1
|
Zhao J, Reuther J, Scozzaro K, Hawley M, Metzger E, Emery M, Chen I, Barbosa M, Johnson L, O'Connor A, Washburn M, Hartje L, Reckase E, Johnson V, Zhang Y, Westheimer E, O'Callaghan W, Malani N, Chesh A, Moreau M, Daber R. Personalized Cancer Monitoring Assay for the Detection of ctDNA in Patients with Solid Tumors. Mol Diagn Ther 2023; 27:753-768. [PMID: 37632661 PMCID: PMC10590345 DOI: 10.1007/s40291-023-00670-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2023] [Indexed: 08/28/2023]
Abstract
BACKGROUND Highly sensitive molecular assays have been developed to detect plasma-based circulating tumor DNA (ctDNA), and emerging evidence suggests their clinical utility for monitoring minimal residual disease and recurrent disease, providing prognostic information, and monitoring therapy responses in patients with solid tumors. The Invitae Personalized Cancer Monitoring™ assay uses a patient-specific, tumor-informed variant signature identified through whole exome sequencing to detect ctDNA in peripheral blood of patients with solid tumors. METHODS The assay's tumor whole exome sequencing and ctDNA detection components were analytically validated using 250 unique human specimens and nine commercial reference samples that generated 1349 whole exome sequencing and cell-free DNA (cfDNA)-derived libraries. A comparison of tumor and germline whole exome sequencing was used to identify patient-specific tumor variant signatures and generate patient-specific panels, followed by targeted next-generation sequencing of plasma-derived cfDNA using the patient-specific panels with anchored multiplex polymerase chain reaction chemistry leveraging unique molecular identifiers. RESULTS Whole exome sequencing resulted in overall sensitivity of 99.8% and specificity of > 99.9%. Patient-specific panels were successfully designed for all 63 samples (100%) with ≥ 20% tumor content and 24 (80%) of 30 samples with ≥ 10% tumor content. Limit of blank studies using 30 histologically normal, formalin-fixed paraffin-embedded specimens resulted in 100% expected panel design failure. The ctDNA detection component demonstrated specificity of > 99.9% and sensitivity of 96.3% for a combination of 10 ng of cfDNA input, 0.008% allele frequency, 50 variants on the patient-specific panels, and a baseline threshold. Limit of detection ranged from 0.008% allele frequency when utilizing 60 ng of cfDNA input with 18-50 variants in the patient-specific panels (> 99.9% sensitivity) with a baseline threshold, to 0.05% allele frequency when using 10 ng of cfDNA input with an 18-variant panel with a monitoring threshold (> 99.9% sensitivity). CONCLUSIONS The Invitae Personalized Cancer Monitoring assay, featuring a flexible patient-specific panel design with 18-50 variants, demonstrated high sensitivity and specificity for detecting ctDNA at variant allele frequencies as low as 0.008%. This assay may support patient prognostic stratification, provide real-time data on therapy responses, and enable early detection of residual/recurrent disease.
Collapse
Affiliation(s)
- Jianhua Zhao
- Invitae Corp., 1400 16th Street, San Francisco, CA, 94103, USA.
