1
|
Lu N, Guo Y, Ren L, Zhao H, Yan L, Han H, Zhang S. CORO1C Regulates the Malignant Biological Behavior of Ovarian Cancer Cells and Modulates the mRNA Expression Profile through the PI3K/AKT Signaling Pathway. Cell Biochem Biophys 2024:10.1007/s12013-024-01591-4. [PMID: 39433598 DOI: 10.1007/s12013-024-01591-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2024] [Indexed: 10/23/2024]
Abstract
Ovarian cancer (OC) is a frequently occurring gynecological tumor, and its global incidence has recently increased. Coronin-like actin-binding protein 1C (CORO1C) is known to activate the phosphoinositide 3-kinase (PI3K)-protein kinase B (AKT) pathway and promote tumor progression. However, its role in OC remains unclear. This study investigated the role of CORO1C in OC malignancy. In this study, quantitative real-time polymerase chain reaction (qRT-PCR) was used to examine AKT and CORO1C mRNA expression in clinical OC tissues and cells. Immunohistochemical analysis and western blotting were used to examine protein expression in OC tissues and cells, respectively. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), scratch wound-healing, and Transwell assays were performed to examine cell proliferation and migration. RNA-Seq was used to validate the relationship between AKT and CORO1C expression. The results showed that CORO1C was highly expressed in clinical OC tissues and SKOV3 cells, correlating with the International Federation of Gynecology and Obstetrics (FIGO) stage. Furthermore, CORO1C knockout inhibited the proliferation, migration, and invasion of SKOV3 cells; altered the gene expression patterns in these cells; and was closely associated with the PI3K/AKT pathway. Western blotting confirmed that CORO1C knockout reduced the levels of phosphorylated PI3K and AKT. Additionally, CORO1C knockout increased phosphatase and tensin homologs deleted on chromosome 10 (PTEN) protein expression, whereas CORO1C overexpression decreased it. In conclusion, this study demonstrated that high CORO1C levels in OC are associated with greater metastasis and worse prognosis. CORO1C negatively regulates PTEN expression, activates the PI3K/AKT pathway, and promotes OC cell malignancy In patients with OC, CORO1C may function as an effective therapeutic and predictive biomarker.
Collapse
Affiliation(s)
- Na Lu
- Gynecology and oncology department, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030013, China
| | - Yongfeng Guo
- Gynecology and oncology department, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030013, China
| | - Lixin Ren
- General surgery department, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030013, China
| | - Hongwei Zhao
- Gynecology and oncology department, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030013, China
| | - Lijun Yan
- Gynecology and oncology department, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030013, China
| | - Haiqiong Han
- Gynecology and oncology department, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030013, China
| | - Sanyuan Zhang
- Department of gynecology and obstetrics, The First Clinical Medical College of Shanxi Medical University, Taiyuan, 030000, China.
| |
Collapse
|
2
|
Wang Y, Zhang J, Yang Y, Liu Z, Sun S, Li R, Zhu H, Li T, Zheng J, Li J, Ma L. Circular RNAs in human diseases. MedComm (Beijing) 2024; 5:e699. [PMID: 39239069 PMCID: PMC11374765 DOI: 10.1002/mco2.699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 09/07/2024] Open
Abstract
Circular RNAs (circRNAs) are a unique class of RNA molecules formed through back-splicing rather than linear splicing. As an emerging field in molecular biology, circRNAs have garnered significant attention due to their distinct structure and potential functional implications. A comprehensive understanding of circRNAs' functions and potential clinical applications remains elusive despite accumulating evidence of their involvement in disease pathogenesis. Recent research highlights their significant roles in various human diseases, but comprehensive reviews on their functions and applications remain scarce. This review provides an in-depth examination of circRNAs, focusing first on their involvement in non-neoplastic diseases such as respiratory, endocrine, metabolic, musculoskeletal, cardiovascular, and renal disorders. We then explore their roles in tumors, with particular emphasis on exosomal circular RNAs, which are crucial for cancer initiation, progression, and resistance to treatment. By detailing their biogenesis, functions, and impact on disease mechanisms, this review underscores the potential of circRNAs as diagnostic biomarkers and therapeutic targets. The review not only enhances our understanding of circRNAs' roles in specific diseases and tumor types but also highlights their potential as novel diagnostic and therapeutic tools, thereby paving the way for future clinical investigations and potential therapeutic interventions.
Collapse
Affiliation(s)
- Yuanyong Wang
- Department of Thoracic Surgery Tangdu Hospital Air Force Medical University Xi'an China
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education) The First Department of Thoracic Surgery Peking University Cancer Hospital and Institute Peking University School of Oncology Beijing China
| | - Jin Zhang
- Department of Traditional Chinese Medicine Tangdu Hospital Air Force Medical University Xi'an China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Tumor Diagnosis and Treatment in Shaanxi Province Xi'an China
| | - Yuchen Yang
- Department of Traditional Chinese Medicine Tangdu Hospital Air Force Medical University Xi'an China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Tumor Diagnosis and Treatment in Shaanxi Province Xi'an China
| | - Zhuofeng Liu
- Department of Traditional Chinese Medicine The Third Affiliated Hospital of Xi'an Medical University Xi'an China
| | - Sijia Sun
- Department of Traditional Chinese Medicine Tangdu Hospital Air Force Medical University Xi'an China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Tumor Diagnosis and Treatment in Shaanxi Province Xi'an China
| | - Rui Li
- Department of Epidemiology School of Public Health Air Force Medical University Xi'an China
| | - Hui Zhu
- Department of Anatomy Medical College of Yan'an University Yan'an China
- Institute of Medical Research Northwestern Polytechnical University Xi'an China
| | - Tian Li
- School of Basic Medicine Fourth Military Medical University Xi'an China
| | - Jin Zheng
- Department of Traditional Chinese Medicine Tangdu Hospital Air Force Medical University Xi'an China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Tumor Diagnosis and Treatment in Shaanxi Province Xi'an China
| | - Jie Li
- Department of Endocrine Xijing 986 Hospital Air Force Medical University Xi'an China
| | - Litian Ma
- Department of Thoracic Surgery Tangdu Hospital Air Force Medical University Xi'an China
- Department of Traditional Chinese Medicine Tangdu Hospital Air Force Medical University Xi'an China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Tumor Diagnosis and Treatment in Shaanxi Province Xi'an China
- Department of Gastroenterology Tangdu Hospital Air Force Medical University Xi'an China
- School of Medicine Northwest University Xi'an China
| |
Collapse
|
3
|
Hama Faraj GS, Hussen BM, Abdullah SR, Fatih Rasul M, Hajiesmaeili Y, Baniahmad A, Taheri M. Advanced approaches of the use of circRNAs as a replacement for cancer therapy. Noncoding RNA Res 2024; 9:811-830. [PMID: 38590433 PMCID: PMC10999493 DOI: 10.1016/j.ncrna.2024.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/18/2024] [Accepted: 03/29/2024] [Indexed: 04/10/2024] Open
Abstract
Cancer is a broad name for a group of diseases in which abnormal cells grow out of control and are characterized by their complexity and recurrence. Although there has been progress in cancer therapy with the entry of precision medicine and immunotherapy, cancer incidence rates have increased globally. Non-coding RNAs in the form of circular RNAs (circRNAs) play crucial roles in the pathogenesis, clinical diagnosis, and therapy of different diseases, including cancer. According to recent studies, circRNAs appear to serve as accurate indicators and therapeutic targets for cancer treatment. However, circRNAs are promising candidates for cutting-edge cancer therapy because of their distinctive circular structure, stability, and wide range of capabilities; many challenges persist that decrease the applications of circRNA-based cancer therapeutics. Here, we explore the roles of circRNAs as a replacement for cancer therapy, highlight the main challenges facing circRNA-based cancer therapies, and discuss the key strategies to overcome these challenges to improve advanced innovative therapies based on circRNAs with long-term health effects.
Collapse
Affiliation(s)
- Goran Sedeeq Hama Faraj
- Department of Medical Laboratory Science, Komar University of Science and Technology, Sulaymaniyah, 46001, Iraq
| | - Bashdar Mahmud Hussen
- Department of Biomedical Sciences, College of Science, Cihan University-Erbil, Erbil, Kurdistan Region, 44001, Iraq
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region, 44001, Iraq
| | - Snur Rasool Abdullah
- Medical Laboratory Science, Lebanese French University, Erbil, Kurdistan Region, 44001, Iraq
| | - Mohammed Fatih Rasul
- Department of Pharmaceutical Basic Science, Faculty of Pharmacy, Tishk International University, Erbil, Kurdistan Region, Iraq
| | | | - Aria Baniahmad
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Liu S, Wang S, Guo J, Wang C, Zhang H, Lin D, Wang Y, Hu X. Crosstalk among disulfidptosis-related lncRNAs in lung adenocarcinoma reveals a correlation with immune profile and clinical prognosis. Noncoding RNA Res 2024; 9:772-781. [PMID: 38590434 PMCID: PMC10999374 DOI: 10.1016/j.ncrna.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/08/2024] [Accepted: 03/13/2024] [Indexed: 04/10/2024] Open
Abstract
Disulfidptosis refers to a specific programmed cell death process characterized by the accumulation of disulfides. It has recently been reported in several cancers. However, the impact of disulfidptosis-related long non-coding RNAs (lncRNAs) on malignant tumors has remained largely unknown. In the present work, we screened prognostic disulfidptosis-related lncRNAs and studied their effects on lung adenocarcinoma. Relevant clinical data of lung adenocarcinoma cases were retrieved from The Cancer Genome Atlas (TCGA) database. RNA sequencing was used to identify differentially expressed disulfidptosis-related lncRNAs within lung adenocarcinoma. In addition, prognostic disulfidptosis-related lncRNAs were obtained through univariate Cox regression analysis. LASSO-COX was used to construct new disulfidptosis-related lncRNA signatures. Different statistical approaches were used to validate the practicability and accuracy of the disulfidptosis-related lncRNAs signatures. Furthermore, several bioinformatic approaches were used to study relevant heterogeneities in biological processes and pathways of diverse risk groups. Reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR) was conducted to analyze the expression of disulfidptosis-related lncRNAs. Finally, seven disulfidptosis-related lncRNA signatures were identified in lung adenocarcinoma cells. The prognosis prediction model constructed efficiently predicted patient survival. Subgroup analysis revealed significant differences in immune cell proportion, including T follicular helper cells and M0 macrophages. In addition, in vitro experimental results demonstrated significant differences in disulfidptosis-related lncRNAs. Altogether, the six disulfidptosis-related lncRNA signatures could serve as a potential prognostic biomarker for lung adenocarcinoma. Furthermore, these can be used as a prediction model in individualized immunotherapy for lung adenocarcinoma.
