and the tumor suppressive effects in crizotinib-resistant model was significantly better than that of brigatinib. Iruplinalkib did not induce CYP1A2, CYP2B6 and CYP3A4 at therapeutic concentration, and was also a strong inhibitor of MATE1 and MATE2K transporters, as well as P-gp and BCRP. In conclusion, iruplinalkib, a highly active and selective ALK/ROS1 inhibitor, exhibited strong antitumor effects in vitro and in crizotinib-resistant models.
Collapse
Affiliation(s)
- Yingying Yang
- Department of Nonclinical Development, Qilu Pharmaceutical Co., Ltd., Jinan, 250104, China
| | - Qingmei Zheng
- Department of Nonclinical Development, Qilu Pharmaceutical Co., Ltd., Jinan, 250104, China
| | - Xinmei Wang
- Department of Nonclinical Development, Qilu Pharmaceutical Co., Ltd., Jinan, 250104, China
| | - Shuyong Zhao
- Department of Nonclinical Development, Qilu Pharmaceutical Co., Ltd., Jinan, 250104, China
| | - Wenshu Huang
- Department of Nonclinical Development, Qilu Pharmaceutical Co., Ltd., Jinan, 250104, China
| | - Linchao Jia
- Department of Nonclinical Development, Qilu Pharmaceutical Co., Ltd., Jinan, 250104, China
| | - Cuicui Ma
- Department of Nonclinical Development, Qilu Pharmaceutical Co., Ltd., Jinan, 250104, China
| | - Shicong Liu
- Department of Nonclinical Development, Qilu Pharmaceutical Co., Ltd., Jinan, 250104, China
| | - Yongpeng Zhang
- Department of Nonclinical Development, Qilu Pharmaceutical Co., Ltd., Jinan, 250104, China
| | - Qianqian Xin
- Department of Nonclinical Development, Qilu Pharmaceutical Co., Ltd., Jinan, 250104, China
| | - Yan Sun
- Department of Clinical Development, Qilu Pharmaceutical Co., Ltd., Jinan, 250104, China
| | - Shansong Zheng
- Department of Clinical Pharmacology, Qilu Pharmaceutical Co., Ltd., 8888 Lvyou Road, High-tech Zone, Jinan, 250104, China.
| |
Collapse
|
8
|
Malhotra R, Javle V, Tanwar N, Gowda P, Varghese L, K A, Madhusudhan N, Jaiswal N, K. S. B, Chatterjee M, Prabhash K, Sreekanthreddy P, Rishi KD, Goswami HM, Veldore VH. An absolute approach to using whole exome DNA and RNA workflow for cancer biomarker testing. Front Oncol 2023; 13:1002792. [PMID: 36994199 PMCID: PMC10040847 DOI: 10.3389/fonc.2023.1002792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 01/24/2023] [Indexed: 03/16/2023] Open
Abstract
IntroductionThe concept of personalized medicine in cancer has emerged rapidly with the advancement of genome sequencing and the identification of clinically relevant variants that contribute to disease prognosis and facilitates targeted therapy options. In this study, we propose to validate a whole exome-based tumor molecular profiling for DNA and RNA from formalin-fixed paraffin-embedded (FFPE) tumor tissue.MethodsThe study included 166 patients across 17 different cancer types. The scope of this study includes the identification of single-nucleotide variants (SNVs), insertions/deletions (INDELS), copy number alterations (CNAs), gene fusions, tumor mutational burden (TMB), and microsatellite instability (MSI). The assay yielded a mean read depth of 200×, with >80% of on-target reads and a mean uniformity of >90%. Clinical maturation of whole exome sequencing (WES) (DNA and RNA)- based assay was achieved by analytical and clinical validations for all the types of genomic alterations in multiple cancers. We here demonstrate a limit of detection (LOD) of 5% for SNVs and 10% for INDELS with 97.5% specificity, 100% sensitivity, and 100% reproducibility.ResultsThe results were >98% concordant with other orthogonal techniques and appeared to be more robust and comprehensive in detecting all the clinically relevant alterations. Our study demonstrates the clinical utility of the exome-based approach of comprehensive genomic profiling (CGP) for cancer patients at diagnosis and disease progression.DiscussionThe assay provides a consolidated picture of tumor heterogeneity and prognostic and predictive biomarkers, thus helping in precision oncology practice. The primary intended use of WES (DNA+RNA) assay would be for patients with rare cancers as well as for patients with unknown primary tumors, and this category constitutes nearly 20–30% of all cancers. The WES approach may also help us understand the clonal evolution during disease progression to precisely plan the treatment in advanced stage disease.