| | | | - Kaylee Scozzaro
- Invitae Corp., 1400 16th Street, San Francisco, CA, 94103, USA
| | - Megan Hawley
- Invitae Corp., 1400 16th Street, San Francisco, CA, 94103, USA
| | - Emily Metzger
- Invitae Corp., 1400 16th Street, San Francisco, CA, 94103, USA
| | - Matthew Emery
- Invitae Corp., 1400 16th Street, San Francisco, CA, 94103, USA
| | - Ingrid Chen
- Invitae Corp., 1400 16th Street, San Francisco, CA, 94103, USA
| | | | - Laura Johnson
- Invitae Corp., 1400 16th Street, San Francisco, CA, 94103, USA
- Affiliated with Invitae Corp. at the time of the study, currently employees at Integrated DNA Technologies, 1710 Commercial Park, Coralville, IA, 52241, USA
| | - Alijah O'Connor
- Invitae Corp., 1400 16th Street, San Francisco, CA, 94103, USA
| | - Mike Washburn
- Invitae Corp., 1400 16th Street, San Francisco, CA, 94103, USA
- Affiliated with Invitae Corp. at the time of the study, currently employees at Integrated DNA Technologies, 1710 Commercial Park, Coralville, IA, 52241, USA
| | - Luke Hartje
- Invitae Corp., 1400 16th Street, San Francisco, CA, 94103, USA
- Affiliated with Invitae Corp. at the time of the study, currently employees at Integrated DNA Technologies, 1710 Commercial Park, Coralville, IA, 52241, USA
| | - Erik Reckase
- Invitae Corp., 1400 16th Street, San Francisco, CA, 94103, USA
- Affiliated with Invitae Corp. at the time of the study, currently employees at Integrated DNA Technologies, 1710 Commercial Park, Coralville, IA, 52241, USA
| | - Verity Johnson
- Invitae Corp., 1400 16th Street, San Francisco, CA, 94103, USA
- Affiliated with Invitae Corp. at the time of the study, currently employees at Integrated DNA Technologies, 1710 Commercial Park, Coralville, IA, 52241, USA
| | - Yuhua Zhang
- Invitae Corp., 1400 16th Street, San Francisco, CA, 94103, USA
| | | | | | - Nirav Malani
- Invitae Corp., 1400 16th Street, San Francisco, CA, 94103, USA
| | - Adrian Chesh
- Invitae Corp., 1400 16th Street, San Francisco, CA, 94103, USA
| | - Michael Moreau
- Invitae Corp., 1400 16th Street, San Francisco, CA, 94103, USA
| | - Robert Daber
- Invitae Corp., 1400 16th Street, San Francisco, CA, 94103, USA
| |
Collapse
|
2
|
Xu D, Li J, Wang D, Zhou L, Jin J, Wang Y. Prediction performance of twelve tumor mutation burden panels in melanoma and non-small cell lung cancer. Crit Rev Oncol Hematol 2021; 169:103573. [PMID: 34933103 DOI: 10.1016/j.critrevonc.2021.103573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 11/14/2021] [Accepted: 12/16/2021] [Indexed: 12/12/2022] Open
Abstract
As a potential biomarker to predict the response to immunotherapy, tumor mutation burden (TMB) which can be estimated by the cancer gene panel (CGP) has received considerable attention. However, it is not clear which CGP is better in predicting the efficacy of immunotherapy. To evaluate the twelve CGPs, we compared them on 13 datasets of melanoma and non-small cell lung cancer (NSCLC) from the perspective of gene composition, reliability of measuring TMB and prediction performance of patient treatment benefits. The larger CGPs generally performed better, but their proportions of driver genes and function densities were smaller. The CGPs performed differently on melanoma and NSCLC patients treated with two blockades. Moreover, their ability to classify and predict patients with or without long-term clinical benefits was similar but not good enough, so it is necessary to explore a higher-performance biomarker.
Collapse
Affiliation(s)
- Dechen Xu
- School of Computer Science and Technology, Harbin Institute of Technology, 92 West Dazhi Street, Nan Gang District, Harbin, Heilongjiang Province, China.
| | - Jie Li
- School of Computer Science and Technology, Harbin Institute of Technology, 92 West Dazhi Street, Nan Gang District, Harbin, Heilongjiang Province, China.
| | - Dong Wang
- School of Computer Science and Technology, Harbin Institute of Technology, 92 West Dazhi Street, Nan Gang District, Harbin, Heilongjiang Province, China.
| | - Li Zhou
- School of Computer Science and Technology, Harbin Institute of Technology, 92 West Dazhi Street, Nan Gang District, Harbin, Heilongjiang Province, China.
| | - Jiahuan Jin
- School of Computer Science and Technology, Harbin Institute of Technology, 92 West Dazhi Street, Nan Gang District, Harbin, Heilongjiang Province, China.
| | - Yadong Wang
- School of Computer Science and Technology, Harbin Institute of Technology, 92 West Dazhi Street, Nan Gang District, Harbin, Heilongjiang Province, China.
| |
Collapse
|