Collapse
Affiliation(s)
- Shifeng Liu
- Department of Interventional Medical Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Song Wang
- Department of Interventional Medical Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jian Guo
- Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Congxiao Wang
- Department of Interventional Medical Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hao Zhang
- Department of Interventional Medical Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Dongliang Lin
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yuanyong Wang
- Department of Thoracic Surgery, Tangdu Hospital of Air Force Military Medical University, Xi'an, China
| | - Xiaokun Hu
- Department of Interventional Medical Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
5
|
Wang C, Zhang J, Wang H, Chen R, Lu M. Family with sequence similarity 83, member A (FAM83A) inhibits ferroptosis via the Wnt/β-catenin pathway in lung squamous cell cancer. Cell Death Discov 2024; 10:332. [PMID: 39033191 PMCID: PMC11271298 DOI: 10.1038/s41420-024-02101-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/05/2024] [Accepted: 07/12/2024] [Indexed: 07/23/2024] Open
Abstract
The function of Family With Sequence Similarity 83, Member A (FAM83A) in lung squamous cell carcinoma (LUSC) is largely unknown. Here, we detected its prognostic and regulation roles in LUSC. Bioinformatics methods were applied initially to predict the expression level and prognostic value of FAM83A mRNA in LUSC. In vitro experiments, such as western blot, colony formation and cell viability assay, lipid Reactive oxygen species (ROS), malondialdehyde (MDA), reduced glutathione (GSH)/oxidized glutathione disulfide (GSSG), and 4-hydroxy-2-nonenal (4-HNE) assay, were used to investigate its mechanism. In vivo experiments were further conducted to validate the mechanism. Results from TCGA and Oncomine databases revealed significantly higher FAM83A mRNA expression levels in LUSC than in normal lung tissue. TCGA and GEO databases and our database revealed that FAM83A expression level was an independent prognostic factor for both overall survival and progression-free survival. Besides, FAM83A was significantly associated with a higher ability of growth and clonogenicity. Mechanistically, in vitro and in vivo experiments revealed that FAM83A could promote LUSC cell growth by inhibiting ferroptosis via activating the Wnt/β-catenin signaling pathway. The rescue experiment demonstrated that inhibition of the Wnt/β-catenin pathway counteracted the function of FAM83A. FAM83A is overexpressed in LUSC and could serve as a prognosis prediction biomarker for LUSC. FAM83A promotes LUSC cell growth by inhibiting ferroptosis via activating the Wnt/β-catenin signaling pathway, which provides a new potential therapeutic target for LUSC treatment.
Collapse
Affiliation(s)
- Cong Wang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences; Department of Radiation Oncology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jing Zhang
- Department of Drug Inspection, Tai'an Institute For Food And Drug Control (Tai'an Fiber Inspection Institute), Tai'an, China
| | - Hongjiao Wang
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ruixue Chen
- Department of Encephalopathy (II), Xintai Hospital of Traditional Chinese Medicine, Tai'an, China
| | - Ming Lu
- Department of Thoracic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.
| |
Collapse
|
6
|
Goleij P, Pourali G, Raisi A, Ravaei F, Golestan S, Abed A, Razavi ZS, Zarepour F, Taghavi SP, Ahmadi Asouri S, Rafiei M, Mousavi SM, Hamblin MR, Talei S, Sheida A, Mirzaei H. Role of Non-coding RNAs in the Response of Glioblastoma to Temozolomide. Mol Neurobiol 2024:10.1007/s12035-024-04316-z. [PMID: 39023794 DOI: 10.1007/s12035-024-04316-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 06/16/2024] [Indexed: 07/20/2024]
Abstract
Chemotherapy and radiotherapy are widely used in clinical practice across the globe as cancer treatments. Intrinsic or acquired chemoresistance poses a significant problem for medical practitioners and researchers, causing tumor recurrence and metastasis. The most dangerous kind of malignant brain tumor is called glioblastoma multiforme (GBM) that often recurs following surgery. The most often used medication for treating GBM is temozolomide chemotherapy; however, most patients eventually become resistant. Researchers are studying preclinical models that accurately reflect human disease and can be used to speed up drug development to overcome chemoresistance in GBM. Non-coding RNAs (ncRNAs) have been shown to be substantial in regulating tumor development and facilitating treatment resistance in several cancers, such as GBM. In this work, we mentioned the mechanisms of how different ncRNAs (microRNAs, long non-coding RNAs, circular RNAs) can regulate temozolomide chemosensitivity in GBM. We also address the role of these ncRNAs encapsulated inside secreted exosomes.
Collapse
Affiliation(s)
- Pouya Goleij
- Department of Genetics, Faculty of Biology, Sana Institute of Higher Education, Sari, Iran
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ghazaleh Pourali
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arash Raisi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Ravaei
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Shahin Golestan
- Department of Ophthalmology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atena Abed
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Zahra Sadat Razavi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Zarepour
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Pouya Taghavi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Sahar Ahmadi Asouri
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Moein Rafiei
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Mojtaba Mousavi
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Michael R Hamblin
- Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa
| | - Sahand Talei
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Amirhossein Sheida
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran.
| | - Hamed Mirzaei
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
7
|
Lv X, Yang L, Xie Y, Momeni MR. Non-coding RNAs and exosomal non-coding RNAs in lung cancer: insights into their functions. Front Cell Dev Biol 2024; 12:1397788. [PMID: 38859962 PMCID: PMC11163066 DOI: 10.3389/fcell.2024.1397788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/02/2024] [Indexed: 06/12/2024] Open
Abstract
Lung cancer is the second most common form of cancer worldwide Research points to the pivotal role of non-coding RNAs (ncRNAs) in controlling and managing the pathology by controlling essential pathways. ncRNAs have all been identified as being either up- or downregulated among individuals suffering from lung cancer thus hinting that they may play a role in either promoting or suppressing the spread of the disease. Several ncRNAs could be effective non-invasive biomarkers to diagnose or even serve as effective treatment options for those with lung cancer, and several molecules have emerged as potential targets of interest. Given that ncRNAs are contained in exosomes and are implicated in the development and progression of the malady. Herein, we have summarized the role of ncRNAs in lung cancer. Moreover, we highlight the role of exosomal ncRNAs in lung cancer.
Collapse
Affiliation(s)
- Xiaolong Lv
- Department of Cardiothoracic Surgery, The People’s Hospital of Changshou, Chongqing, China
| | - Lei Yang
- Department of Cardiothoracic Surgery, The People’s Hospital of Tongliang District, Chongqing, China
| | - Yunbo Xie
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | | |
Collapse
|
8
|
Zhao YX, Yu CQ, Li LP, Wang DW, Song HF, Wei Y. BJLD-CMI: a predictive circRNA-miRNA interactions model combining multi-angle feature information. Front Genet 2024; 15:1399810. [PMID: 38798699 PMCID: PMC11116695 DOI: 10.3389/fgene.2024.1399810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 04/03/2024] [Indexed: 05/29/2024] Open
Abstract
Increasing research findings suggest that circular RNA (circRNA) exerts a crucial function in the pathogenesis of complex human diseases by binding to miRNA. Identifying their potential interactions is of paramount importance for the diagnosis and treatment of diseases. However, long cycles, small scales, and time-consuming processes characterize previous biological wet experiments. Consequently, the use of an efficient computational model to forecast the interactions between circRNA and miRNA is gradually becoming mainstream. In this study, we present a new prediction model named BJLD-CMI. The model extracts circRNA sequence features and miRNA sequence features by applying Jaccard and Bert's method and organically integrates them to obtain CMI attribute features, and then uses the graph embedding method Line to extract CMI behavioral features based on the known circRNA-miRNA correlation graph information. And then we predict the potential circRNA-miRNA interactions by fusing the multi-angle feature information such as attribute and behavior through Autoencoder in Autoencoder Networks. BJLD-CMI attained 94.95% and 90.69% of the area under the ROC curve on the CMI-9589 and CMI-9905 datasets. When compared with existing models, the results indicate that BJLD-CMI exhibits the best overall competence. During the case study experiment, we conducted a PubMed literature search to confirm that out of the top 10 predicted CMIs, seven pairs did indeed exist. These results suggest that BJLD-CMI is an effective method for predicting interactions between circRNAs and miRNAs. It provides a valuable candidate for biological wet experiments and can reduce the burden of researchers.
Collapse
Affiliation(s)
- Yi-Xin Zhao
- School of information Engineering, Xijing University, Xi’an, China
| | - Chang-Qing Yu
- School of information Engineering, Xijing University, Xi’an, China
| | - Li-Ping Li
- School of information Engineering, Xijing University, Xi’an, China
- College of Grassland and Environment Sciences, Xinjiang Agricultural University, Ürümqi, China
| | - Deng-Wu Wang
- School of information Engineering, Xijing University, Xi’an, China
| | - Hui-Fan Song
- School of information Engineering, Xijing University, Xi’an, China
| | - Yu Wei
- School of information Engineering, Xijing University, Xi’an, China
| |
Collapse
|
9
|
Duan N, Hua Y, Yan X, He Y, Zeng T, Gong J, Fu Z, Li W, Yin Y. Unveiling Alterations of Epigenetic Modifications and Chromatin Architecture Leading to Lipid Metabolic Reprogramming during the Evolutionary Trastuzumab Adaptation of HER2-Positive Breast Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309424. [PMID: 38460162 PMCID: PMC11095153 DOI: 10.1002/advs.202309424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/08/2024] [Indexed: 03/11/2024]
Abstract
Secondary trastuzumab resistance represents an evolutionary adaptation of HER2-positive breast cancer during anti-HER2 treatment. Most current studies have tended to prioritize HER2 and its associated signaling pathways, often overlooking broader but seemingly less relevant cellular processes, along with their associated genetic and epigenetic mechanisms. Here, transcriptome data is not only characterized but also examined epigenomic and 3D genome architecture information in both trastuzumab-sensitive and secondary-resistant breast cancer cells. The findings reveal that the global metabolic reprogramming associated with trastuzumab resistance may stem from genome-wide alterations in both histone modifications and chromatin structure. Specifically, the transcriptional activities of key genes involved in lipid metabolism appear to be regulated by variant promoter H3K27me3 and H3K4me3 modifications, as well as promoter-enhancer interactions. These discoveries offer valuable insights into how cancer cells adapt to anti-tumor drugs and have the potential to impact future diagnostic and treatment strategies.
