1
|
Engelen Y, Krysko DV, Effimova I, Breckpot K, Versluis M, De Smedt S, Lajoinie G, Lentacker I. Optimizing high-intensity focused ultrasound-induced immunogenic cell-death using passive cavitation mapping as a monitoring tool. J Control Release 2024; 375:389-403. [PMID: 39293525 DOI: 10.1016/j.jconrel.2024.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/02/2024] [Accepted: 09/10/2024] [Indexed: 09/20/2024]
Abstract
Over the past decade, ultrasound (US) has gathered significant attention and research focus in the realm of medical treatments, particularly within the domain of anti-cancer therapies. This growing interest can be attributed to its non-invasive nature, precision in delivery, availability, and safety. While the conventional objective of US-based treatments to treat breast, prostate, and liver cancer is the ablation of target tissues, the introduction of the concept of immunogenic cell death (ICD) has made clear that inducing cell death can take different non-binary pathways through the activation of the patient's anti-tumor immunity. Here, we investigate high-intensity focused ultrasound (HIFU) to induce ICD by unraveling the underlying physical phenomena and resulting biological effects associated with HIFU therapy using an automated and fully controlled experimental setup. Our in-vitro approach enables the treatment of adherent cancer cells (B16F10 and CT26), analysis for ICD hallmarks and allows to monitor and characterize in real time the US-induced cavitation activity through passive cavitation detection (PCD). We demonstrate HIFU-induced cell death, CRT exposure, HMGB1 secretion and antigen release. This approach holds great promise in advancing our understanding of the therapeutic potential of HIFU for anti-cancer strategies.
Collapse
Affiliation(s)
- Yanou Engelen
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium; Ghent Research Group on Nanomedicines, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
| | - Dmitri V Krysko
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium; Cell Death Investigation and Therapy (CDIT) Laboratory, Anatomy and Embryology Unit, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| | - Iuliia Effimova
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium; Cell Death Investigation and Therapy (CDIT) Laboratory, Anatomy and Embryology Unit, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| | - Karine Breckpot
- Laboratory for Molecular and Cellular Therapy, Translational Oncology Research Center, Department of Biomedical Sciences, Faculty of Pharmacy and Medicine, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Michel Versluis
- Physics of Fluids Group, Technical Medical (TechMed) Center, and Max Planck Center for Complex Fluid Dynamics, University of Twente, Enschede, the Netherlands
| | - Stefaan De Smedt
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium; Ghent Research Group on Nanomedicines, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
| | - Guillaume Lajoinie
- Physics of Fluids Group, Technical Medical (TechMed) Center, and Max Planck Center for Complex Fluid Dynamics, University of Twente, Enschede, the Netherlands
| | - Ine Lentacker
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium; Ghent Research Group on Nanomedicines, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
2
|
Yang K, Lu R, Mei J, Cao K, Zeng T, Hua Y, Huang X, Li W, Yin Y. The war between the immune system and the tumor - using immune biomarkers as tracers. Biomark Res 2024; 12:51. [PMID: 38816871 PMCID: PMC11137916 DOI: 10.1186/s40364-024-00599-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/10/2024] [Indexed: 06/01/2024] Open
Abstract
Nowadays, immunotherapy is one of the most promising anti-tumor therapeutic strategy. Specifically, immune-related targets can be used to predict the efficacy and side effects of immunotherapy and monitor the tumor immune response. In the past few decades, increasing numbers of novel immune biomarkers have been found to participate in certain links of the tumor immunity to contribute to the formation of immunosuppression and have entered clinical trials. Here, we systematically reviewed the oncogenesis and progression of cancer in the view of anti-tumor immunity, particularly in terms of tumor antigen expression (related to tumor immunogenicity) and tumor innate immunity to complement the cancer-immune cycle. From the perspective of integrated management of chronic cancer, we also appraised emerging factors affecting tumor immunity (including metabolic, microbial, and exercise-related markers). We finally summarized the clinical studies and applications based on immune biomarkers. Overall, immune biomarkers participate in promoting the development of more precise and individualized immunotherapy by predicting, monitoring, and regulating tumor immune response. Therefore, targeting immune biomarkers may lead to the development of innovative clinical applications.