Collapse
Affiliation(s)
| | - Vyomesh Javle
- 4baseCare Onco Solutions Pvt. Ltd., Bangalore, India
| | | | - Pooja Gowda
- 4baseCare Onco Solutions Pvt. Ltd., Bangalore, India
| | - Linu Varghese
- 4baseCare Onco Solutions Pvt. Ltd., Bangalore, India
| | - Anju K
- 4baseCare Onco Solutions Pvt. Ltd., Bangalore, India
| | | | - Nupur Jaiswal
- 4baseCare Onco Solutions Pvt. Ltd., Bangalore, India
| | | | | | - Kumar Prabhash
- Department of Medical Oncology, Tata Memorial Centre, Mumbai, India
| | | | | | | | - Vidya H. Veldore
- 4baseCare Onco Solutions Pvt. Ltd., Bangalore, India
- *Correspondence: Vidya H. Veldore,
| |
Collapse
|
9
|
Consensus Recommendations to Optimize Testing for New Targetable Alterations in Non-Small Cell Lung Cancer. Curr Oncol 2022; 29:4981-4997. [PMID: 35877256 PMCID: PMC9318743 DOI: 10.3390/curroncol29070396] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/06/2022] [Accepted: 07/12/2022] [Indexed: 12/03/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) has historically been associated with a poor prognosis and low 5-year survival, but the use of targeted therapies in NSCLC has improved patient outcomes over the past 10 years. The pace of development of new targeted therapies is accelerating, with the associated need for molecular testing of new targetable alterations. As the complexity of biomarker testing in NSCLC increases, there is a need for guidance on how to manage the fluid standard-of-care in NSCLC, identify pragmatic molecular testing requirements, and optimize result reporting. An expert multidisciplinary working group with representation from medical oncology, pathology, and clinical genetics convened via virtual meetings to create consensus recommendations for testing of new targetable alterations in NSCLC. The importance of accurate and timely testing of all targetable alterations to optimize disease management using targeted therapies was emphasized by the working group. Therefore, the panel of experts recommends that all targetable alterations be tested reflexively at NSCLC diagnosis as part of a comprehensive panel, using methods that can detect all relevant targetable alterations. In addition, comprehensive biomarker testing should be performed at the request of the treating clinician upon development of resistance to targeted therapy. The expert multidisciplinary working group also made recommendations for reporting to improve clarity and ease of interpretation of results by treating clinicians and to accommodate the rapid evolution in clinical actionability of these alterations. Molecular testing of all targetable alterations in NSCLC is the key for treatment decision-making and access to new therapies. These consensus recommendations are intended as a guide to further optimize molecular testing of new targetable alterations.
Collapse
|
10
|
Belluomini L, Avancini A, Pasqualin L, Insolda J, Sposito M, Menis J, Tregnago D, Trestini I, Ferrara MG, Bria E, Milella M, Pilotto S. Selpercatinib in RET-fusion positive metastatic non-small cell lung cancer: achievements and gray areas. Expert Rev Anticancer Ther 2022; 22:785-794. [PMID: 35726802 DOI: 10.1080/14737140.2022.2093190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
INTRODUCTION Selpercatinib is a RET selective tyrosine kinase inhibitor with nanomolar potency against diverse RET alterations, including fusions, activating point mutations, and acquired resistance mutations. Rearranged during transfection (RET) gene is a validated target in non-small-cell lung cancer (NSCLC). Selpercatinib is currently approved for adult patients with metastatic RET fusion-positive NSCLC. AREAS COVERED This review summarizes the efficacy and safety data of selpercatinib in the treatment landscape of RET fusion-positive NSCLC. EXPERT OPINION Globally considered, selpercatinib is an optimal treatment choice, in terms of both (systemic and intracranial) efficacy and safety, in patients affected by advanced NSCLC harboring RET fusions as a driver mechanism. Future challenges include the identification of the most appropriate placement for selpercatinib in the treatment algorithm of RET fusion-positive NSCLC (including early stages), the clarification of resistance mechanisms, as well as of its role in EGFR-mutant NSCLC undergoing progression during osimertinib driven by RET alterations.