Collapse
Affiliation(s)
- Ningjun Duan
- Department of oncologyFirst affiliation hospital of Nanjing medical universityNanjing210029China
| | - Yijia Hua
- Department of oncologyFirst affiliation hospital of Nanjing medical universityNanjing210029China
| | - Xueqi Yan
- Department of oncologyFirst affiliation hospital of Nanjing medical universityNanjing210029China
| | - Yaozhou He
- Department of oncologyFirst affiliation hospital of Nanjing medical universityNanjing210029China
| | - Tianyu Zeng
- Department of oncologyFirst affiliation hospital of Nanjing medical universityNanjing210029China
| | - Jue Gong
- Department of oncologyFirst affiliation hospital of Nanjing medical universityNanjing210029China
| | - Ziyi Fu
- Department of oncologyFirst affiliation hospital of Nanjing medical universityNanjing210029China
| | - Wei Li
- Department of oncologyFirst affiliation hospital of Nanjing medical universityNanjing210029China
| | - Yongmei Yin
- Department of oncologyFirst affiliation hospital of Nanjing medical universityNanjing210029China
| |
Collapse
|
10
|
Jia S, Yu L, Wang L, Peng L. The functional significance of circRNA/miRNA/mRNA interactions as a regulatory network in lung cancer biology. Int J Biochem Cell Biol 2024; 169:106548. [PMID: 38360264 DOI: 10.1016/j.biocel.2024.106548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/22/2024] [Accepted: 02/02/2024] [Indexed: 02/17/2024]
Abstract
Lung cancer, the leading cause of cancer-related deaths, presents significant challenges to patients due to its poor prognosis. Recent research has increasingly implicated circular RNAs in the development and progression of lung cancer. These circular RNAs have been found to impact various aspects of tumor behavior, including proliferation, metastasis, cell cycle regulation, apoptosis, cancer stem cells, therapy response, and the tumor microenvironment. One of the key mechanisms by which circular RNAs exert their influence is through their ability to act as miRNA sponges, sequestering microRNAs and preventing them from targeting other RNA molecules. Accumulating evidence suggests that circular RNAs can function as competing endogenous RNAs, affecting the expression of target mRNAs by sequestering microRNAs. Dysregulation of competing endogenous RNAs networks involving circular RNAs, microRNAs, and mRNAs leads to the aberrant expression of oncogenes and tumor suppressors involved in lung cancer pathogenesis. Understanding the dynamic interplay and molecular mechanisms among circular RNAs, microRNAs, and mRNAs holds great promise for advancing early diagnosis, personalized therapeutic interventions, and improved patient outcomes in lung cancer. Therefore, this study aims to provide an in-depth exploration of the executive roles of circular RNAs/microRNAs/ mRNAs interactions in lung cancer pathogenesis and their potential utility for diagnosing lung cancer, predicting patient prognosis, and guiding targeted therapies. By offering a comprehensive overview of the dysregulation of the axes as driving factors in lung cancer, we aim to pave the way for their translation into clinical practice in the future.
Collapse
Affiliation(s)
- Shengnan Jia
- Department of Respiratory Medicine, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, Jilin 130021, China; Department of Hepatopancreatobiliary Medicine, The Second Hospital of Jilin University, Changchun, Jilin 130041, China
| | - Ling Yu
- Department of Pharmacy, The Second Hospital of Jilin University, Changchun 130041, China
| | - Lihui Wang
- Department of Respiratory Medicine, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, Jilin 130021, China.
| | - Liping Peng
- Department of Respiratory Medicine, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, Jilin 130021, China.
| |
Collapse
|
11
|
Zhao C, Li X, Zhang R, Lyu H, Xiao S, Guo D, Ali DW, Michalak M, Chen XZ, Zhou C, Tang J. Sense and anti-sense: Role of FAM83A and FAM83A-AS1 in Wnt, EGFR, PI3K, EMT pathways and tumor progression. Biomed Pharmacother 2024; 173:116372. [PMID: 38432129 DOI: 10.1016/j.biopha.2024.116372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024] Open
Abstract
An increasing number of studies have shown that FAM83A, a member of the family with sequence similarity 83 (FAM83), which consists of eight members, is a key tumor therapeutic target involved in multiple signaling pathways. It has been reported that FAM83A plays essential roles in the regulation of Wnt/β-catenin, EGFR, MAPK, EMT, and other signaling pathways and physiological processes in models of pancreatic cancer, lung cancer, breast cancer, and other malignant tumors. Moreover, the expression of FAM83A could be significantly affected by multiple noncoding RNAs that are dysregulated in malignant tumors, the dysregulation of which is essential for the malignant process. Among these noncoding RNAs, the most noteworthy is the antisense long noncoding (Lnc) RNA of FAM83A itself (FAM83A-AS1), indicating an outstanding synergistic carcinogenic effect between FAM83A and FAM83A-AS1. In the present study, the specific mechanisms by which FAM83A and FAM83A-AS1 cofunction in the Wnt/β-catenin and EGFR signaling pathways were reviewed in detail, which will guide subsequent research. We also described the applications of FAM83A and FAM83A-AS1 in tumor therapy and provided a certain theoretical basis for subsequent drug target development and combination therapy strategies.
Collapse
Affiliation(s)
- Chenshu Zhao
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China; National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| | - Xiaowen Li
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China; National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| | - Rui Zhang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China; National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| | - Hao Lyu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China; National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| | - Shuai Xiao
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China; National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| | - Dong Guo
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China; National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| | - Declan William Ali
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Marek Michalak
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Xing-Zhen Chen
- Membrane Protein Disease Research Group, Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Cefan Zhou
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China; National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China.
| | - Jingfeng Tang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China; National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China.
| |
Collapse
|
12
|
Meng L, Wu H, Wu J, Ding P, He J, Sang M, Liu L. Mechanisms of immune checkpoint inhibitors: insights into the regulation of circular RNAS involved in cancer hallmarks. Cell Death Dis 2024; 15:3. [PMID: 38177102 PMCID: PMC10766988 DOI: 10.1038/s41419-023-06389-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 01/06/2024]
Abstract
Current treatment strategies for cancer, especially advanced cancer, are limited and unsatisfactory. One of the most substantial advances in cancer therapy, in the last decades, was the discovery of a new layer of immunotherapy approach, immune checkpoint inhibitors (ICIs), which can specifically activate immune cells by targeting immune checkpoints. Immune checkpoints are a type of immunosuppressive molecules expressed on immune cells, which can regulate the degree of immune activation and avoid autoimmune responses. ICIs, such as anti-PD-1/PD-L1 drugs, has shown inspiring efficacy and broad applicability across various cancers. Unfortunately, not all cancer patients benefit remarkably from ICIs, and the overall response rates to ICIs remain relatively low for most cancer types. Moreover, the primary and acquired resistance to ICIs pose serious challenges to the clinical application of cancer immunotherapy. Thus, a deeper understanding of the molecular biological properties and regulatory mechanisms of immune checkpoints is urgently needed to improve clinical options for current therapies. Recently, circular RNAs (circRNAs) have attracted increasing attention, not only due to their involvement in various aspects of cancer hallmarks, but also for their impact on immune checkpoints in shaping the tumor immune microenvironment. In this review, we systematically summarize the current status of immune checkpoints in cancer and the existing regulatory roles of circRNAs on immune checkpoints. Meanwhile, we also aim to settle the issue in an evidence-oriented manner that circRNAs involved in cancer hallmarks regulate the effects and resistance of ICIs by targeting immune checkpoints.
Collapse
Affiliation(s)
- Lingjiao Meng
- Department of Tumor Immunotherapy, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050035, China
- Research Center and Tumor Research Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Haotian Wu
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050011, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, 050011, China
| | - Jiaxiang Wu
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050011, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, 050011, China
| | - Ping'an Ding
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050011, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, 050011, China
| | - Jinchen He
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050011, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, 050011, China
| | - Meixiang Sang
- Research Center and Tumor Research Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050017, China.
- Science and Education Department, Shanghai Electric Power Hospital, Shanghai, 20050, China.
| | - Lihua Liu
- Department of Tumor Immunotherapy, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050035, China.
| |
Collapse
|
13
|
Xia F, Xie M, He J, Cheng D. Circ_0004140 promotes lung adenocarcinoma progression by upregulating NOVA2 via sponging miR-330-5p. Thorac Cancer 2023; 14:3483-3494. [PMID: 37920146 PMCID: PMC10719663 DOI: 10.1111/1759-7714.15141] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 11/04/2023] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) play a significant role in the tumorigenesis and progression of diverse human cancers, including lung adenocarcinoma. A previous study suggested that circ_0004140 expression was increased in lung adenocarcinoma cells. However, the molecular mechanism of circRNA circ_0004140 involved in lung adenocarcinoma is poorly defined. METHODS Circ_0004140, microRNA-330-5p (miR-330-5p), and NOVA alternative splicing regulator 2 (NOVA2) expression were determined by real-time quantitative polymerase chain reaction (RT-qPCR). Cell proliferation, apoptosis, migration, invasion, and angiogenesis ability were assessed using 5-ethynyl-2'-deoxyuridine (EdU), flow cytometry, wound healing, transwell, and capillary-like network formation assays. Proliferating cell nuclear antigen (PCNA), cyclin D1, and NOVA2 protein levels were detected using Western blot assay. The interaction between miR-330-5p and circ_0004140 or NOVA2 was verified by dual-luciferase reporter assay. Xenograft tumor model was utilized to assess the role of circ_0004140 in tumor growth in vivo. RESULTS Circ_0004140 was upregulated in lung adenocarcinoma tissues and cell lines. Circ_0004140 silencing suppressed cell proliferation, migration, invasion and tube formation ability, and triggered the apoptosis of lung adenocarcinoma cells. Circ_0004140 acted as a molecular sponge for miR-330-5p, and miR-330-5p silencing largely reversed circ_0004140 knockdown-induced effects in lung adenocarcinoma cells. NOVA2 was a target of miR-330-5p, and NOVA2 overexpression might largely overturn miR-330-5p overexpression-induced influences in lung adenocarcinoma cells. Circ_0004140 upregulated NOVA2 expression via sponging miR-330-5p in lung adenocarcinoma cells. Circ_0004140 silencing restrained xenograft tumor growth in vivo. CONCLUSION Circ_0004140 knockdown might suppress the malignant biological behaviors of lung adenocarcinoma cells via miR-330-5p-dependent regulation of NOVA2.