Collapse
Affiliation(s)
- Kai Yang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, P. R. China
| | - Rongrong Lu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, P. R. China
| | - Jie Mei
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, P. R. China
| | - Kai Cao
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, P. R. China
| | - Tianyu Zeng
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, P. R. China
| | - Yijia Hua
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, P. R. China
- Gusu School, Nanjing Medical University, Nanjing, China
| | - Xiang Huang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, P. R. China.
| | - Wei Li
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, P. R. China.
| | - Yongmei Yin
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, P. R. China.
| |
Collapse
|
3
|
Kozai H, Ogino H, Mitsuhashi A, Nguyen NT, Tsukazaki Y, Yabuki Y, Ozaki R, Yoneda H, Sato S, Hanibuchi M, Shinohara T, Nokihara H, Nishioka Y. Potential of fluoropyrimidine to be an immunologically optimal partner of immune checkpoint inhibitors through inducing immunogenic cell death for thoracic malignancies. Thorac Cancer 2024; 15:369-378. [PMID: 38146645 PMCID: PMC10864125 DOI: 10.1111/1759-7714.15200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/27/2023] Open
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) are a revolutionary paradigm in the treatment of thoracic malignancies and chemoimmunotherapy is a current standard care in this field. Chemotherapeutic agents are known to induce not only direct cytotoxic effects on tumor cells but also immune modulating effects, such as stimulating immunogenic cell death (ICD). Currently, either pemetrexed (PEM) or taxane plus platinum are combined with ICIs for patients with non-small cell lung cancer (NSCLC); however, it is still unknown whether these agents are immunologically optimal partners for ICIs. METHODS To determine the immunologically optimal chemotherapeutic agent, we first evaluated the ability of several chemotherapeutic agents, including platinum, PEM, taxane, and 5-fluorouracil (5-FU) to induce ICD using several thoracic tumor cell lines in vitro. ICD was evaluated by the cell surface expression of calreticulin (CRT) and adenosine-triphosphate (ATP) secretion. We further performed an antitumor vaccination assay in vivo. RESULTS 5-FU induced cell surface expression of CRT and ATP secretion most efficiently among the several chemotherapeutic agents. This effect was enhanced when it was combined with platinum. In the antitumor vaccination assay in vivo, we found that vaccination with dying-AB1-HA (a murine malignant mesothelioma cell line) cells treated with 5-FU, but neither PEM nor PTX, reduced the tumor growth of living-AB1-HA cells inoculated 1 week after vaccination by recruiting CD3+ CD8+ T cells into the tumor microenvironment. CONCLUSION Our findings indicate that fluoropyrimidine can be an immunologically optimal partner of ICIs through the induction of ICD for thoracic malignancies.
Collapse
Affiliation(s)
- Hiroyuki Kozai
- Department of Respiratory Medicine and RheumatologyGraduate School of Biomedical Sciences, Tokushima UniversityTokushimaJapan
| | - Hirokazu Ogino
- Department of Respiratory Medicine and RheumatologyGraduate School of Biomedical Sciences, Tokushima UniversityTokushimaJapan
| | - Atsushi Mitsuhashi
- Department of Respiratory Medicine and RheumatologyGraduate School of Biomedical Sciences, Tokushima UniversityTokushimaJapan
| | - Na Thi Nguyen
- Department of Respiratory Medicine and RheumatologyGraduate School of Biomedical Sciences, Tokushima UniversityTokushimaJapan
| | - Yuki Tsukazaki
- Department of Respiratory Medicine and RheumatologyGraduate School of Biomedical Sciences, Tokushima UniversityTokushimaJapan
| | - Yohei Yabuki
- Department of Respiratory Medicine and RheumatologyGraduate School of Biomedical Sciences, Tokushima UniversityTokushimaJapan
| | - Ryohiko Ozaki
- Department of Respiratory Medicine and RheumatologyGraduate School of Biomedical Sciences, Tokushima UniversityTokushimaJapan
| | - Hiroto Yoneda
- Department of Respiratory Medicine and RheumatologyGraduate School of Biomedical Sciences, Tokushima UniversityTokushimaJapan
| | - Seidai Sato
- Department of Respiratory Medicine and RheumatologyGraduate School of Biomedical Sciences, Tokushima UniversityTokushimaJapan
| | - Masaki Hanibuchi
- Department of Respiratory Medicine and RheumatologyGraduate School of Biomedical Sciences, Tokushima UniversityTokushimaJapan
- Department of Community Medicine for RespirologyHematology, and Metabolism, Graduate School of Biomedical Sciences, Tokushima UniversityTokushimaJapan
| | - Tsutomu Shinohara
- Department of Respiratory Medicine and RheumatologyGraduate School of Biomedical Sciences, Tokushima UniversityTokushimaJapan
- Department of Community Medicine for RespirologyGraduate School of Biomedical Sciences, Tokushima UniversityTokushimaJapan
| | - Hiroshi Nokihara
- Department of Respiratory Medicine and RheumatologyGraduate School of Biomedical Sciences, Tokushima UniversityTokushimaJapan
- Respiratory Medicine, Center Hospital of the National Center for Global Health and MedicineTokyoJapan
| | - Yasuhiko Nishioka
- Department of Respiratory Medicine and RheumatologyGraduate School of Biomedical Sciences, Tokushima UniversityTokushimaJapan
| |
Collapse
|
4
|