Collapse
Affiliation(s)
- Lorenzo Belluomini
- Section of Oncology, Department of Medicine, University of Verona School of Medicine and Verona University Hospital Trust, Verona, Italy
| | - Alice Avancini
- Section of Oncology, Department of Medicine, University of Verona School of Medicine and Verona University Hospital Trust, Verona, Italy.,Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Luca Pasqualin
- Section of Oncology, Department of Medicine, University of Verona School of Medicine and Verona University Hospital Trust, Verona, Italy
| | - Jessica Insolda
- Section of Oncology, Department of Medicine, University of Verona School of Medicine and Verona University Hospital Trust, Verona, Italy
| | - Marco Sposito
- Section of Oncology, Department of Medicine, University of Verona School of Medicine and Verona University Hospital Trust, Verona, Italy
| | - Jessica Menis
- Section of Oncology, Department of Medicine, University of Verona School of Medicine and Verona University Hospital Trust, Verona, Italy
| | - Daniela Tregnago
- Section of Oncology, Department of Medicine, University of Verona School of Medicine and Verona University Hospital Trust, Verona, Italy
| | - Ilaria Trestini
- Section of Oncology, Department of Medicine, University of Verona School of Medicine and Verona University Hospital Trust, Verona, Italy
| | - Miriam Grazia Ferrara
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy.,Medical Oncology, Università Cattolica Del Sacro Cuore, Roma, Italy
| | - Emilio Bria
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy.,Medical Oncology, Università Cattolica Del Sacro Cuore, Roma, Italy
| | - Michele Milella
- Section of Oncology, Department of Medicine, University of Verona School of Medicine and Verona University Hospital Trust, Verona, Italy
| | - Sara Pilotto
- Section of Oncology, Department of Medicine, University of Verona School of Medicine and Verona University Hospital Trust, Verona, Italy
| |
Collapse
|
11
|
Zhao L, Mei Q, Yu Y, Wang N, Zhang D, Liao D, Zuo J, Xie H, Jia Y, Kong F. Research Progress on RET Fusion in Non-Small-Cell Lung Cancer. Front Oncol 2022; 12:894214. [PMID: 35707347 PMCID: PMC9190697 DOI: 10.3389/fonc.2022.894214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/02/2022] [Indexed: 11/24/2022] Open
Abstract
Great progress has been made in the treatment of driver gene-positive Non- Small Cell Lung Cancer (NSCLC) in recent years. RET fusion was seen in 0.7% to 2% of NSCLC and was associated with younger age and never-smoker status. The pralsetinib and selpercatinib for RET fusion NSCLC was recommended by the 2021 NSCLC treatment guidelines. This review outlines the research progress in the treatment of RET fusion NSCLC, identifies current challenges and describes proposals for improving the outlook for these patients.
Collapse
Affiliation(s)
- Lu Zhao
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Qingyun Mei
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yongchao Yu
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Na Wang
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Dou Zhang
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Dongying Liao
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Jinhui Zuo
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Hongxia Xie
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yingjie Jia
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Fanming Kong
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| |
Collapse
|
12
|
Chakravarty D, Johnson A, Sklar J, Lindeman NI, Moore K, Ganesan S, Lovly CM, Perlmutter J, Gray SW, Hwang J, Lieu C, André F, Azad N, Borad M, Tafe L, Messersmith H, Robson M, Meric-Bernstam F. Somatic Genomic Testing in Patients With Metastatic or Advanced Cancer: ASCO Provisional Clinical Opinion. J Clin Oncol 2022; 40:1231-1258. [PMID: 35175857 DOI: 10.1200/jco.21.02767] [Citation(s) in RCA: 108] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
PURPOSE An ASCO provisional clinical opinion offers timely clinical direction to ASCO's membership following publication or presentation of potentially practice-changing data from major studies. This provisional clinical opinion addresses the appropriate use of tumor genomic testing in patients with metastatic or advanced solid tumors. CLINICAL CONTEXT An increasing number of therapies are approved to treat cancers harboring specific genomic biomarkers. However, there is a lack of clarity as to when tumor genomic sequencing should be ordered, what type of assays should be performed, and how to interpret the results for treatment selection. PROVISIONAL CLINICAL OPINION Patients with metastatic or advanced cancer should undergo genomic sequencing in a certified laboratory if the presence of one or more specific genomic alterations has regulatory approval as biomarkers to guide the use of or exclusion from certain treatments for their disease. Multigene panel-based assays should be used if more than one biomarker-linked therapy is approved for the patient's disease. Site-agnostic approvals for any cancer with a high tumor mutation burden, mismatch repair deficiency, or neurotrophic tyrosine receptor kinase (NTRK) fusions provide a rationale for genomic testing for all solid tumors. Multigene testing may also assist in treatment selection by identifying additional targets when there are few or no genotype-based therapy approvals for the patient's disease. For treatment planning, the clinician should consider the functional impact of the targeted alteration and expected efficacy of genomic biomarker-linked options relative to other approved or investigational treatments.Additional information is available at www.asco.org/assays-and-predictive-markers-guidelines.