Collapse
Affiliation(s)
- Fan Xia
- Department of Respiratory and Critical Care MedicineWest China Hospital, Sichuan UniversityChengduChina
| | - Mei Xie
- Department of Respiratory and Critical Care MedicineThe Chengdu Second People's HospitalChengduChina
| | - Jinqi He
- Department of Hematology Oncologythe central Hospital of ShaoyangShaoyangChina
| | - Deyun Cheng
- Department of Respiratory and Critical Care MedicineWest China Hospital, Sichuan UniversityChengduChina
| |
Collapse
|
14
|
Huang L, Dou G, Lu J, Chen Z, Wang J. Has_circ_0071803 promotes colorectal cancer progression by regulating miR-330-5p/MAPK signaling pathway. Histol Histopathol 2023; 38:1443-1451. [PMID: 36856372 DOI: 10.14670/hh-18-598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Colorectal cancer (CRC) is the third most commonly diagnosed cancer worldwide. A lack of effective targeted therapies against CRC makes the treatment challenging. Here, we report a circular RNA (circRNA), has_circ_0071803, functioning as an oncogene in CRC. Circ_0071803 was upregulated in CRC tissues and cell lines, and its expression levels were inversely correlated with the prognosis and survival rate of patients with CRC. Circ_0071803 knockdown suppressed cell proliferation, migration, and invasion in CRC. Moreover, we found that circ_0071803 sponged miR-330-5p, thereby upregulating mitogen-activated protein kinase 1 (MAPK1) in CRC cells. The suppression of cell activities by circ_0071803 knockdown were rescued by miR-330-5p inhibition or MAPK1 overexpression. Collectively, our findings elucidate that circ_0071803 promotes CRC progression by regulating the miR-330-5p/MAPK1 pathway, providing potential therapeutic targets for designing effective targeted treatments.
Collapse
Affiliation(s)
- Liyong Huang
- Department of Gastrointestinal Surgery, The First Hospital of Jiaxing, Jiaxing, Zhejiang, China
| | - Guangjian Dou
- Department of Gastrointestinal Surgery, The First Hospital of Jiaxing, Jiaxing, Zhejiang, China
| | - Jiajun Lu
- Department of Gastrointestinal Surgery, The First Hospital of Jiaxing, Jiaxing, Zhejiang, China
| | - Zhiheng Chen
- Department of Gastrointestinal Surgery, The First Hospital of Jiaxing, Jiaxing, Zhejiang, China
| | - Jiayi Wang
- Department of Hepatobiliary Surgery, The First Hospital of Jiaxing, Jiaxing, Zhejiang, China.
| |
Collapse
|
15
|
Zhang S, Zhang P, Wu A, Xu Z, Huang S, Liu X, Dong J. Downregulated M6A modification and expression of circRNA_103239 promoted the progression of glioma by regulating the miR-182-5p/MTSS1 signalling pathway. J Cancer 2023; 14:3508-3520. [PMID: 38021156 PMCID: PMC10647192 DOI: 10.7150/jca.85320] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 05/18/2023] [Indexed: 12/01/2023] Open
Abstract
Glioma is a common type of tumor in the central nervous system, and the mortality is high. The prognosis of advanced glioma patients remains poor, and the therapeutic strategies need to be developed. The roles of circRNAs in glioma remain largely unknown. The aim of this study was to explore the functions circRNA_103239 in the biological behaviour changes of glioma cells. The expression of circRNA_103239 in clinical samples and glioma cells were examined using RT-qPCR. The targets of circRNA_103239 were predicted using bioinformatics approach. Gain- and loss-of-function study were carried out. The proliferation of transfected cells were evaluated by CCK-8 assay. Migratory and invasive activities of the cells were examined using wound healing, colony formation and transwell assay. Tumor growth was also evaluated in vivo. The results indicated that the expression of circRNA_103239 was predominantly detected in the cytoplasma of glioma cells. In addition, the expression of circRNA_103239 was down-regulated in glioma, and up-regulated circRNA_103239 inhibited the progression of glioma. Furthermore, miR-182-5p was the novel target of circRNA_103239 in glioma, and MTSS1 was the putative downstream molecule of circRNA_103239/miR-182-5p axis. Additionally, circRNA_103239 suppressed the progression of glioma in a miR-182-5p/MTSS1 dependent manner. Moreover, circRNA_103239 inhibited tumour growth in vivo, and the expression of circRNA_103239 was regulated by METTL14-mediated m6A modification. In summary, in normal cells, METTL14 mediated the m6A modification and expression of circRNA_103239, which sponging miR-182-5p and inducing the expression of MTSS1, subsequently inhibiting the EMT; whereas in glioma cells, downregulated METTL14 induced downregulated m6A modification and expression of circRNA_103239, further resulting in the up-regulation of miR-182-5p and down-regulation of MTSS1, consequently promoting the EMT of glioma cells and triggering the progression of tumor.
Collapse
Affiliation(s)
- Shoudan Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou 215004, Jiangsu, China
- Department of Neurosurgery, the First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, Liaoning Province, P.R. China
| | - Peng Zhang
- Department of Neurosurgery, People's Hospital of Rugao, Jiangsu, China
| | - Anyi Wu
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou 215004, Jiangsu, China
| | - Zhipeng Xu
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou 215004, Jiangsu, China
| | - Shilu Huang
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou 215004, Jiangsu, China
| | - Xinglei Liu
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou 215004, Jiangsu, China
| | - Jun Dong
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou 215004, Jiangsu, China
| |
Collapse
|
16
|
Wang R, Li Q, Chu X, Li N, Liang H, He F. Sequencing and Bioinformatics analysis of lncRNA/circRNA-miRNA-mRNA in Glioblastoma multiforme. Metab Brain Dis 2023; 38:2289-2300. [PMID: 37389689 DOI: 10.1007/s11011-023-01256-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/20/2023] [Indexed: 07/01/2023]
Abstract
Evidence suggests that non-coding RNAs have a role in glioblastoma multiforme (GBM), although the regulatory mechanisms controlled by competing endogenous RNAs (ceRNAs) in GBM are still poorly understood and infrequently described. This research extensively analyzed circRNA, lncRNA, miRNA, and mRNA expression changes in GBM patients. RNA-sequencing analyses were conducted to investigate differentially expressed genes (DEGs), lncRNAs (DELs), miRNAs (DEMs), and circRNAs (DECs) in the GBM. In this study, researchers found that GBM patients and healthy controls differed in the presence of 1224 DECs, 1406 DELs, 229 DEMs, and 2740 DEGs. PPI network analysis demonstrated that CEACAM5, CXCL17, FAM83A, TMPRSS4, and GGPRC5A were hub genes and enriched in modules. Then a ceRNA network was constructed with 8 circRNA, 7 lncRNAs, 16 miRNAs, and 17 mRNAs. Overall, the ceRNA interaction axes that were found may prove to be pivotal therapeutic targets for treating GBM.
Collapse
Affiliation(s)
- Renjie Wang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
- Department of Neurosurgery, Characteristic Medical Center of Chinese People's Armed Police Force, Tianjin, 300162, China
| | - Qi Li
- Tianjin Hospital, Tianjin University, Tianjin, 300050, China
| | - Xiaolei Chu
- Tianjin Hospital, Tianjin University, Tianjin, 300050, China
| | - Nan Li
- Department of Neurosurgery, Characteristic Medical Center of Chinese People's Armed Police Force, Tianjin, 300162, China
| | - Haiqian Liang
- Department of Neurosurgery, Characteristic Medical Center of Chinese People's Armed Police Force, Tianjin, 300162, China.
| | - Feng He
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
17
|
Liu Y, Ding W, Wang J, Ao X, Xue J. Non-coding RNAs in lung cancer: molecular mechanisms and clinical applications. Front Oncol 2023; 13:1256537. [PMID: 37746261 PMCID: PMC10514911 DOI: 10.3389/fonc.2023.1256537] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 08/24/2023] [Indexed: 09/26/2023] Open
Abstract
Lung cancer (LC) is a heterogeneous disease with high malignant degree, rapid growth, and early metastasis. The clinical outcomes of LC patients are generally poor due to the insufficient elucidation of pathological mechanisms, low efficiency of detection and assessment methods, and lack of individualized therapeutic strategies. Non-coding RNAs (ncRNAs), including microRNA (miRNA), long non-coding RNA (lncRNA), and circular RNA (circRNA), are endogenous regulators that are widely involved in the modulation of almost all aspects of life activities, from organogenesis and aging to immunity and cancer. They commonly play vital roles in various biological processes by regulating gene expression via their interactions with DNA, RNA, or protein. An increasing amount of studies have demonstrated that ncRNAs are closely correlated with the initiation and development of LC. Their dysregulation promotes the progression of LC via distinct mechanisms, such as influencing protein activity, activating oncogenic signaling pathways, or altering specific gene expression. Furthermore, some ncRNAs present certain clinical values as biomarker candidates and therapeutic targets for LC patients. A complete understanding of their mechanisms in LC progression may be highly beneficial to developing ncRNA-based therapeutics for LC patients. This review mainly focuses on the intricate mechanisms of miRNA, lncRNA, and circRNA involved in LC progression and discuss their underlying applications in LC treatment.
Collapse
Affiliation(s)
- Ying Liu
- The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, Shandong, China
| | - Wei Ding
- The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Jianxun Wang
- School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Xiang Ao
- The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
- School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Junqiang Xue
- The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
- Department of Rehabilitation Medicine, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
18
|
Liu H, Xin T, Duan H, Wang Y, Shao C, Zhu Y, Wang J, He J. Development and validation of a MUC16 mutation-associated immune prognostic model for lung adenocarcinoma. Aging (Albany NY) 2023; 15:5650-5661. [PMID: 37341998 PMCID: PMC10333060 DOI: 10.18632/aging.204814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/31/2023] [Indexed: 06/22/2023]
Abstract
Mucin 16 (MUC16) mutation ranks third among all common mutations in lung adenocarcinoma (LUAD), and it has a certain effect on LUAD development and prognostic outcome. This research aimed to analyze the effects of MUC16 mutation on LUAD immunophenotype regulation and determine the prognostic outcome using an immune prognostic model (IPM) built with immune-related genes. The MUC16 mutation status and mRNA expression profiles were analyzed using diverse platforms and among several LUAD patients (n = 691). An IPM was then constructed using differentially expressed immune-related genes (DEIRGs) in MUC16MUT LUAD cases, and the data were compared with those of MUC16WT LUAD cases. The IPM's performance in distinguishing high-risk cases from low-risk ones among 691 LUAD cases was verified. Additionally, a nomogram was built and applied in the clinical setting. Furthermore, a comprehensive IPM-based analysis of how MUC16 mutation affected the tumor immune microenvironment (TIME) of LUAD was performed. MUC16 mutation decreased the immune response in LUAD. As revealed by functional annotation, the DEIRGs in the IPM were most significantly enriched in the humoral immune response function and the immune system disease pathway. Moreover, high-risk cases were associated with increased proportions of immature dendritic cells, neutrophils, and B-cells; enhanced type I interferon T-cell response; and increased expression of PD-1, CTLA-4, TIM-3, and LAG3 when compared with low-risk cases. MUC16 mutation shows potent association with TIME of LUAD. The as-constructed IPM displays high sensitivity to MUC16 mutation status and can be applied to discriminate high-risk LUAD cases from low-risk ones.