Valentí V, Capdevila L, Ruiz I, Ramos J, Badía J, Blázquez S, Villuendas Ó, Pérez C, Fernández-Sender L, Córdoba M, Alonso-Villaverde C. Variation of Plasma Damage-Associated Molecular Patterns in Patients with Advanced Solid Tumors after Standard of Care Systemic Treatment. Cancer Invest 2023; 41:821-829. [PMID: 37975838 DOI: 10.1080/07357907.2023.2283458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND Immunogenic cell death (ICD) is known for releasing damage-associated molecular patterns (DAMPs) from tumor cells. We aimed to find ICD signals by assessing the variation of plasmatic DAMPs (HMGB1, S100A8) before-after standard of care (SoC) systemic treatment in patients with advanced solid tumors. METHODS Patients scheduled to start a new line of systemic treatment were included. Plasmatic concentrations of HMGB1 and S100A8 were measured (ng/mL) before and after three months of treatment. RESULTS Fifty-two patients were included. Forty-four patients (85%) had metastases, and 8 (15%) were treated for stage III tumors. The most frequent tumor sites were colorectal (35%) and lung (25%). Forty-two patients (81%) received this treatment in the first-line setting. Thirty-six patients (69%) were treated chemotherapy (CT) alone, ten (19%) CT plus targeted therapy, two (3.8%) carboplatin-pemetrexed-pembrolizumab, three (5.8%) pembrolizumab alone and one (1.9%) cetuximab alone. Median plasmatic concentration of S100A8 was significantly higher before than after treatment in the whole population (3.78 vs. 2.91 ng/mL; p = 0.011) and more markedly in the subgroups of patients who experienced RECIST-assessed tumor response (5.70 vs. 2.63 ng/mL; p = 0.002). Median plasmatic concentration of HMGB1was not significantly different before and after treatment (10.23 vs. 11.85 ng/mL; p = 0.382) and did not differ depending on tumor response. Median PFS was not significantly different between patients whose plasma HMBG1 concentration decreased or increased (8.0 vs. 10.6 months; p = 0.29) after treatment. Median PFS was significantly longer in those patients in whom the plasma concentration of S100A8 decreased after treatment (12 vs. 4.7 months; p < 0.001). Median OS was not significantly different between patients whose plasma HMBG1 concentration decreased or increased (13.1 vs. 14.7 months; p = 0.46) after treatment. Median OS was significantly longer in those patients in whom the plasma concentration of S100A8 decreased after treatment (16.7 vs. 9.0 months; p < 0.001). CONCLUSIONS Signals of ICD were not observed. S100A8 behaves as an inflammatory marker with decreased concentration after treatment, mostly in RECIST-responders. PFS and OS were significantly prolonged in those patients who experienced a decrease of S100A8 compared with those patients who experienced increase of plasma S100A8 at three months.
Collapse
Affiliation(s)
| | - Laia Capdevila
- Medical Oncology, Hospital Santa Tecla, Tarragona, Spain
| | - Isabel Ruiz
- Medical Oncology, Hospital del Vendrell, El Vendrell, Spain
| | - Javier Ramos
- Medical Oncology, Hospital Santa Tecla, Tarragona, Spain
| | - Joan Badía
- Medical Oncology, Hospital Santa Tecla, Tarragona, Spain
| | | | | | - Cristina Pérez
- Medical Oncology, Hospital del Vendrell, El Vendrell, Spain
| | | | - Mónica Córdoba
- Internal Medicine, Hospital Santa Tecla, Tarragona, Spain
| | | |
Collapse
|
5
|
Terashima Y, Matsumoto M, Iida H, Takashima S, Fukuizumi A, Takeuchi S, Miyanaga A, Terasaki Y, Kasahara K, Seike M. Predictive Impact of Diffuse Positivity for TTF-1 Expression in Patients Treated With Platinum-Doublet Chemotherapy Plus Immune Checkpoint Inhibitors for Advanced Nonsquamous NSCLC. JTO Clin Res Rep 2023; 4:100578. [PMID: 37885809 PMCID: PMC10597755 DOI: 10.1016/j.jtocrr.2023.100578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/25/2023] [Accepted: 09/15/2023] [Indexed: 10/28/2023] Open
Abstract
Introduction Pervious studies reported the association of TTF-1 expression with the efficacy of platinum-doublet chemotherapy in combination with immune checkpoint inhibitors in advanced nonsquamous NSCLC. Nevertheless, the predictive value of extent of TTF-1 expression (diffuse or focal TTF-1 positivity) remains unclear. Methods The present study retrospectively reviewed 74 patients with TTF-1-positive recurrent or advanced nonsquamous NSCLC receiving first-line chemoimmunotherapy in a single institution in Japan. TTF-1 expression score in pretreatment tumor specimens was evaluated using immunohistochemistry, and the impact of chemoimmunotherapy response was analyzed. Results In the total cohort, ≥50% of the tumor cells were TTF-1 positive (i.e., diffusely TTF-1 positive) in specimens of 61 patients (82.4%), whereas 10% to 49% of the tumor cells were TTF-1 positive (i.e., focally TTF-1 positive) in specimens of the remaining 13 patients (17.6%). In multivariate analysis, the median progression-free survival and overall survival (OS) were significantly longer in patients with diffusely TTF-1-positive tumors than in those with focally TTF-1-positive tumors (14.2 versus 9.2 mo, p = 0.01 and 30.2 versus 17.3 mo, p = 0.01, respectively). Moreover, the median OS was significantly longer in patients receiving chemoimmunotherapy including pemetrexed than in those receiving chemoimmunotherapy not including pemetrexed among the patients with diffusely TTF-1-positive tumors (not attained versus 23.2 mo, p < 0.01). Conclusions The positive extent of diffuse TTF-1 expression associated with patient outcome was an independent predictive factor for better progression-free survival and OS in patients with advanced nonsquamous NSCLC receiving chemoimmunotherapy.