Collapse
Affiliation(s)
| | | | | | - Neal I Lindeman
- Brigham and Womens' Hospital, Harvard Medical School, Boston, MA
| | | | | | | | | | | | | | | | - Fabrice André
- PRISM, Precision Medicine Center, Institut Gustave Roussy, Villejuif, France
| | | | | | - Laura Tafe
- Dartmouth-Hitchcock Medical Center and The Geisel School of Medicine at Dartmouth, Darmouth, NH
| | | | - Mark Robson
- Memorial Sloan Kettering Cancer Center, New York City, NY
| | | |
Collapse
|
13
|
Liu F, Wei Y, Zhang H, Jiang J, Zhang P, Chu Q. NTRK Fusion in Non-Small Cell Lung Cancer: Diagnosis, Therapy, and TRK Inhibitor Resistance. Front Oncol 2022; 12:864666. [PMID: 35372074 PMCID: PMC8968138 DOI: 10.3389/fonc.2022.864666] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 02/10/2022] [Indexed: 12/25/2022] Open
Abstract
Neurotrophic tropomyosin receptor kinase (NTRK) gene fusion has been identified as an oncogenic driver of various solid tumors, and it is rare in non-smalll cell lung cancer (NSCLC) with a frequency of approximately less than 1%. Next-generation sequencing (NGS) is of priority for detecting NTRK fusions, especially RNA-based NGS. Currently, the tropomyosin receptor kinase (TRK) inhibitors have shown promising efficacy and well tolerance in patients with NTRK fusion-positive solid tumors, regardless of tumor histology. The first-generation TRK inhibitors (larotrectinib and entrectinib) are recommended as the first-line treatment for locally advanced or metastatic NSCLC patients with positive NTRK fusion. However, TRK inhibitor resistance can eventually occur due to on-target or off-target mechanisms. Further studies are under investigation to overcome resistance and improve survival. Interestingly, NTRK fusion might be the mechanism of resistance to epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (TKI) in NSCLC patients with EGFR mutation. Regarding immunotherapy, the efficacy of immune checkpoint inhibitors in NSCLC patients harboring NTRK fusion has yet to be well described. In this review, we elucidate the function of NTRK genes, summarize the diagnostic techniques for NTRK fusions, and present clinical data for TRK inhibitors; we also discuss potential mechanisms of resistance to TRK inhibitors.
Collapse
Affiliation(s)
- Fangfang Liu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuxuan Wei
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huan Zhang
- The Second Clinical College of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jizong Jiang
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Jizong Jiang,
| | - Peng Zhang
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Chu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
14
|
Darabi S, Elliott A, Braxton DR, Zeng J, Hodges K, Poorman K, Swensen J, Shanthappa BU, Hinton JP, Gibney GT, Moser J, Phung T, Atkins MB, In GK, Korn WM, Eisenberg BL, Demeure MJ. Transcriptional Profiling of Malignant Melanoma Reveals Novel and Potentially Targetable Gene Fusions. Cancers (Basel) 2022; 14:cancers14061505. [PMID: 35326655 PMCID: PMC8946593 DOI: 10.3390/cancers14061505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/08/2022] [Accepted: 03/10/2022] [Indexed: 11/24/2022] Open
Abstract
Simple Summary Malignant melanoma is a complex disease that is estimated to claim over 7000 lives in the United States in 2021. Although recent advances in genomic technology have helped with the identification of driver variants, molecular studies and clinical trials have often focused on prevalent alterations, such as the BRAF-V600E mutation. With the inclusion of whole transcriptome sequencing, molecular profiling of melanomas has identified gene fusions and revealed gene expression profiles that are consistent with the activation of signaling pathways by common driver mutations. Patients harboring such fusions may benefit from currently approved targeted therapies and should be considered in the design of future clinical trials to further personalize treatments for patients with malignant melanoma. Abstract Invasive melanoma is the deadliest type of skin cancer, with 101,110 expected cases to be diagnosed in 2021. Recurrent BRAF and NRAS mutations are well documented in melanoma. Biologic implications of gene fusions and the efficacy of therapeutically targeting them remains unknown. Retrospective review of patient samples that underwent next-generation sequencing of the exons of 592 cancer-relevant genes and whole transcriptome sequencing for the detection of gene fusion events and gene expression profiling. Expression of PDL1 and ERK1/2 was assessed by immunohistochemistry (IHC). There were 33 (2.6%) cases with oncogenic fusions (14 novel), involving BRAF, RAF1, PRKCA, TERT, AXL, and FGFR3. MAPK pathway-associated genes were over-expressed in BRAF and RAF1 fusion-positive tumors in absence of other driver alterations. Increased expression in tumors with PRKCA and TERT fusions was concurrent with MAPK pathway alterations. For a subset of samples with available tissue, increased phosphorylation of ERK1/2 was observed in BRAF, RAF1, and PRKCA fusion-positive tumors. Oncogenic gene fusions are associated with transcriptional activation of the MAPK pathway, suggesting they could be therapeutic targets with available inhibitors. Additional analyses to fully characterize the oncogenic effects of these fusions may support biomarker driven clinical trials.
