1
|
Wu B, Koehler AN, Westcott PMK. New opportunities to overcome T cell dysfunction: the role of transcription factors and how to target them. Trends Biochem Sci 2024; 49:1014-1029. [PMID: 39277450 DOI: 10.1016/j.tibs.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 09/17/2024]
Abstract
Immune checkpoint blockade (ICB) therapies, which block inhibitory receptors on T cells, can be efficacious in reinvigorating dysfunctional T cell responses. However, most cancers do not respond to these therapies and even in those that respond, tumors can acquire resistance. New strategies are needed to rescue and recruit T cell responses across patient populations and disease states. In this review, we define mechanisms of T cell dysfunction, focusing on key transcription factor (TF) networks. We discuss the complex and sometimes contradictory roles of core TFs in both T cell function and dysfunction. Finally, we review strategies to target TFs using small molecule modulators, which represent a challenging but highly promising opportunity to tune the T cell response toward sustained immunity.
Collapse
Affiliation(s)
- Bocheng Wu
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Angela N Koehler
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | | |
Collapse
|
2
|
Childs JE, Morabito S, Das S, Santelli C, Pham V, Kusche K, Vera VA, Reese F, Campbell RR, Matheos DP, Swarup V, Wood MA. Relapse to cocaine seeking is regulated by medial habenula NR4A2/NURR1 in mice. Cell Rep 2024; 43:113956. [PMID: 38489267 PMCID: PMC11100346 DOI: 10.1016/j.celrep.2024.113956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 09/11/2023] [Accepted: 02/28/2024] [Indexed: 03/17/2024] Open
Abstract
Drugs of abuse can persistently change the reward circuit in ways that contribute to relapse behavior, partly via mechanisms that regulate chromatin structure and function. Nuclear orphan receptor subfamily4 groupA member2 (NR4A2, also known as NURR1) is an important effector of histone deacetylase 3 (HDAC3)-dependent mechanisms in persistent memory processes and is highly expressed in the medial habenula (MHb), a region that regulates nicotine-associated behaviors. Here, expressing the Nr4a2 dominant negative (Nurr2c) in the MHb blocks reinstatement of cocaine seeking in mice. We use single-nucleus transcriptomics to characterize the molecular cascade following Nr4a2 manipulation, revealing changes in transcriptional networks related to addiction, neuroplasticity, and GABAergic and glutamatergic signaling. The network controlled by NR4A2 is characterized using a transcription factor regulatory network inference algorithm. These results identify the MHb as a pivotal regulator of relapse behavior and demonstrate the importance of NR4A2 as a key mechanism driving the MHb component of relapse.
Collapse
Affiliation(s)
- Jessica E Childs
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697, USA; UC Irvine Center for Addiction Neuroscience, School of Biological Sciences, University of California, Irvine, Irvine, CA 92697, USA; Center for the Neurobiology of Learning and Memory, School of Biological Sciences, University of California, Irvine, Irvine, CA 92697, USA
| | - Samuel Morabito
- Institute for Memory Impairments and Neurological Disorders (MIND), University of California, Irvine, Irvine, CA 92697, USA; Mathematical, Computational, and Systems Biology (MCSB) Program, University of California, Irvine, Irvine, CA 92697, USA; Center for Complex Biological Systems, University of California, Irvine, Irvine, CA 92697, USA
| | - Sudeshna Das
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697, USA; Institute for Memory Impairments and Neurological Disorders (MIND), University of California, Irvine, Irvine, CA 92697, USA
| | - Caterina Santelli
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697, USA; UC Irvine Center for Addiction Neuroscience, School of Biological Sciences, University of California, Irvine, Irvine, CA 92697, USA; Center for the Neurobiology of Learning and Memory, School of Biological Sciences, University of California, Irvine, Irvine, CA 92697, USA
| | - Victoria Pham
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697, USA; UC Irvine Center for Addiction Neuroscience, School of Biological Sciences, University of California, Irvine, Irvine, CA 92697, USA; Center for the Neurobiology of Learning and Memory, School of Biological Sciences, University of California, Irvine, Irvine, CA 92697, USA