Collapse
Affiliation(s)
- Yuto Terashima
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Masaru Matsumoto
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Hiroki Iida
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Sae Takashima
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Aya Fukuizumi
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Susumu Takeuchi
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Akihiko Miyanaga
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Yasuhiro Terasaki
- Department of Analytic Human Pathology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Kazuo Kasahara
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Masahiro Seike
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| |
Collapse
|
6
|
Tanimura K, Takeda T, Kataoka N, Yoshimura A, Nakanishi K, Yamanaka Y, Yoshioka H, Honda R, Uryu K, Fukui M, Chihara Y, Takei S, Kawachi H, Yamada T, Tamiya N, Okura N, Yamada T, Murai J, Shiotsu S, Kurata T, Takayama K. First-Line Chemoimmunotherapy versus Sequential Platinum-Based Chemotherapy Followed by Immunotherapy in Patients with Non-Small Cell Lung Cancer with ≤49% Programmed Death-Ligand 1 Expression: A Real-World Multicenter Retrospective Study. Cancers (Basel) 2023; 15:4988. [PMID: 37894357 PMCID: PMC10605814 DOI: 10.3390/cancers15204988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND The long overall survival (OS) observed among patients with non-small cell lung cancer (NSCLC) with high programmed death-ligand 1 (PD-L1) expression in chemoimmunotherapy (CIT) groups in previous phase III trials suggests the limited efficacy of CIT among the subgroup with ≤49% PD-L1 expression on tumor cells. Hence, sequential treatment with first-line platinum-based chemotherapy followed by second-line immune checkpoint inhibitor treatment (SEQ) is an option. This study examined whether first-line CIT would provide better outcomes than SEQ in patients with advanced NSCLC with ≤49% PD-L1 expression. METHODS This retrospective study evaluated patients with untreated NSCLC who received first-line CIT or SEQ at nine hospitals in Japan. OS, progression-free survival (PFS), PFS-2 (the time from first-line treatment to progression to second-line treatment or death), and other related outcomes were evaluated between the CIT and SEQ groups. RESULTS Among the 305 enrolled patients, 234 eligible patients were analyzed: 165 in the CIT group and 69 in the SEQ group. The COX proportional hazards model suggested a significant interaction between PD-L1 expression and OS (p = 0.006). OS in the CIT group was significantly longer than that in the SEQ group in the 1-49% PD-L1 expression subgroup but not in the <1% PD-L1 expression subgroup. Among the subgroup with 1-49% PD-L1 expression, the CIT group exhibited longer median PFS than the SEQ group (CIT: 9.3 months (95% CI: 6.7-14.8) vs. SEQ:5.5 months (95% CI: 4.5-6.1); p < 0.001), while the median PFS in the CIT group was not statistically longer than the median PFS-2 in the SEQ group (p = 0.586). There was no significant difference between the median PFS in the CIT and SEQ groups among the <1% PD-L1 expression subgroup (p = 0.883); the median PFS-2 in the SEQ group was significantly longer than the median PFS in the CIT group (10.5 months (95% CI: 5.9-15.3) vs. 6.4 months (95% CI: 4.9-7.5); p = 0.024). CONCLUSIONS CIT is recommended for patients with NSCLC with 1-49% PD-L1 expression because it significantly improved OS and PFS compared to SEQ. CIT had limited benefits in patients with <1% PD-L1 expression, and the median PFS-2 in the SEQ group was significantly longer than the median PFS in the CIT group. These findings will help physicians select the most suitable treatment option for patients with NSCLC, considering PD-L1 expressions.