Collapse
Affiliation(s)
- Sourat Darabi
- Hoag Family Cancer Institute, Newport Beach, CA 92663, USA; (D.R.B.); (B.L.E.); (M.J.D.)
- Correspondence:
| | - Andrew Elliott
- Caris Life Sciences, Phoenix, AZ 85040, USA; (A.E.); (J.Z.); (K.H.); (K.P.); (J.S.); (B.U.S.); (J.P.H.); (W.M.K.)
| | - David R. Braxton
- Hoag Family Cancer Institute, Newport Beach, CA 92663, USA; (D.R.B.); (B.L.E.); (M.J.D.)
| | - Jia Zeng
- Caris Life Sciences, Phoenix, AZ 85040, USA; (A.E.); (J.Z.); (K.H.); (K.P.); (J.S.); (B.U.S.); (J.P.H.); (W.M.K.)
| | - Kurt Hodges
- Caris Life Sciences, Phoenix, AZ 85040, USA; (A.E.); (J.Z.); (K.H.); (K.P.); (J.S.); (B.U.S.); (J.P.H.); (W.M.K.)
| | - Kelsey Poorman
- Caris Life Sciences, Phoenix, AZ 85040, USA; (A.E.); (J.Z.); (K.H.); (K.P.); (J.S.); (B.U.S.); (J.P.H.); (W.M.K.)
| | - Jeff Swensen
- Caris Life Sciences, Phoenix, AZ 85040, USA; (A.E.); (J.Z.); (K.H.); (K.P.); (J.S.); (B.U.S.); (J.P.H.); (W.M.K.)
| | - Basavaraja U. Shanthappa
- Caris Life Sciences, Phoenix, AZ 85040, USA; (A.E.); (J.Z.); (K.H.); (K.P.); (J.S.); (B.U.S.); (J.P.H.); (W.M.K.)
| | - James P. Hinton
- Caris Life Sciences, Phoenix, AZ 85040, USA; (A.E.); (J.Z.); (K.H.); (K.P.); (J.S.); (B.U.S.); (J.P.H.); (W.M.K.)
| | - Geoffrey T. Gibney
- Lombardi Comprehensive Cancer Center, MedStar Georgetown University Hospital, Washington, DC 20007, USA; (G.T.G.); (M.B.A.)
| | - Justin Moser
- Honor Health Research Institute, Scottsdale, AZ 85258, USA;
| | - Thuy Phung
- Department of Pathology, University of South Alabama, Mobile, AL 36617, USA;
| | - Michael B. Atkins
- Lombardi Comprehensive Cancer Center, MedStar Georgetown University Hospital, Washington, DC 20007, USA; (G.T.G.); (M.B.A.)
| | - Gino K. In
- Division of Oncology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA;
| | - Wolfgang M. Korn
- Caris Life Sciences, Phoenix, AZ 85040, USA; (A.E.); (J.Z.); (K.H.); (K.P.); (J.S.); (B.U.S.); (J.P.H.); (W.M.K.)
| | - Burton L. Eisenberg
- Hoag Family Cancer Institute, Newport Beach, CA 92663, USA; (D.R.B.); (B.L.E.); (M.J.D.)
- Division of Oncology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA;
| | - Michael J. Demeure
- Hoag Family Cancer Institute, Newport Beach, CA 92663, USA; (D.R.B.); (B.L.E.); (M.J.D.)