Collapse
Affiliation(s)
- Honggang Liu
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Tao Xin
- Department of Respiratory Medicine, Tangdu Hospital of Air Force Military Medical University, Xi’an, China
| | - Hongtao Duan
- Department of Thoracic Surgery, Tangdu Hospital of Air Force Military Medical University, Xi’an, China
| | - Yuanyong Wang
- Department of Thoracic Surgery, Tangdu Hospital of Air Force Military Medical University, Xi’an, China
| | - Changjian Shao
- Department of Thoracic Surgery, Tangdu Hospital of Air Force Military Medical University, Xi’an, China
| | - Yifang Zhu
- Department of Thoracic Surgery, Tangdu Hospital of Air Force Military Medical University, Xi’an, China
| | - Jiansheng Wang
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jianjun He
- Department of Breast Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
19
|
Fang K, Deng Y, Yang P, Zhang Y, Luo D, Wang F, Cai Z, Liu Y. Circ_0079530 stimulates THBS2 to promote the malignant progression of non-small cell lung cancer by sponging miR-584-5p. Histol Histopathol 2023; 38:681-693. [PMID: 36382967 DOI: 10.14670/hh-18-545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
BACKGROUND Circ_0079530 has been confirmed to be a novel potential oncogene in non-small cell lung cancer (NSCLC). This study aims to explore the role and mechanism of circ_0079530 in NSCLC progression. METHODS Levels of circ_0079530, microRNA (miR)-584-5p, thrombospondin-2 (THBS2), PCNA, Bax, E-cadherin, and ki67 were detected by quantitative real-time PCR (qRT-PCR), western blotting and immunohistochemistry. The proliferation of NSCLC cells was measured using cell counting kit 8 (CCK8) assay, colony formation assay, and EdU staining. Cell apoptosis and motility were respectively detected by flow cytometry and transwell assays. Interaction between miR-584-5p and circ_0079530 or THBS2 was predicted by bioinformatics analysis and confirmed via luciferase reporter assay and RNA immunoprecipitation (RIP) assay. A xenograft tumor model was used to analyze the role of circ_0079530 in tumor growth in vivo. RESULTS Circ_0079530 was highly expressed in NSCLC tissues and cell lines. Circ_0079530 overexpression facilitated proliferation, migration, and invasion whereas it restrained the apoptosis of NSCLC cells. Circ_0079530 silence showed the opposite effects on the above malignant biological behaviors. Mechanistic analysis showed that circ_0079530 functioned as a sponge of miR-584-5p to relieve the suppressive action of miR-584-5p on its target THBS2. Additionally, circ_0079530 knockdown impeded the growth of xenografts in vivo. CONCLUSION Circ_0079530 promoted NSCLC progression by regulating the miR-584-5p/THBS2 axis, providing a possible circRNA-targeted therapy for NSCLC.
Collapse
Affiliation(s)
- Kun Fang
- Department of Clinical Laboratory, Sichuan Science City Hospital, Mianyang, PR China
| | - Yibin Deng
- Department of Pediatric, Sichuan Science City Hospital, Mianyang, PR China
| | - Ping Yang
- Department of Clinical Laboratory, Sichuan Science City Hospital, Mianyang, PR China
| | - Yurong Zhang
- Department of Clinical Laboratory, Sichuan Science City Hospital, Mianyang, PR China
| | - Dan Luo
- Department of Gynaecology and Obstetrics (Science and Education Department), Sichuan Science City Hospital, Mianyang, PR China
| | - Fang Wang
- Department of Clinical Laboratory, Sichuan Science City Hospital, Mianyang, PR China
| | - Zhilong Cai
- Department of Clinical Laboratory, Sichuan Science City Hospital, Mianyang, PR China
| | - Yang Liu
- Department of Clinical Laboratory, Sichuan Science City Hospital, Mianyang, PR China.
| |
Collapse
|
20
|
Jin M, Wang Y, Zhou D, Liu W, Han R, Chi Y. Downregulation of circ-YES1 suppresses NSCLC migration and proliferation through the miR-142-3p-HMGB1 axis. Respir Res 2023; 24:100. [PMID: 37009887 PMCID: PMC10069124 DOI: 10.1186/s12931-023-02378-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 02/28/2023] [Indexed: 04/04/2023] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) are a new family of abundant regulatory RNAs with roles in various types of cancer. While the hsa_circ_0046701 (circ-YES1) function in non-small cell lung cancer (NSCLC) is unclear. METHODS Circ-YES1 expression in normal pulmonary epithelial and NSCLC cells was examined. The small interfering RNA for circ-YES1 was prepared, cell proliferation and migration were assessed. Tumorigenesis in nude mice was assayed to validate the role of circ-YES1. Bioinformatics analyses and luciferase reporter assays were utilized to identify downstream targets of circ-YES1. RESULTS Compared to normal pulmonary epithelial cells, the circ-YES1 expression increased in NSCLC cells, and cell proliferation and migration were suppressed after circ-YES1 knockdown. Both high mobility group protein B1 (HMGB1) and miR-142-3p were found to be downstream targets of circ-YES1, and miR-142-3p inhibition and HMGB1 overexpression reversed the effects of circ-YES1 knockdown on cell proliferation and migration. Similarly, HMGB1 overexpression reversed the miR-142-3p overexpression effects on these two processes. The imaging experiment results revealed that circ-YES1 knockdown impeded tumor development and metastasis in a nude mouse xenograft model. CONCLUSION Taken together, our results show that circ-YES1 promotes tumor development through the miR-142-3p-HMGB1 axis and support the development of circ-YES1 probability as a new therapeutic NSCLC target.
Collapse
Affiliation(s)
- Mingming Jin
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, 201318 People’s Republic of China
| | - Yan Wang
- Department of Clinical Lab, Shanghai Health Commission Key Lab of Artificial Intelligence (AI)-Based Management of Inflammation and Chronic Diseases, Sino-French Cooperative Central Lab, Shanghai Pudong Gongli Hospital, Secondary Military Medical University, Shanghai, 200135 People’s Republic of China
| | - Dawei Zhou
- Department of Ultrasonics, Shanghai Baoshan Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, 201901 People’s Republic of China
| | - Wanchao Liu
- Department of Clinical Laboratory, Baoshan District Integrative Medicine Hospital, Shanghai, Shanghai 201901 People’s Republic of China
| | - Ruodong Han
- Department of Critical Care Medicine, The Affiliated Bozhou Hospital of Anhui Medical University, Bozhou, 236800 People’s Republic of China
| | - Yongbin Chi
- Department of Clinical Lab, Shanghai Health Commission Key Lab of Artificial Intelligence (AI)-Based Management of Inflammation and Chronic Diseases, Sino-French Cooperative Central Lab, Shanghai Pudong Gongli Hospital, Secondary Military Medical University, Shanghai, 200135 People’s Republic of China
| |
Collapse
|
21
|
Zhang W, Wang YD, Xing YJ, Liu PJ, Yang JH. Silencing of circ-NT5C2 retards the progression of IL-1β-induced osteoarthritis in an in vitro cell model by targeting the miR-142-5p/NAMPT axis. Microbiol Immunol 2023; 67:129-141. [PMID: 36540014 DOI: 10.1111/1348-0421.13046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/15/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
Osteoarthritis (OA) is a degenerative disease that occurs mostly in the elderly, and its specific pathogenesis is still unknown, but recent studies have found that circular RNA generally display aberrant expression in OA. Our study explored the expression characteristics and mechanism of action of circ-NT5C2 in OA. Circ-NT5C2, microRNA-142-5p (miR-142-5p), and nicotinamide phosphoribosyltransferase (NAMPT) mRNA levels were measured using RT-qPCR. Western blot was employed to assess the protein level of NAMPT and extracellular matrix (ECM) production-related markers. The viability, proliferation, apoptosis and inflammation were examined using 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay, 5-ethynyl-2'-deoxyuridine (EdU) assay, flow cytometry, and enzyme-linked immunosorbent assay, respectively. Relationship between miR-142-5p and circ-NT5C2 or NAMPT was demonstrated by dual-luciferase reporter system and RNA immunoprecipitation assay. We reported that circ-NT5C2 and NAMPT were greatly upregulated, and miR-142-5p level was constrained in OA tissues and in a cell model. Circ-NT5C2 silencing alleviated IL-1β-induced inhibitory effects on chondrocyte proliferation and ECM generation, meanwhile the promotional role of IL-1β on chondrocyte apoptosis and inflammation was also weakened. The targeting relationship of miR-142-5p with either circ-NT5C2 or NAMPT was confirmed. Knockdown of miR-142-5p reversed the suppressive effects of circ-NT5C2 silencing on the OA progression in vitro, and NAMPT overexpression also attenuated the effects of miR-142-5p upregulation in an OA cell model. Collectively, circ-NT5C2 accelerated the OA process by targeting the miR-142-5p/NAMPT axis. This study provides valuable information to find a better treatment for OA.
Collapse
Affiliation(s)
- Wei Zhang
- The Second Department of Bone Engineering, Xingyuan Hospital, Yulin City, China
| | - Yan-Dong Wang
- The Second Department of Bone Engineering, Xingyuan Hospital, Yulin City, China
| | - Yong-Jun Xing
- The Second Department of Bone Engineering, Xingyuan Hospital, Yulin City, China
| | - Peng-Jun Liu
- The Second Department of Bone Engineering, Xingyuan Hospital, Yulin City, China
| | - Jian-Hui Yang
- Department of Pain, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
22
|
The Tumorigenic Role of Circular RNA-MicroRNA Axis in Cancer. Int J Mol Sci 2023; 24:ijms24033050. [PMID: 36769372 PMCID: PMC9917898 DOI: 10.3390/ijms24033050] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
Circular RNAs (circRNAs) are a class of endogenous RNAs that control gene expression at the transcriptional and post-transcriptional levels. Recent studies have increasingly demonstrated that circRNAs act as novel diagnostic biomarkers and promising therapeutic targets for numerous cancer types by interacting with other non-coding RNAs such as microRNAs (miRNAs). The miRNAs are presented as crucial risk factors and regulatory elements in cancer by regulating the expression of their target genes. Some miRNAs are derived from transposable elements (MDTEs) that can transfer their location to another region of the genome. Genetic interactions between miRNAs and circular RNAs can form complex regulatory networks with various carcinogenic processes that play critical roles in tumorigenesis and cancer progression. This review focuses on the biological regulation of the correlative axis among circular RNAs, miRNAs, and their target genes in various cancer types and suggests the biological importance of MDTEs interacting with oncogenic or tumor-suppressive circRNAs in tumor progression.