Collapse
Affiliation(s)
- Keiko Tanimura
- Department of Respiratory Medicine, Japanese Red Cross Kyoto Daini Hospital, Kyoto 602-8026, Japan; (K.T.); (N.K.); (A.Y.)
| | - Takayuki Takeda
- Department of Respiratory Medicine, Japanese Red Cross Kyoto Daini Hospital, Kyoto 602-8026, Japan; (K.T.); (N.K.); (A.Y.)
| | - Nobutaka Kataoka
- Department of Respiratory Medicine, Japanese Red Cross Kyoto Daini Hospital, Kyoto 602-8026, Japan; (K.T.); (N.K.); (A.Y.)
| | - Akihiro Yoshimura
- Department of Respiratory Medicine, Japanese Red Cross Kyoto Daini Hospital, Kyoto 602-8026, Japan; (K.T.); (N.K.); (A.Y.)
| | - Kentaro Nakanishi
- Department of Thoracic Oncology, Kansai Medical University Hospital, Hirakata 573-1191, Japan; (K.N.); (Y.Y.); (H.Y.); (T.K.)
| | - Yuta Yamanaka
- Department of Thoracic Oncology, Kansai Medical University Hospital, Hirakata 573-1191, Japan; (K.N.); (Y.Y.); (H.Y.); (T.K.)
| | - Hiroshige Yoshioka
- Department of Thoracic Oncology, Kansai Medical University Hospital, Hirakata 573-1191, Japan; (K.N.); (Y.Y.); (H.Y.); (T.K.)
| | - Ryoichi Honda
- Department of Respiratory Medicine, Asahi General Hospital, Asahi 289-2511, Japan;
| | - Kiyoaki Uryu
- Department of Respiratory Medicine, Yao Tokushukai General Hospital, Yao 581-0011, Japan;
| | - Mototaka Fukui
- Department of Respiratory Medicine, Uji-Tokushukai Medical Center, Uji 611-0041, Japan; (M.F.); (Y.C.)
| | - Yusuke Chihara
- Department of Respiratory Medicine, Uji-Tokushukai Medical Center, Uji 611-0041, Japan; (M.F.); (Y.C.)
| | - Shota Takei
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (S.T.); (H.K.); (T.Y.); (K.T.)
| | - Hayato Kawachi
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (S.T.); (H.K.); (T.Y.); (K.T.)
| | - Tadaaki Yamada
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (S.T.); (H.K.); (T.Y.); (K.T.)
| | - Nobuyo Tamiya
- Department of Respiratory Medicine, Rakuwakai Otowa Hospital, Kyoto 607-8062, Japan;
| | - Naoko Okura
- Department of Respiratory Medicine, Matsushita Memorial Hospital, Moriguchi 570-8540, Japan; (N.O.); (T.Y.)
| | - Takahiro Yamada
- Department of Respiratory Medicine, Matsushita Memorial Hospital, Moriguchi 570-8540, Japan; (N.O.); (T.Y.)
| | - Junji Murai
- Department of Respiratory Medicine, Japanese Red Cross Kyoto Daiichi Hospital, Kyoto 605-0981, Japan; (J.M.); (S.S.)
| | - Shinsuke Shiotsu
- Department of Respiratory Medicine, Japanese Red Cross Kyoto Daiichi Hospital, Kyoto 605-0981, Japan; (J.M.); (S.S.)
| | - Takayasu Kurata
- Department of Thoracic Oncology, Kansai Medical University Hospital, Hirakata 573-1191, Japan; (K.N.); (Y.Y.); (H.Y.); (T.K.)
| | - Koichi Takayama
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (S.T.); (H.K.); (T.Y.); (K.T.)
| |
Collapse
|
7
|
Zhang M, Xiao J, Liu J, Bai X, Zeng X, Zhang Z, Liu F. Calreticulin as a marker and therapeutic target for cancer. Clin Exp Med 2023; 23:1393-1404. [PMID: 36335525 DOI: 10.1007/s10238-022-00937-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 10/27/2022] [Indexed: 11/07/2022]
Abstract
Calreticulin (CRT) is a multifunctional protein found within the endoplasmic reticulum (ER). In addition, CRT participates in the formation and development of tumors and promotes the proliferation and migration of tumor cells. When a malignant tumor occurs in the human body, cancer cells that die from immunogenic cell death (ICD) expose CRT on their surface, and CRT that is transferred to the cell surface represents an "eat me" signal, which promotes dendritic cells to phagocytose the tumor cells, thereby increasing the sensitivity of tumors to anticancer immunotherapy. Expression of CRT in tumor tissues is higher than in normal tissues and is associated with disease progression in many malignant tumors. Thus, the dysfunctional production of CRT can promote tumorigenesis because it disturbs not only the balance of healthy cells but also the body's immune surveillance. CRT may be a diagnostic marker and a therapeutic target for cancer, which is discussed extensively in this review.