- Translational Genomics Research Institution, Phoenix, AZ 85004, USA
| |
Collapse
|
15
|
Zhang C, Mei W, Zeng C. Oncogenic Neuregulin 1 gene (NRG1) fusions in cancer: A potential new therapeutic opportunities. Biochim Biophys Acta Rev Cancer 2022; 1877:188707. [PMID: 35247506 DOI: 10.1016/j.bbcan.2022.188707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 02/27/2022] [Accepted: 02/27/2022] [Indexed: 10/19/2022]
Abstract
It is widely established that chromosomal rearrangements induce oncogenesis in solid tumors. However, discovering chromosomal rearrangements that are targetable and actionable remains a difficulty. Targeting gene fusion or chromosomal rearrangement seems to be a powerful strategy to address malignancies characterized by gene rearrangement. Oncogenic NRG1 fusions are relatively rare drivers that infrequently occur across most tumor types. NRG1 fusions exhibit unique biological properties and are difficult to identify owing to their large intronic regions. NRG1 fusions can be detected using a variety of techniques, including fluorescence in situ hybridization, immunohistochemistry, or next-generation sequencing (NGS), with NGS-based RNA sequencing being the most sensitive. Previous studies have shown that NRG1 fusion protein induces tumorigenesis, and numerous therapies targeting the ErbB signaling pathway, such as ErbB kinase inhibitors and monoclonal antibodies, have initially demonstrated encouraging anticancer efficacy in malignant tumors carrying NRG1 fusions. In this review, we present the characteristics and prevalence of NRG1 fusions in solid tumors. Additionally, we discuss the laboratory approaches for diagnosing NRG1 gene fusions. More importantly, we outline promising strategies for treating malignancies with NRG1 fusion.
Collapse
Affiliation(s)
- Congwang Zhang
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Guangdong Medical University, Shenzhen 518110, China
| | - Wuxuan Mei
- Clinical Medical College, Hubei University of Science and Technology, Xianning, Hubei 437100, China
| | - Changchun Zeng
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Guangdong Medical University, Shenzhen 518110, China.
| |
Collapse
|
16
|
Lung metastases and subsequent malignant transformation of a fumarate hydratase -deficient uterine leiomyoma. Exp Mol Pathol 2022; 126:104760. [DOI: 10.1016/j.yexmp.2022.104760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/21/2022] [Accepted: 03/28/2022] [Indexed: 11/17/2022]
|
17
|
Tan AC, Tan DSW. Targeted Therapies for Lung Cancer Patients With Oncogenic Driver Molecular Alterations. J Clin Oncol 2022; 40:611-625. [PMID: 34985916 DOI: 10.1200/jco.21.01626] [Citation(s) in RCA: 321] [Impact Index Per Article: 107.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Lung cancer has traditionally been classified by histology. However, a greater understanding of disease biology and the identification of oncogenic driver alterations has dramatically altered the therapeutic landscape. Consequently, the new classification paradigm of non-small-cell lung cancer is further characterized by molecularly defined subsets actionable with targeted therapies and the treatment landscape is becoming increasingly complex. This review encompasses the current standards of care for targeted therapies in lung cancer with driver molecular alterations. Targeted therapies for EGFR exon 19 deletion and L858R mutations, and ALK and ROS1 rearrangements are well established. However, there is an expanding list of approved targeted therapies including for BRAF V600E, EGFR exon 20 insertion, and KRAS G12C mutations, MET exon 14 alterations, and NTRK and RET rearrangements. In addition, there are numerous other oncogenic drivers, such as HER2 exon 20 insertion mutations, for which there are emerging efficacy data for targeted therapies. The importance of diagnostic molecular testing, intracranial efficacy of novel therapies, the optimal sequencing of therapies, role for targeted therapies in early-stage disease, and future directions for precision oncology approaches to understand tumor evolution and therapeutic resistance are also discussed.
Collapse
Affiliation(s)
- Aaron C Tan
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore.,Duke-NUS Medical School, National University of Singapore, Singapore
| | - Daniel S W Tan
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore.,Duke-NUS Medical School, National University of Singapore, Singapore.,Genome Institute of Singapore, Singapore
| |
Collapse
|
18
|
Wang X, Peng W, Zeng Z, Cai J, Liu A. Emerging a Novel VOPP1-EGFR Fusion Coexistent With T790M as an Acquired Resistance Mechanism to Prior Icotinib and Sensitive to Osimertinib in a Patient With EGFR L858R Lung Adenocarcinoma: A Case Report. Front Oncol 2021; 11:720819. [PMID: 35004270 PMCID: PMC8727519 DOI: 10.3389/fonc.2021.720819] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 12/07/2021] [Indexed: 12/13/2022] Open
Abstract
BackgroundEpidermal growth factor receptor (EGFR) fusions are rare genomic events in non-small-cell lung cancer (NSCLC). Clinical support and evidence to guide management are absent for NSCLC patients harboring EGFR fusion.Case PresentationIn this case report, we describe a 69-year-old female who received right lobectomy and was diagnosed with pathological stage IIIA lung adenocarcinoma harboring EGFR L858R. Twenty months later he had recurrent disease in the liver, lung, and bone, and was treated with icotinib. A novel vesicular overexpressed in cancer pro-survival protein 1 (VOPP1)-EGFR fusion gene coexistent with T790M were identified by next-generation sequencing using pericardial effusion and blood samples after icotinib treatment, which led to progression after icotinib six months and suggested a potential resistance mechanism. Subsequently, the patient was switched to osimertinib treatment, which resulted in a progression-free survival interval of more than 11 months.ConclusionsThe present results suggested that acquired VOPP1-EGFR fusion gene with T790M potentially serve an additional resistance mechanism to first-generation EGFR tyrosine kinase inhibitors in EGFR-mutated NSCLC. And the present case increases the evidence supporting use of osimertinib for treatment of NSCLC patients harboring EGFR fusion.