| | - Kelly Kusche
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697, USA; UC Irvine Center for Addiction Neuroscience, School of Biological Sciences, University of California, Irvine, Irvine, CA 92697, USA; Center for the Neurobiology of Learning and Memory, School of Biological Sciences, University of California, Irvine, Irvine, CA 92697, USA
| | - Vanessa Alizo Vera
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697, USA; UC Irvine Center for Addiction Neuroscience, School of Biological Sciences, University of California, Irvine, Irvine, CA 92697, USA; Center for the Neurobiology of Learning and Memory, School of Biological Sciences, University of California, Irvine, Irvine, CA 92697, USA
| | - Fairlie Reese
- Center for Complex Biological Systems, University of California, Irvine, Irvine, CA 92697, USA; Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Rianne R Campbell
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697, USA; UC Irvine Center for Addiction Neuroscience, School of Biological Sciences, University of California, Irvine, Irvine, CA 92697, USA; Center for the Neurobiology of Learning and Memory, School of Biological Sciences, University of California, Irvine, Irvine, CA 92697, USA
| | - Dina P Matheos
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697, USA; UC Irvine Center for Addiction Neuroscience, School of Biological Sciences, University of California, Irvine, Irvine, CA 92697, USA; Center for the Neurobiology of Learning and Memory, School of Biological Sciences, University of California, Irvine, Irvine, CA 92697, USA
| | - Vivek Swarup
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697, USA; Institute for Memory Impairments and Neurological Disorders (MIND), University of California, Irvine, Irvine, CA 92697, USA.
| | - Marcelo A Wood
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697, USA; UC Irvine Center for Addiction Neuroscience, School of Biological Sciences, University of California, Irvine, Irvine, CA 92697, USA; Center for the Neurobiology of Learning and Memory, School of Biological Sciences, University of California, Irvine, Irvine, CA 92697, USA; Institute for Memory Impairments and Neurological Disorders (MIND), University of California, Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
3
|
Liu W, Zhao Y, Fan J, Shen J, Tang H, Tang W, Wu D, Huang W, Ding Y, Qiao P, Lin J, Li Z, Li Q, Cui Q, Liu Y, Chen Y, Pu R, Han X, Yin J, Tan X, Cao G. Smoke and Spike: Benzo[a]pyrene Enhances SARS-CoV-2 Infection by Boosting NR4A2-Induced ACE2 and TMPRSS2 Expression. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300834. [PMID: 37428471 PMCID: PMC10502855 DOI: 10.1002/advs.202300834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 06/21/2023] [Indexed: 07/11/2023]
Abstract
Cigarette smoke aggravates severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. However, the underlying mechanisms remain unclear. Here, they show that benzo[a]pyrene in cigarette smoke extract facilitates SARS-CoV-2 infection via upregulating angiotensin-converting enzyme 2 (ACE2) and transmembrane protease serine 2 (TMPRSS2). Benzo[a]pyrene trans-activates the promoters of ACE2 and TMPRSS2 by upregulating nuclear receptor subfamily 4 A number 2 (NR4A2) and promoting its binding of NR4A2 to their promoters, which is independent of functional genetic polymorphisms in ACE2 and TMPRSS2. Benzo[a]pyrene increases the susceptibility of lung epithelial cells to SARS-CoV-2 pseudoviruses and facilitates the infection of authentic Omicron BA.5 in primary human alveolar type II cells, lung organoids, and lung and testis of hamsters. Increased expression of Nr4a2, Ace2, and Tmprss2, as well as decreased methylation of CpG islands at the Nr4a2 promoter are observed in aged mice compared to their younger counterparts. NR4A2 knockdown or interferon-λ2/λ3 stimulation downregulates the expression of NR4A2, ACE2, and TMPRSS2, thereby inhibiting the infection. In conclusion, benzo[a]pyrene enhances SARS-CoV-2 infection by boosting NR4A2-induced ACE2 and TMPRSS2 expression. This study elucidates the mechanisms underlying the detrimental effects of cigarette smoking on SARS-CoV-2 infection and provides prophylactic options for coronavirus disease 2019, particularly for the elderly population.