Collapse
Affiliation(s)
- Meilan Zhang
- Department of Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Juan Xiao
- Department of Otolaryngology, Hengyang Medical School, The Second Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China
| | - Jiangrong Liu
- Department of Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Xue Bai
- Department of Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Xuemei Zeng
- Department of Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Zhiwei Zhang
- Department of Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Feng Liu
- Department of Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
8
|
Tsutsumi H, Inoue H, Shiraishi Y, Hirayama A, Nakanishi T, Ando H, Nakajima M, Shinozaki S, Ogata H, Okamura K, Kimura S, Ogawa T, Ota K, Yoneshima Y, Tanaka K, Hamada N, Okamoto I, Iwama E. Impact of increased plasma levels of calreticulin on prognosis of patients with advanced lung cancer undergoing combination treatment of chemotherapy and immune checkpoint inhibitors. Lung Cancer 2023; 181:107264. [PMID: 37276707 DOI: 10.1016/j.lungcan.2023.107264] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/20/2023] [Accepted: 05/30/2023] [Indexed: 06/07/2023]
Abstract
BACKGROUND Damage-associated molecular pattern (DAMP)-related immunogenic cell death triggers secondary adaptive immune responses. The relationship between DAMP levels and prognosis in patients with non-small cell lung cancer (NSCLC) who undergo a combination therapy of immune checkpoint inhibitors (ICI) and chemotherapy remains unclear. METHODS Serial plasma samples were prospectively collected from 45 patients treated with ICI combination therapy for advanced NSCLC. Plasma concentrations of high-mobility group box 1 (HMGB1), calreticulin (CRT), annexin A1, and heat shock protein 70 were measured. Associations between increases in plasma DAMP levels and the efficacy of the ICI combination therapy were evaluated. RESULTS The maximum fold changes in plasma levels differed across individuals but demonstrated a marked increase, especially for CRT (mean ± SEM, 11.61 ± 46.15). Increased plasma DAMP levels were not clearly associated with clinical responses. There was a significant correlation between the maximum fold change in CRT levels and progression-free survival (PFS; r = 0.49, P < 0.001). Median PFS and overall survival (OS) rates were higher in patients with a ≥ 2-fold increase in plasma CRT levels than in those with a < 2-fold increase (PFS, 14.9 versus 6.0 months, hazard ratio (HR), 0.58; P = 0.17; OS, not reached versus 21.6 months, HR, 0.31, P = 0.02). CONCLUSIONS Plasma CRT level monitoring has the potential to predict the efficacy of ICI combination therapy and shed light on the mechanisms underlying DAMP-related immunogenic cell death.
Collapse
Affiliation(s)
- Hirono Tsutsumi
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroyuki Inoue
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Respiratory Medicine, Fukuoka University School of Medicine, Fukuoka, Japan
| | - Yoshimasa Shiraishi
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Aiko Hirayama
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takayuki Nakanishi
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroyuki Ando
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Maako Nakajima
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Seiji Shinozaki
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroaki Ogata
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Koji Okamura
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shinichi Kimura
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomohiro Ogawa
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Keiichi Ota
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yasuto Yoneshima
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kentaro Tanaka
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Naoki Hamada
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Respiratory Medicine, Fukuoka University School of Medicine, Fukuoka, Japan
| | - Isamu Okamoto
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Eiji Iwama
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
9
|
Impact of Results of TTF-1 Immunostaining on Efficacy of Platinum-Doublet Chemotherapy in Japanese Patients with Nonsquamous Non-Small-Cell Lung Cancer. J Clin Med 2022; 12:jcm12010137. [PMID: 36614938 PMCID: PMC9821382 DOI: 10.3390/jcm12010137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/12/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Pemetrexed is a key drug in chemotherapy for nonsquamous non-small-cell lung cancer (nonsq NSCLC). Several studies have reported thyroid transcription factor-1 (TTF-1) as a biomarker of the efficacy in chemotherapy regimens, including pemetrexed in non-Asian people. OBJECTIVE We aimed to examine the impact of the results of the TTF-1 immunostaining of tumor cells on the therapeutic effect of chemotherapy in Japanese patients with nonsq NSCLC. METHODS We examined the results of TTF-1 immunostaining and the clinical background of Japanese patients with nonsq NSCLC who received platinum-doublet chemotherapy at our hospital, from April 2009 to April 2021, and the correlation between regimens with or without pemetrexed in progression-free survival (PFS) and overall survival (OS). The efficacy of each regimen was then compared between TTF-1-positive and TTF-1-negative tumors. RESULTS TTF-1 immunostaining was performed in 145 patients during the study period: 92 were positive, and 53 were negative. A total of 24 patients presented with EGFR/ALK gene abnormality (16.6%). The PFS and OS of patients who were TTF-1-positive tended to be longer than those of the patients who were TTF-1-negative under either regimen. In other words, patients who were TTF-1-negative were frequently resistant to numerous chemotherapy drugs and experienced a poor prognosis under both regimens. The OS of patients who were TTF-1-positive and treated with the pemetrexed regimen was significantly longer than those on regimens without pemetrexed (963 vs. 412 days, HR = 0.73; 95% CI 0.55-0.96, p = 0.022), whereas there was no difference in PFS. CONCLUSIONS The positivity of TTF-1 immunostaining in tumors could be a predominant prognostic marker for patients who have advanced nonsq NSCLC. Our analysis examined the possibility of a pemetrexed regimen leading to a longer prognosis in Asian patients who were TTF-1-positive for nonsq NSCLC, as shown in previous studies.