Collapse
|
23
|
Song R, Ma S, Xu J, Ren X, Guo P, Liu H, Li P, Yin F, Liu M, Wang Q, Yu L, Liu J, Duan B, Rahman NA, Wołczyński S, Li G, Li X. A novel polypeptide encoded by the circular RNA ZKSCAN1 suppresses HCC via degradation of mTOR. Mol Cancer 2023; 22:16. [PMID: 36691031 PMCID: PMC9869513 DOI: 10.1186/s12943-023-01719-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 01/09/2023] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND hsa_circ_0001727 (circZKSCAN1) has been reported to be a tumor-associated circRNA by sponging microRNAs. Intriguingly, we found that circZKSCAN1 encoded a secretory peptide (circZKSaa) in the liver. The present study aims to elucidate the potential role and molecular mechanism of circZKSaa in the regulation of hepatocellular carcinoma (HCC) progression. METHODS The circRNA profiling datasets (RNA-seq data GSE143233 and GSE140202) were reanalyzed and circZKSCAN1 was selected for further study. Mass spectrometry, polysome fractionation assay, dual-luciferase reporter, and a series of experiments showed that circZKSCAN1 encodes circZKSaa. Cell proliferation, apoptosis, and tumorigenesis in nude mice were examined to investigate the functions of circZKSaa. Mechanistically, the relationship between the circZKSaa and mTOR in HCC was verified by immunoprecipitation analyses, mass spectrometry, and immunofluorescence staining analyses. RESULTS Receiver operating characteristic (ROC) analysis demonstrated that the secretory peptide circZKSaa encoded by circZKSCAN1 might be the potential biomarker for HCC tissues. Through a series of experiments, we found that circZKSaa inhibited HCC progression and sensitize HCC cells to sorafenib. Mechanistically, we found that the sponge function of circZKSCAN1 to microRNA is weak in HCC, while overexpression of circZKSaa promoted the interaction of FBXW7 with the mammalian target of rapamycin (mTOR) to promote the ubiquitination of mTOR, thereby inhibiting the PI3K/AKT/mTOR pathway. Furthermore, we found that the high expression of cicZKSCAN1 in sorafenib-treated HCC cells was regulated by QKI-5. CONCLUSIONS These results reveal that a novel circZKSCAN1-encoded peptide acts as a tumor suppressor on PI3K/AKT/mTOR pathway, and sensitizes HCC cells to sorafenib via ubiquitination of mTOR. These findings demonstrated that circZKSaa has the potential to serve as a therapeutic target and biomarker for HCC treatment.
Collapse
Affiliation(s)
- Runjie Song
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Shuoqian Ma
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Jiajia Xu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xin Ren
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Peilan Guo
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Huijiao Liu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Peng Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Fan Yin
- Department of Oncology, The Second Medical Centre & National Clinical Research Center of Geriatric Disease, Chinese PLA General Hospital, Beijing, 100071, China
| | - Mei Liu
- Department of Pathology, Chinese PLA General Hospital, Beijing, 100071, China
| | - Qiang Wang
- Department of Urology, Peking University People's Hospital, Beijing, 100044, China
| | - Lei Yu
- Department of Thoracic Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Jiali Liu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Binwei Duan
- Department of General Surgery CenterBeijing You An Hospital, Clinical Center for Liver Cancer, Capital Medical University, Beijing, China
| | - Nafis A Rahman
- Department of Physiology, Institute of Biomedicine, University of Turku, Turku, Finland
- Department of Reproduction and Gynecological Endocrinology, Medical University of Bialystok, Bialystok, Poland
| | - Sławomir Wołczyński
- Department of Reproduction and Gynecological Endocrinology, Medical University of Bialystok, Bialystok, Poland
| | - Guangming Li
- Department of General Surgery CenterBeijing You An Hospital, Clinical Center for Liver Cancer, Capital Medical University, Beijing, China
| | - Xiangdong Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
- Department of Reproduction and Gynecological Endocrinology, Medical University of Bialystok, Bialystok, Poland.
| |
Collapse
|
24
|
Abstract
Circular RNAs (circRNAs) are closed-loop RNA transcripts formed by a noncanonical back splicing mechanism. circRNAs are expressed in various tissues and cell types in a temporospatially regulated manner and have diverse molecular functions including their ability to act as miRNA sponges, transcriptional and splicing regulators, protein traps, and even templates for polypeptide synthesis. Emerging evidence suggests that circRNAs are themselves dynamically regulated throughout development in various organisms, with a substantial accumulation during ageing. Their regulatory roles in cellular pathways associated with ageing and senescence, as well as their implications in ageing-related diseases, such as neurological disease, cancer, and cardiovascular disease, suggest that circRNAs are key molecular determinants of the ageing process. Their unique structure, expression specificity, and biological functions highlight a potential capacity for use as novel biomarkers for diagnosis, prognosis, and treatment outcomes in a variety of conditions including pathological ageing. CircRNA may also have potential as target for interventions that manipulate ageing and longevity. In this chapter, we discuss the most recent advances in circRNA changes in ageing and ageing-associated disease.
Collapse
|
25
|
Lei J, Zhu J, Hui B, Jia C, Yan X, Jiang T, Wang X. Circ-HSP90A expedites cell growth, stemness, and immune evasion in non-small cell lung cancer by regulating STAT3 signaling and PD-1/PD-L1 checkpoint. Cancer Immunol Immunother 2023; 72:101-124. [PMID: 35750765 DOI: 10.1007/s00262-022-03235-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 05/31/2022] [Indexed: 01/18/2023]
Abstract
BACKGROUND Circular RNAs (circRNAs) are important participators in tumor progression for their stable structure and high tissue-specific expression. The purpose of this research was to clarify the potential and mechanism of a novel circRNA-circ-HSP90A in non-small cell lung cancer (NSCLC). METHODS Biological potentials of circ-HSP90A in NSCLC were measured by functional assays. Molecular interaction was assessed by bioinformatics analysis and mechanical assays. RESULTS Results depicted that circ-HSP90A was cyclization from its host gene heat shock protein 90 alpha (HSP90A) and was up-regulated in NSCLC cells. Circ-HSP90A depletion retarded proliferation, migration, invasion, and immune evasion. Mechanistically, circ-HSP90A recruited ubiquitin specific peptidase 30 (USP30) to stabilize HSP90A and then stimulated the signal transducer and activator of transcription 3 (STAT3) signaling. Meanwhile, circ-HSP90A sponged miR-424-5p to programmed cell death ligand 1 (PD-L1). CONCLUSIONS Our study firstly showed that circ-HSP90A promoted cell growth, stemness, and immune evasion in NSCLC through regulating STAT3 signaling and programmed cell death 1 (PD-1)/PD-L1 checkpoint, mirroring that targeting circ-HSP90A might become a novel target of immunotherapy in NSCLC.
Collapse
Affiliation(s)
- Jie Lei
- Department of Thoracic Surgery, The Second Affiliated Hospital of Air Force Medical University, No.569 Xinsi Road, Xi'an, 710038, Shaanxi, China
| | - Jianfei Zhu
- Department of Thoracic Surgery, The Second Affiliated Hospital of Air Force Medical University, No.569 Xinsi Road, Xi'an, 710038, Shaanxi, China
| | - Bengang Hui
- Department of Thoracic Surgery, The Second Affiliated Hospital of Air Force Medical University, No.569 Xinsi Road, Xi'an, 710038, Shaanxi, China
| | - Chenghui Jia
- Department of Thoracic Surgery, The Second Affiliated Hospital of Air Force Medical University, No.569 Xinsi Road, Xi'an, 710038, Shaanxi, China
| | - Xiaolong Yan
- Department of Thoracic Surgery, The Second Affiliated Hospital of Air Force Medical University, No.569 Xinsi Road, Xi'an, 710038, Shaanxi, China
| | - Tao Jiang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Air Force Medical University, No.569 Xinsi Road, Xi'an, 710038, Shaanxi, China.
| | - Xiaoping Wang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Air Force Medical University, No.569 Xinsi Road, Xi'an, 710038, Shaanxi, China.
| |
Collapse
|
26
|
Zou W, Wang H, Wu D, Wu Y, Zhou K, Lian Y, Chang G, Feng Y, Liang J, Huang G. ncRNA-mediated upregulation of FAM83A is associated with poor prognosis and immune infiltration in pancreatic cancer. Front Endocrinol (Lausanne) 2023; 14:1093042. [PMID: 37065746 PMCID: PMC10102663 DOI: 10.3389/fendo.2023.1093042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 03/13/2023] [Indexed: 04/18/2023] Open
Abstract
INTRODUCTION Malignant pancreatic cancer has poor long-term survival. Increasing evidence shows that FAM83A (family with sequence similarity 83 member A) plays a vital role in tumorigenesis and malignant progression in some human cancer types. The present study explored the potential mechanism of FAM83A in improving the prognosis of pancreatic cancer patients. METHODS Transcriptomic and clinical data from patients were obtained from The Cancer Genome Atlas while FAM83A expression was measured in tumorous pancreatic tissue compared with normal controls by quantitative real-time PCR and immunohistochemistry. RESULTS FAM83A is a vital prognostic indicator and potential oncogene in pancreatic cancer via pan-cancer analysis. In silico analysis revealed that AL049555.1/hsa-miR-129-5p axis was the pivotal upstream ncRNA- mediated pathway of FAM83A in pancreatic cancer. Furthermore, FAM83A expression was related to immune cell infiltration through vital immune-related genes including programmed cell death 1 (PDCD1), and tumorigenesis through common mutation genes including KRAS protooncogene GTPase (KRAS), and SMAD family member 4 (SMAD4). In summary, ncRNA-mediated upregulation of FAM83A is associated with poor long-term survival and immune cell infiltration in pancreatic cancer. DISCUSSION FAM83A may be used as a novel survival-related and immune-related biomarker. This information suggests that FAM83A may be a novel therapeutic target for combined or individual treatment for patients with pancreatic cancer.