Collapse
|
4
|
Zarei M, Shrestha R, Johnson S, Yu Z, Karki K, Vaziri-Gohar A, Epps J, Du H, Suva L, Zarei M, Safe S. Nuclear Receptor 4A2 (NR4A2/NURR1) Regulates Autophagy and Chemoresistance in Pancreatic Ductal Adenocarcinoma. CANCER RESEARCH COMMUNICATIONS 2021; 1:65-78. [PMID: 35582016 PMCID: PMC9109828 DOI: 10.1158/2767-9764.crc-21-0073] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/04/2021] [Accepted: 10/25/2021] [Indexed: 01/05/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive cancer with poor prognosis and chemotherapy with gemcitabine has limited effects and is associated with development of drug resistance. Treatment of Panc1 and MiaPaca2 pancreatic cancer cells with gemcitabine induced expression of the orphan nuclear receptor 4A2 (NURR1) and analysis of the cancer genome atlas indicated the NURR1 is overexpressed in pancreatic tumors and is a negative prognostic factor for patient survival. Results of NURR1 knockdown or treatment with the NURR1 antagonist 1,1-bis(3΄-indolyl)-1-(p-chlorophenyl)methane (C-DIM 12) demonstrated that NURR1 was pro-oncogenic in pancreatic cancer cells and regulated cancer cell and tumor growth and survival. NURR1 is induced by gemcitabine and serves as a key drug-resistance factor and is also required for gemcitabine-induced cytoprotective autophagy. NURR1 regulated genes were determined by RNA sequencing of mRNAs expressed in MiaPaCa2 cells expressing NURR1 and in CRISPR/Cas9 gene edited cells for NURR1 knockdown and KEGG enrichment analysis of the differentially expressed genes showed that autophagy was the major pathway regulated by NURR1. Moreover, NURR1 regulated expression of two major autophagic genes ATG7 and ATG12 which are also overexpressed in pancreatic tumors and like NURR1 are negative prognostic factors for patient survival. Thus, gemcitabine-induced cytoprotective autophagy is due to the NURR1 - ATG7/ATG12 axis and this can be targeted and disrupted by NURR1 antagonist C-DIM12 demonstrating the potential clinical applications for combination therapies with gemcitabine and NURR1 antagonists.
Collapse
Affiliation(s)
- Mehrdad Zarei
- Department of Surgery, University Hospitals; Case Western University, School of Medicine, Cleveland, OH
| | - Rupesh Shrestha
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX
| | - Sneha Johnson
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX
| | - Zuhua Yu
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX
- Henan University of Science and Technology, Luoyang, Henan Province, China, P.R
| | - Keshav Karki
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX
| | - Ali Vaziri-Gohar
- Department of Surgery, University Hospitals; Case Western University, School of Medicine, Cleveland, OH
| | - Jessica Epps
- Department of Integrative Biosciences, College of Veterinary Medicine, Texas A&M University, College Station, TX
| | - Heng Du
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Larry Suva
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX
| | - Mahsa Zarei
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX
| | - Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX
| |
Collapse
|
5
|
Willems S, Zaienne D, Merk D. Targeting Nuclear Receptors in Neurodegeneration and Neuroinflammation. J Med Chem 2021; 64:9592-9638. [PMID: 34251209 DOI: 10.1021/acs.jmedchem.1c00186] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nuclear receptors, also known as ligand-activated transcription factors, regulate gene expression upon ligand signals and present as attractive therapeutic targets especially in chronic diseases. Despite the therapeutic relevance of some nuclear receptors in various pathologies, their potential in neurodegeneration and neuroinflammation is insufficiently established. This perspective gathers preclinical and clinical data for a potential role of individual nuclear receptors as future targets in Alzheimer's disease, Parkinson's disease, and multiple sclerosis, and concomitantly evaluates the level of medicinal chemistry targeting these proteins. Considerable evidence suggests the high promise of ligand-activated transcription factors to counteract neurodegenerative diseases with a particularly high potential of several orphan nuclear receptors. However, potent tools are lacking for orphan receptors, and limited central nervous system exposure or insufficient selectivity also compromises the suitability of well-studied nuclear receptor ligands for functional studies. Medicinal chemistry efforts are needed to develop dedicated high-quality tool compounds for the therapeutic validation of nuclear receptors in neurodegenerative pathologies.
Collapse
Affiliation(s)
- Sabine Willems
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany
| | - Daniel Zaienne
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany
| | - Daniel Merk
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany
| |
Collapse
|