Collapse
|
10
|
Xu J, Xiong Y, Xu Z, Xing H, Zhou L, Zhang X. From targeted therapy to a novel way: Immunogenic cell death in lung cancer. Front Med (Lausanne) 2022; 9:1102550. [PMID: 36619616 PMCID: PMC9816397 DOI: 10.3389/fmed.2022.1102550] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Lung cancer (LC) is one of the most incident malignancies and a leading cause of cancer mortality worldwide. Common tumorigenic drivers of LC mainly include genetic alterations of EGFR, ALK, KRAS, BRAF, ROS1, and MET. Small inhibitory molecules and antibodies selectively targeting these alterations or/and their downstream signaling pathways have been approved for treatment of LC. Unfortunately, following initial positive responses to these targeted therapies, a large number of patients show dismal prognosis due to the occurrence of resistance mechanisms, such as novel mutations of these genes and activation of alternative signaling pathways. Over the past decade, it has become clear that there is no possible cure for LC unless potent antitumor immune responses are induced by therapeutic intervention. Immunogenic cell death (ICD) is a newly emerged concept, a form of regulated cell death that is sufficient to activate adaptive immune responses against tumor cells. It transforms dying cancer cells into a therapeutic vaccine and stimulates long-lasting protective antitumor immunity. In this review, we discuss the key targetable genetic aberrations and the underlying mechanism of ICD in LC. Various agents inducing ICD are summarized and the possibility of harnessing ICD in LC immunotherapy is further explored.
Collapse
Affiliation(s)
- Jiawei Xu
- Department of Respiratory Diseases, The Second Affiliated Hospital of Nanchang University, Nanchang, China,The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Yiyi Xiong
- The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Zhou Xu
- The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Hongquan Xing
- Department of Respiratory Diseases, The Second Affiliated Hospital of Nanchang University, Nanchang, China,The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Lingyun Zhou
- International Education College, Jiangxi University of Chinese Medicine, Nanchang, China,*Correspondence: Lingyun Zhou,
| | - Xinyi Zhang
- Department of Respiratory Diseases, The Second Affiliated Hospital of Nanchang University, Nanchang, China,The Second Clinical Medical College of Nanchang University, Nanchang, China,Xinyi Zhang,
| |
Collapse
|
11
|
Terwoord JD, Beyer AM, Gutterman DD. Endothelial dysfunction as a complication of anti-cancer therapy. Pharmacol Ther 2022; 237:108116. [PMID: 35063569 PMCID: PMC9294076 DOI: 10.1016/j.pharmthera.2022.108116] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/16/2021] [Accepted: 01/12/2022] [Indexed: 12/14/2022]
Abstract
Recent strides in anti-cancer therapeutics have improved longevity and led to a growing population of cancer survivors, who are increasingly likely to die of other causes. Treatment-induced cardiotoxicity is a complication of several therapeutic agents with acute and long-term consequences for cancer patients. Vascular endothelial dysfunction is a precursor and hallmark of ischemic coronary disease and may play a role in anti-cancer therapy-induced cardiotoxicity. This review summarizes clinical evidence for endothelial dysfunction following anti-cancer therapy and extends the discussion to include the impact of therapeutic agents on conduit arteries and the microcirculation. We highlight the role of innate immune system activation and cross-talk between inflammation and oxidative stress as pathogenic mechanisms underlying anti-cancer therapy-induced vascular toxicity. Understanding the impact of anti-cancer agents on the vascular endothelium will inform therapeutic approaches to prevent or reverse treatment-induced cardiotoxicity and may serve as an important tool to predict, monitor, and prevent adverse cardiovascular outcomes in patients undergoing treatment.
Collapse
Affiliation(s)
- Janée D Terwoord
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States of America; Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States of America.