Collapse
Affiliation(s)
- Xia Wang
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Weiwei Peng
- Department of Oncology, People’s Hospital of Ganzhou, Ganzhou, China
| | - Zhimin Zeng
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jing Cai
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Anwen Liu
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- *Correspondence: Anwen Liu,
| |
Collapse
|
19
|
Pellerino A, Bruno F, Rudà R, Soffietti R. Systemic Therapy for Lung Cancer Brain Metastases. Curr Treat Options Oncol 2021; 22:110. [PMID: 34693454 DOI: 10.1007/s11864-021-00911-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2021] [Indexed: 11/25/2022]
Abstract
OPINION STATEMENT Systemic therapy for brain metastases (BM) is quickly moving from conventional cytotoxic chemotherapy toward targeted therapies, that allow a disruption of driver molecular pathways. The discovery of actionable driver mutations has led to the development of an impressive number of tyrosine kinase inhibitors (TKIs), that target the epidermal growth factor receptor (EGFR) mutations, anaplastic-lymphoma-kinase (ALK) rearrangements, and other rare molecular alterations in patients bearing metastatic non-small cell lung cancer (NSCLC) in the brain, with remarkable results in terms of intracranial disease control and overall survival. Moreover, these drugs may delay the use of local therapies, such as stereotactic radiosurgery (SRS) or whole-brain radiotherapy (WBRT). New drugs with higher molecular specificity and ability to cross the CNS barriers (BBB, BTB and blood-CSF) are being developed. Two major issues are related to targeted therapies. First, the emergence of a resistance is a common event, and a deeper understanding of molecular pathways that are involved is critical for the successful development of effective new targeted agents. Second, an early detection of tumor progression is of utmost importance to avoid the prolongation of an ineffective therapy while changing to another drug. In order to monitor over time the treatment to targeted therapies, liquid biopsy, that allows the detection in biofluids of either circulating tumor cells (CTCs) or circulating tumor DNA (ctDNA) or exosomes, is increasingly employed in clinical trials: with respect to BM the monitoring of both blood and CSF is necessary. Also, radiomics is being developed to predict the mutational status of the BM on MRI.For patients without druggable mutations or who do not respond to targeted agents, immunotherapy with checkpoint inhibitors is increasingly employed, alone or in combination with radiotherapy. Pseudoprogression after immunotherapy alone maybe a challenge for several months after the start of treatment, and the same is true for radionecrosis after the combination of immunotherapy and SRS. In this regard, the value of advanced MRI techniques and PET imaging for a better distinction of pseudoprogression/radionecrosis and true tumor progression is promising, but needs validation in large prospective datasets. Last, a new frontier in the near future will be chemoprevention (primary and secondary), but we need to identify among solid tumors those subgroups of patients with a higher risk of relapsing into the brain and novel drugs, active on either neoplastic or normal cells of the microenvironment, that are cooperating in the invasion of brain tissue.
Collapse
Affiliation(s)
- Alessia Pellerino
- Department of Neuro-Oncology, University and City of Health and Science Hospital, via Cherasco 15, 10126, Turin, Italy.