Collapse
Affiliation(s)
- Wenbo Zou
- Department of General Surgery, No.924 Hospital of PLA Joint Logistic Support Force, Guilin, China
| | - Hao Wang
- Neurology Department, No.924 Hospital of PLA Joint Logistic Support Force, Guilin, China
| | - Dingguo Wu
- Department of General Surgery, No.924 Hospital of PLA Joint Logistic Support Force, Guilin, China
| | - Yunyang Wu
- Department of General Surgery, No.924 Hospital of PLA Joint Logistic Support Force, Guilin, China
| | - Kuiping Zhou
- Department of General Surgery, No.924 Hospital of PLA Joint Logistic Support Force, Guilin, China
| | - Yuanshu Lian
- Department of General Surgery, No.924 Hospital of PLA Joint Logistic Support Force, Guilin, China
| | - Gengyun Chang
- Department of General Surgery, No.924 Hospital of PLA Joint Logistic Support Force, Guilin, China
| | - Yuze Feng
- Department of General Surgery, No.924 Hospital of PLA Joint Logistic Support Force, Guilin, China
| | - Jifeng Liang
- Department of General Surgery, No.924 Hospital of PLA Joint Logistic Support Force, Guilin, China
| | - Gao Huang
- Department of General Surgery, No.924 Hospital of PLA Joint Logistic Support Force, Guilin, China
- *Correspondence: Gao Huang,
| |
Collapse
|
27
|
Ma X, Xie M, Xue Z, Yao J, Wang Y, Xue X, Wang J. HMMR associates with immune infiltrates and acts as a prognostic biomaker in lung adenocarcinoma. Comput Biol Med 2022; 151:106213. [PMID: 36306573 DOI: 10.1016/j.compbiomed.2022.106213] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/05/2022] [Accepted: 10/15/2022] [Indexed: 12/27/2022]
Abstract
BACKGROUND To explore the expression of hyaluronan mediated motility receptor (HMMR) in lung adenocarcinoma (LUAD) and its relationship with clinicopathological features and tumor-infiltrating is not clear. METHODS The expression of HMMR in Cancer Cell Line Encyclopedia (CCLE) and The Cancer Genome Atlas (TCGA)-LUAD. TCGA was employed to examine the relationship between the clinicopathological characteristics and HMMR expression and the LUAD patients' prognosis. Tumor Immune Estimation Resource (TIMER)database was employed to analyze the relationship between immune infiltration and HMMR. Gene Set Enrichment Analysis was explored through gene enrichment. Gene Expression Omnibus (GEO) data and our hospital data were utilized to confirm the findings. RESULTS The expression level of HMMR in lung adenocarcinoma tissue and cells was greater than that in the normal group, which was linked to clinical stage, smoking history, and recurrence, and could increase the progression or recurrence of LUAD. Patients in the pathological grade had a significant expression of HMMR in moderately differentiated LUAD tissues. In addition, HMMR has an impact on LUAD patients' overall survival rate [P = 9.5e-06; hazard ratio (HR) = 2]. The level of HMMR expression in LUAD was significantly linked to neutrophils, CD8+T, and CD4+T cells. TMB analysis showed that HMMR could also affect the tumor microenvironment in LUAD. HMMR might be employed as an independent predictive biomarker of LUAD, according to a multivariate COX regression analysis. The findings of GSEA analysis showed that the samples with high HMMR expression levels were rich in cell cycle, cell metabolism, and DNA replication. The analysis results of GSE31210 data are basically consistent with those of TCGA-LUAD. CONCLUSIONS It is suggested that HMMR has an effect on the occurrence and development of lung adenocarcinoma. Besides, HMMR is also linked to the level of immune infiltration of neutrophils, CD8+T cells, and CD4+T cells and LUAD patients' prognosis. HMMR was suggested to be utilized as a biomarker or therapeutic target to judge the prognosis and immune infiltration of LUAD.
Collapse
Affiliation(s)
- Xidong Ma
- Department of Respiratory and Critical Care, Chinese PLA General Hospital, Beijing, China
| | - Mei Xie
- Department of Respiratory and Critical Care, Chinese PLA General Hospital, Beijing, China
| | - Zhiqiang Xue
- Department of Thoracic Surgery, Chinese PLA General Hospital, Beijing, China
| | - Jie Yao
- Department of Respiratory and Critical Care, Beijing Shijitan Hospital, Capital Medical University, Peking University Ninth School of Clinical Medicine, Beijing, China
| | - Yuanyong Wang
- Department of Thoracic Surgery, Chinese PLA General Hospital, Beijing, China; Department of Thoracic Surgery, Tangdu Hospital of Air Force Military Medical University, Xi'an, China.
| | - Xinying Xue
- Department of Respiratory and Critical Care, Chinese PLA General Hospital, Beijing, China; Department of Respiratory and Critical Care, Beijing Shijitan Hospital, Capital Medical University, Peking University Ninth School of Clinical Medicine, Beijing, China; Department of Respiratory Disease, School of Clinical Medicine, Weifang Medical University, Weifang, Shandong, China.
| | - Jianxin Wang
- Department of Respiratory and Critical Care, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
28
|
Zhu J, Wang F, Weng Y, Zhao J. Exosome-delivered circSATB2 targets the miR-330-5p/PEAK1 axis to regulate proliferation, migration and invasion of lung cancer cells. Thorac Cancer 2022; 13:3007-3017. [PMID: 36148757 PMCID: PMC9626310 DOI: 10.1111/1759-7714.14652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 01/07/2023] Open
Abstract
Exosomes can carry various kinds of RNAs to mediate intercellular communication. Circular RNA (circRNA) special AT-rich sequence-binding protein 2 (circSATB2) was identified as an oncogene in lung cancer. This study was performed to explore the association of circSATB2 with exosomes and the regulatory mechanism of circSATB2. Exosomes could transmit circSATB2 into lung cancer cells. Exosomes enhanced cell proliferation, invasion, and migration by carrying circSATB2. Exosomal circSATB2 abrogated the inhibitory effect of short hairpin (sh)-circSATB2 on lung cancer progression. Moreover, circSATB2 promoted tumor growth in vivo via exosomes. CircSATB2 interacted with microRNA-330-5p (miR-330-5p) and miR-330-5p targeted pseudopodium enriched atypical kinase 1 (PEAK1). In addition, circSATB2 affected the PEAK1 level via sponging miR-330-5p in lung cancer cells. All results suggested that exosomal transfer of circSATB2 contributed to the malignant development of lung cancer by acting as a sponge of miR-330-5p to upregulate PEAK1.
Collapse
Affiliation(s)
- Jun Zhu
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow UniversityMedical College of Soochow UniversitySuzhouChina
| | - Fudong Wang
- Department of Thoracic SurgeryAffiliated Hospital of Jiangnan UniversityWuxiJiangsuChina
| | - Yuan Weng
- Department of Thoracic SurgeryAffiliated Hospital of Jiangnan UniversityWuxiJiangsuChina
| | - Jun Zhao
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow UniversityMedical College of Soochow UniversitySuzhouChina,Institute of Thoracic SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| |
Collapse
|
29
|
Tu P, Li X, Cao L, Zhong M, Xie Z, Wu Z. Machine learning and BP neural network revealed abnormal B cell infiltration predicts the survival of lung cancer patients. Front Oncol 2022; 12:882018. [PMID: 36303835 PMCID: PMC9592816 DOI: 10.3389/fonc.2022.882018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 08/29/2022] [Indexed: 11/26/2022] Open
Abstract
FAM83A gene is related to the invasion and metastasis of various tumors. However, the abnormal immune cell infiltration associated with the gene is poorly understood in the pathogenesis and prognosis of NSCLC. Based on the TCGA and GEO databases, we used COX regression and machine learning algorithms (CIBERSORT, random forest, and back propagation neural network) to study the prognostic value of FAM83A and immune infiltration characteristics in NSCLC. High FAM83A expression was significantly associated with poor prognosis of NSCLC patients (p = 0.00016), and had excellent prognostic independence. At the same time, the expression level of FAM83A is significantly related to the T, N, and Stage. Subsequently, based on machine learing strategies, we found that the infiltration level of naive B cells was negatively correlated with the expression of FAM83A. The low infiltration of naive B cells was significantly related to the poor overall survival rate of NSCLC (p = 0.0072). In addition, Cox regression confirmed that FAM83A and naive B cells are risk factors for the prognosis of NSCLC patients. The nomogram combining FAM83A and naive B cells (C-index = 0.748) has a more accurate prognostic ability than the Stage (C-index = 0.651) system. Our analysis shows that abnormal infiltration of naive B cells associated with FAM83A is a key factor in the prognostic prediction of NSCLC patients.
Collapse
Affiliation(s)
- Pinghua Tu
- *Correspondence: Pinghua Tu, ; Zhanling Wu,
| | | | | | | | | | | |
Collapse
|
30
|
Yan T, Tian X, Liu F, Liu Q, Sheng Q, Wu J, Jiang S. The emerging role of circular RNAs in drug resistance of non-small cell lung cancer. Front Oncol 2022; 12:1003230. [PMID: 36303840 PMCID: PMC9592927 DOI: 10.3389/fonc.2022.1003230] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022] Open
Abstract
Due to the characteristics of aggressiveness and high risk of postoperative recurrence, non-small cell lung cancer (NSCLC) is a serious hazard to human health, accounting for 85% of all lung cancer cases. Drug therapies, including chemotherapy, targeted therapy and immunotherapy, are effective treatments for NSCLC in clinics. However, most patients ultimately develop drug resistance, which is also the leading cause of treatment failure in cancer. To date, the mechanisms of drug resistance have yet to be fully elucidated, thus original strategies are developed to overcome this issue. Emerging studies have illustrated that circular RNAs (circRNAs) participate in the generation of therapeutic resistance in NSCLC. CircRNAs mediate the modulations of immune cells, cytokines, autophagy, ferroptosis and metabolism in the tumor microenvironment (TME), which play essential roles in the generation of drug resistance of NSCLC. More importantly, circRNAs function as miRNAs sponges to affect specific signaling pathways, directly leading to the generation of drug resistance. Consequently, this review highlights the mechanisms underlying the relationship between circRNAs and drug resistance in NSCLC. Additionally, several therapeutic drugs associated with circRNAs are summarized, aiming to provide references for circRNAs serving as potential therapeutic targets in overcoming drug resistance in NSCLC.
Collapse
Affiliation(s)
- Tinghao Yan
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xinchen Tian
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Fen Liu
- Clinical Medical Laboratory Center, Jining First People’s Hospital, Jining Medical University, Jining, China
| | - Qingbin Liu
- Clinical Medical Laboratory Center, Jining First People’s Hospital, Jining Medical University, Jining, China
| | - Qing Sheng
- School of Architecture and Fine Art, Dalian University of Technology, Dalian, China
| | - Jianlin Wu
- School of Basic Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- *Correspondence: Jianlin Wu, ; Shulong Jiang,
| | - Shulong Jiang
- Cheeloo College of Medicine, Shandong University, Jinan, China
- Clinical Medical Laboratory Center, Jining First People’s Hospital, Jining Medical University, Jining, China
- *Correspondence: Jianlin Wu, ; Shulong Jiang,
| |
Collapse
|
31
|
Kim WR, Park EG, Lee YJ, Bae WH, Lee DH, Kim HS. Integration of TE Induces Cancer Specific Alternative Splicing Events. Int J Mol Sci 2022; 23:10918. [PMID: 36142830 PMCID: PMC9502224 DOI: 10.3390/ijms231810918] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/13/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Alternative splicing of messenger RNA (mRNA) precursors contributes to genetic diversity by generating structurally and functionally distinct transcripts. In a disease state, alternative splicing promotes incidence and development of several cancer types through regulation of cancer-related biological processes. Transposable elements (TEs), having the genetic ability to jump to other regions of the genome, can bring about alternative splicing events in cancer. TEs can integrate into the genome, mostly in the intronic regions, and induce cancer-specific alternative splicing by adjusting various mechanisms, such as exonization, providing splicing donor/acceptor sites, alternative regulatory sequences or stop codons, and driving exon disruption or epigenetic regulation. Moreover, TEs can produce microRNAs (miRNAs) that control the proportion of transcripts by repressing translation or stimulating the degradation of transcripts at the post-transcriptional level. Notably, TE insertion creates a cancer-friendly environment by controlling the overall process of gene expression before and after transcription in cancer cells. This review emphasizes the correlative interaction between alternative splicing by TE integration and cancer-associated biological processes, suggesting a macroscopic mechanism controlling alternative splicing by TE insertion in cancer.