| | - Andreas M Beyer
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States of America; Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States of America; Cancer Center, Medical College of Wisconsin, Milwaukee, WI, United States of America
| | - David D Gutterman
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States of America; Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States of America
| |
Collapse
|
12
|
Identification of Potential Prognostic and Predictive Immunological Biomarkers in Patients with Stage I and Stage III Non-Small Cell Lung Cancer (NSCLC): A Prospective Exploratory Study. Cancers (Basel) 2021; 13:cancers13246259. [PMID: 34944879 PMCID: PMC8699057 DOI: 10.3390/cancers13246259] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/02/2021] [Accepted: 12/09/2021] [Indexed: 12/23/2022] Open
Abstract
Radiotherapy (RT) and chemotherapy can induce immune responses, but not much is known regarding treatment-induced immune changes in patients. This exploratory study aimed to identify potential prognostic and predictive immune-related proteins associated with progression-free survival (PFS) in patients with non-small cell lung cancer (NSCLC). In this prospective study, patients with stage I NSCLC treated with stereotactic body radiation therapy (n = 26) and patients with stage III NSCLC treated with concurrent chemoradiotherapy (n = 18) were included. Blood samples were collected before (v1), during (v2), and after RT (v3). In patients with stage I NSCLC, CD244 (HR: 10.2, 95% CI: 1.8-57.4) was identified as a negative prognostic biomarker. In patients with stage III NSCLC, CR2 and IFNGR2 were identified as positive prognostic biomarkers (CR2, HR: 0.00, 95% CI: 0.00-0.12; IFNGR2, HR: 0.04, 95% CI: 0.00-0.46). In addition, analysis of the treatment-induced changes of circulating protein levels over time (Δv2/v3-v1) also identified CXCL10 and IL-10 as negative predictive biomarkers (CXCL10, HR: 3.86, 95% CI: 1.0-14.7; IL-10, HR: 16.92 (2.74-104.36)), although serum-induced interferon (IFN) response was a positive prognostic. In conclusion, we identified several circulating immunogenic proteins that are correlated with PFS in patients with stage I and stage III NSCLC before and during treatment.
Collapse
|
13
|
Morimoto K, Uchino J, Yokoi T, Kijima T, Goto Y, Nakao A, Hibino M, Takeda T, Yamaguchi H, Takumi C, Takeshita M, Chihara Y, Yamada T, Hiranuma O, Morimoto Y, Iwasaku M, Kaneko Y, Yamada T, Takayama K. Early discontinuation of induction therapy in chemoimmunotherapy as an effective alternative to the standard regimen in patients with non-small cell lung cancer: a retrospective study. J Cancer Res Clin Oncol 2021; 148:2437-2446. [PMID: 34510271 DOI: 10.1007/s00432-021-03782-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 08/15/2021] [Indexed: 11/26/2022]
Abstract
PURPOSE We aimed to investigate whether induction chemotherapy with less than four courses is as effective as induction chemotherapy with more than four courses in non-small cell lung cancer (NSCLC) patients receiving chemoimmunotherapy. METHODS We retrospectively enrolled 249 patients with NSCLC who received chemoimmunotherapy at 12 centers in Japan between January and December 2019. The patient group that completed less than four courses owing to adverse events (AEs), and received subsequent maintenance therapy was compared to the group that received at least four courses of induction chemotherapy followed by maintenance therapy. RESULTS On univariate and multivariate analyses, the patient group that transitioned to maintenance therapy after completing less than four courses of induction chemotherapy had significantly shorter progression-free survival (PFS) than those who completed at least four courses (hazard ratio [HR] 2.15, 95% confidence interval: 1.38-3.37, p < 0.001 and HR 2.32, 95% confidence interval: 1.40-3.84, p = 0.001, respectively). There was no obvious difference in PFS between the group in which induction chemotherapy ended in two or three courses leading to partial or complete response, and the group that continued at least four courses of induction chemotherapy (log-rank test p = 0.53). CONCLUSION Treatment efficacy may be maintained if induction chemotherapy is completed in less than four courses owing to development of AEs, and is administered for more than two courses with partial or complete response; efficacy is maintained even on transitioning to maintenance therapy.
Collapse
Affiliation(s)
- Kenji Morimoto
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465, Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Junji Uchino
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465, Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan.
| | - Takashi Yokoi
- Department of Thoracic Oncology, Hyogo College of Medicine, Hyogo, Japan
| | - Takashi Kijima
- Department of Thoracic Oncology, Hyogo College of Medicine, Hyogo, Japan
| | - Yasuhiro Goto
- Department of Respiratory Medicine, Fujita Health University, Aichi, Japan
| | - Akira Nakao
- Department of Respiratory Medicine, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Makoto Hibino
- Department of Respiratory Medicine, Shonan Fujisawa Tokushukai Hospital, Kanagawa, Japan
| | - Takayuki Takeda
- Department of Respiratory Medicine, Japanese Red Cross Kyoto Daini Hospital, Kyoto, Japan
| | - Hiroyuki Yamaguchi
- Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Chieko Takumi
- Department of Respiratory Medicine, Japanese Red Cross Kyoto Daiichi Hospital, Kyoto, Japan
| | - Masafumi Takeshita
- Department of Respiratory Medicine, Ichinomiyanishi Hospital, Aichi, Japan
| | - Yusuke Chihara
- Department of Respiratory Medicine, Uji-Tokushukai Medical Center, Kyoto, Japan
| | - Takahiro Yamada
- Department of Pulmonary Medicine, Matsushita Memorial Hospital, Osaka, Japan
| | - Osamu Hiranuma
- Department of Pulmonary Medicine, Otsu City Hospital, Shiga, Japan
| | - Yoshie Morimoto
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465, Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Masahiro Iwasaku
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465, Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Yoshiko Kaneko
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465, Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Tadaaki Yamada
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465, Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Koichi Takayama
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465, Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| |
Collapse
|