| | - Francesco Bruno
- Department of Neuro-Oncology, University and City of Health and Science Hospital, via Cherasco 15, 10126, Turin, Italy
| | - Roberta Rudà
- Department of Neuro-Oncology, University and City of Health and Science Hospital, via Cherasco 15, 10126, Turin, Italy
- Department of Neurology, Castelfranco Veneto and Treviso Hospital, via Sant' Ambrogio di Fiera 37, 31100, Treviso, Italy
| | - Riccardo Soffietti
- Department of Neuro-Oncology, University and City of Health and Science Hospital, via Cherasco 15, 10126, Turin, Italy
| |
Collapse
|
20
|
Zhang H, Huang W, Liu C, Giaccone G, Zhao X, Sun X, Li J, Cheng R, Huang Q, Mo H, Zhang Z, Zhang B, Wang C. The Prognostic Value of Non-Predominant Micropapillary Pattern in a Large Cohort of Resected Invasive Lung Adenocarcinoma Measuring ≤3 cm. Front Oncol 2021; 11:657506. [PMID: 34026636 PMCID: PMC8137894 DOI: 10.3389/fonc.2021.657506] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 04/06/2021] [Indexed: 01/11/2023] Open
Abstract
The aim of this study was to analyze the influence of non-predominant micropapillary pattern in small sized invasive lung adenocarcinoma. A total of 986 lung adenocarcinoma patients with tumor size ≤3 cm were identified and classified according to the IALSC/ATS/ERS classification. Emphasis was placed on the impact of non-predominant micropapillary pattern on disease-free survival (DFS) and overall survival (OS). The relationship between lung adenocarcinoma subtype and lymph node involvement, EGFR mutation and KRAS mutation was also evaluated. A nomogram was developed to predict the probability of 3- and 5-year OS for these patients. The concordance index and calibration plot were used to validate this model. Among all 986 patients, the percentages of lymph node involvement were: 58.1, 50.0, 33.5, 21.4, 21.1, 10.9, 0, and 0% for micropapillary predominant, solid predominant, acinar predominant, papillary predominant, invasive mucinous adenocarcinoma (IMA), lepidic predominant, minimally invasive adenocarcinoma (MIA), adenocarcinoma in situ (AIS), respectively. The frequency of EGFR mutation in the cases of lepidic predominant, acinar predominant, MIA, micropapillary predominant, papillary predominant, solid predominant, IMA, and AIS were 51.1, 45.2, 44.4, 36.8, 29.3, 26.8, 8.3, and 0%, respectively. A non-predominant micropapillary pattern was observed in 344 (38.4%) invasive adenocarcinoma (IAC), and its presence predicted a poorer DFS (median: 56.0 months vs. 66.0 months, P <0.001) and OS (median: 61.0 months vs. 70.0 months, P <0.001). After propensity score matching, non-predominant micropapillary pattern retained its unfavorable effect on DFS (P = 0.007) and OS (P = 0.001). Multivariate analysis showed that non-predominant micropapillary pattern was identified as an independent prognostic factor for DFS (P = 0.003) and OS (P <0.001) in IAC. The nomogram showed good calibration and reliable discrimination ability (C-index = 0.775) to evaluated the 3- and 5-year OS. This retrospective analysis of patients with small sized IAC suggests the value of non-predominant micropapillary pattern to predict poor prognosis. A reliable nomogram model was constructed to provide personalized survival predictions.
Collapse
Affiliation(s)
- Hua Zhang
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Lung Cancer Center, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Wuhao Huang
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Lung Cancer Center, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Chang Liu
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Lung Cancer Center, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | | | - Xiaoliang Zhao
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Lung Cancer Center, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Xiaoyan Sun
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Lung Cancer Center, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Jingjing Li
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Lung Cancer Center, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Runfen Cheng
- Department of Lung Cancer Pathology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Lung Cancer Center, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Qiujuan Huang
- Department of Lung Cancer Pathology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Lung Cancer Center, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Huilan Mo
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Lung Cancer Center, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Zhenfa Zhang
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Lung Cancer Center, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Bin Zhang
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Lung Cancer Center, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Changli Wang
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Lung Cancer Center, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
21
|
Ohara S, Suda K, Mitsudomi T. Cell Line Models for Acquired Resistance to First-Line Osimertinib in Lung Cancers-Applications and Limitations. Cells 2021; 10:cells10020354. [PMID: 33572269 PMCID: PMC7915563 DOI: 10.3390/cells10020354] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 02/03/2021] [Accepted: 02/05/2021] [Indexed: 02/06/2023] Open
Abstract
Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) are first-line drugs for lung cancers with activating EGFR mutations. Although first- and second-generation EGFR-TKIs were standard first-line treatments, acquired resistance (AR) to these drugs is almost inevitable. Cell line models have been widely used to explore the molecular mechanisms of AR to first- and second-generation EGFR-TKIs. Many research groups, including ours, have established AR cell lines that harbor the EGFR T790M secondary mutation, MET gene amplification, or epithelial–mesenchymal transition (EMT) features, which are all found in clinical specimens obtained from TKI-refractory lesions. Currently, many oncologists prescribe osimertinib, a third-generation EGFR-TKI that can overcome T790M-mediated resistance, as a first-line TKI. Although few clinical data are available about AR mechanisms that arise when osimertinib is used as a first-line therapy, many research groups have established cell lines with AR to osimertinib and have reported on their AR mechanisms. In this review, we summarize the findings on AR mechanisms against first-line osimertinib obtained from analyses of cell line models.
Collapse
|