Collapse
Affiliation(s)
- Woo Ryung Kim
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Korea
- Institute of Systems Biology, Pusan National University, Busan 46241, Korea
| | - Eun Gyung Park
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Korea
- Institute of Systems Biology, Pusan National University, Busan 46241, Korea
| | - Yun Ju Lee
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Korea
- Institute of Systems Biology, Pusan National University, Busan 46241, Korea
| | - Woo Hyeon Bae
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Korea
- Institute of Systems Biology, Pusan National University, Busan 46241, Korea
| | - Du Hyeong Lee
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Korea
- Institute of Systems Biology, Pusan National University, Busan 46241, Korea
| | - Heui-Soo Kim
- Institute of Systems Biology, Pusan National University, Busan 46241, Korea
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 46241, Korea
| |
Collapse
|
32
|
Circular RNA circ_0007841 participates in progression of nonsmall cell lung cancer via miR-199a-5p/SphK2 axis. Anticancer Drugs 2022; 33:1035-1046. [PMID: 36066393 DOI: 10.1097/cad.0000000000001348] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
CircRNAs have been found to be participated in the development of numerous cancers. Nevertheless, the role of circRNAs in the progression of nonsmall cell lung cancer (NSCLC) has not been fully made clear. The purpose of our study was to study and understand the mechanism of circ_0007841 regulating the progression of NSCLC. NSCLC tissue samples and adjacent normal tissue samples used were obtained from 53 NSCLC patients. The expressions of circ_0007841, miR-199a-5p and SphK2 in all samples were detected by the real-time quantitative PCR. Then luciferase reporter gene assay and RNA immunoprecipitation (RIP) assay were used to analyze the relevance between circ_0007841, miR-199a-5p and SphK2. Cell Counting Kit-8, colony-forming, thymidine analog 5-ethynyl-2'-deoxyuridine assays, and transwell assay detect the effects of these three biomolecules on NSCLC carcinogenesis by western blot. We evaluate the effect of circ_0007841 on the growth of NSCLC by establishing the xenograft mice model. Experimental studies have shown that the higher expression of circ_0007841 in NSCLC tissues, and circ_0007841 strengthen cell viability, cell proliferation and cell adhesion. In addition, miR-199a-5p exerts an inhibitory effect in NSCLC cells by inhibiting SphK2. And Sphk2 regulates cell proliferation and adhesion. In addition, in-vivo silencing of circ_0007841 was found to inhibit the growth of NSCLC tumors. This research demonstrated that circ_0007841 had a positive influence in improving NSCLC development by targeting miR-199a-5p and upregulating oncogene SphK2.
Collapse
|
33
|
Zhang Y, Yang M, Yang S, Hong F. Role of noncoding RNAs and untranslated regions in cancer: A review. Medicine (Baltimore) 2022; 101:e30045. [PMID: 35984196 PMCID: PMC9388041 DOI: 10.1097/md.0000000000030045] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 02/23/2022] [Accepted: 04/22/2022] [Indexed: 02/07/2023] Open
Abstract
Cancer is one of the most prevalent diseases worldwide, and poses a threat to human health. Noncoding RNAs (ncRNAs) constitute most transcripts, but they cannot be translated into proteins. Studies have shown that ncRNAs can act as tumor suppressors or oncogenes. This review describes the role of several ncRNAs in various cancers, including microRNAs (miRNAs) such as the miR-34 family, let-7, miR-17-92 cluster, miR-210, and long noncoding RNAs (lncRNAs) such as HOX transcript antisense intergenic RNA (HOTAIR), Metastasis associated lung adenocarcinoma transcript 1 (MALAT1), H19, NF-κB-interacting lncRNA (NKILA), as well as circular RNAs (circRNAs) and untranslated regions (UTRs), highlighting their effects on cancer growth, invasion, metastasis, angiogenesis, and apoptosis. They function as tumor suppressors or oncogenes that interfere with different axes and pathways, including p53 and IL-6, which are involved in the progression of cancer. The characteristic expression of some ncRNAs in cancer also allows them to be used as biomarkers for early diagnosis and therapeutic candidates. There is a complex network of interactions between ncRNAs, with some lncRNAs and circRNAs acting as competitive endogenous RNAs (ceRNAs) to decoy miRNAs and repress their expression. The ceRNA network is a part of the ncRNA network and numerous ncRNAs work as nodes or hubs in the network, and disruption of their interactions can cause cancer development. Therefore, the balance and stabilization of this network are important for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Yiping Zhang
- Experimental Centre of Pathogen Biology, Nanchang University, Nanchang, China
- Queen Mary College, School of Medicine, Nanchang University, Nanchang, China
| | - Meiwen Yang
- Department of Surgery, Fuzhou Medical College, Nanchang University, Fuzhou, China
| | - Shulong Yang
- Department of Physiology, Key Research Laboratory of Chronic Diseases, Fuzhou Medical College, Nanchang University, Fuzhou, China
- Department of Physiology, College of Medicine, Nanchang University, Nanchang, China
| | - Fenfang Hong
- Experimental Centre of Pathogen Biology, Nanchang University, Nanchang, China
| |
Collapse
|
34
|
Yuan S, Huang Z, Qian X, Wang Y, Fang C, Chen R, Zhang X, Xiao Z, Wang Q, Yu B, Li Y. Pan-cancer analysis of the FAM83 family and its association with prognosis and tumor microenvironment. Front Genet 2022; 13:919559. [PMID: 35938024 PMCID: PMC9353330 DOI: 10.3389/fgene.2022.919559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Family with sequence similarity 83 (FAM83) is a newly identified family of oncogenes whose members play important roles in signaling and cancer progression. However, a thorough understanding of the FAM83 family in tumors is still lacking. Here, we performed a comprehensive analysis of the expression levels of the FAM83 family across cancers and patient prognoses using bioinformatics methods. We found that the expression levels of FAM83 family genes were upregulated in most tumors, and importantly, high expression levels of FAM83 family genes were related to poor prognosis in most tumors. In addition, we analyzed the relationship of FAM83 family genes with immune subtypes and the tumor microenvironment (TME). The results showed that FAM83 family genes were significantly associated with immune infiltrative subtypes and to varying degrees with the level of stromal cell infiltration and tumor stem cells. Finally, our study also showed the relationship between FAM83 family genes and drug sensitivity. Therefore, this pan-cancer analysis demonstrates the critical role of FAM83 family genes in tumor development and provides new clues for therapeutic strategies for cancer.
Collapse
Affiliation(s)
- Shangkun Yuan
- Department of Medical Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhisheng Huang
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Xiaoying Qian
- Department of Medical Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yong Wang
- Department of Medical Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Chen Fang
- Department of Medical Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Renfang Chen
- Department of Medical Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xinwei Zhang
- Department of Medical Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhehao Xiao
- Department of Medical Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qian Wang
- Department of Medical Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Biao Yu
- Department of Medical Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yong Li
- Department of Medical Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
- *Correspondence: Yong Li,
| |
Collapse
|
35
|
Zheng X, Wang X, He Y, Ge H. Systematic analysis of expression profiles of HMGB family members for prognostic application in non-small cell lung cancer. Front Mol Biosci 2022; 9:844618. [PMID: 35923467 PMCID: PMC9340210 DOI: 10.3389/fmolb.2022.844618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 06/27/2022] [Indexed: 12/24/2022] Open
Abstract
Background: Lung cancer is a significant challenge to human health. Members of the high mobility group (HMG) superfamily (HMGB proteins) are implicated in a wide variety of physiological and pathophysiological processes, but the expression and prognostic value of HMGB family members in non-small cell lung cancer (NSCLC) have not been elucidated. Methods: In this study, ONCOMINE, UALCAN, GEPIA, Kaplan–Meier Plotter, starBase, OncomiR databases, and GeneMANIA were utilized to evaluate the prognostic significance of HMGB family members in NSCLC. Results: HMGB2/3 expression levels were higher in NSCLC patients. HMGB1 expression was higher in lung squamous cell carcinoma (LUSC) and was lower in lung adenocarcinoma (LUAD) tissue than in normal lung tissue. HMGB2 expression was related to cancer stage. Increased HMGB1 mRNA expression levels were associated with improved lung cancer prognosis, including overall survival (OS), first-progression survival (FP), and post-progression survival (PPS). There was no significant association between HMGB2 levels and prognostic indicators. HMGB3 expression was associated with poorer OS. GeneMANIA and GO/KEGG pathway analysis showed that HMGB family members mainly associated with chromosome condensation, regulation of chromatin organization, and nucleosome binding in NSCLC. HMGBs expression were closely correlated with infiltrating levels of specific types of immune cells in NSCLC, especially Th2 cells, Th17 cells, and mast cells. hsa-miR-25-3p, hsa-miR-374a-3p, and hsa-miR-93-5p were significantly positively correlated with HMGB1, HMGB2, and HMGB3, respectively. However, hsa-miR-30a-5p was predicted to significantly negatively regulate HMGB3 expression. Conclusion: Our study revealed that HMGB1 is positively related to the improved prognosis in NSCLC, and demonstrate that HMGB3 might be a risk factor for poorer survival of NSCLC patients.
Collapse
|
36
|
Li M, Zhang M, Chen M, Xiao J, Mu X, Peng J, Fan J. KLF2-induced circZKSCAN1 potentiates the tumorigenic properties of clear cell renal cell carcinoma by targeting the miR-1294/PIM1 axis. Cell Cycle 2022; 21:1376-1390. [PMID: 35285410 PMCID: PMC9345621 DOI: 10.1080/15384101.2022.2051293] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is one of the most common and lethal types of urologic cancer. With low survival rates among patients in advanced stages of disease, and increasing rate of morbidity and mortality worldwide, novel therapeutic targets for ccRCC clinical intervention are necessary. In this study, we investigated the functional role of circZKSCAN1 in ccRCC progression. Our results suggested that circZKSCAN1 was abundantly expressed in ccRCC tumor tissues and cells. CircZKSCAN1 knockdown significantly inhibited cell proliferation, migration, invasion, and epithelial-to-mesenchymal transition of renal cell carcinoma (RCC) cells, whereas potentiated Natural Killer (NK) cell-mediated cytotoxicity against RCC cells in vitro and repressed tumor growth in vivo. Furthermore, we identified a novel circZKSCAN1/miR-1294/PIM1 axis was identified in RCC progression, showing that the expression of circZKSCAN1 expression in RCC cells was transcriptionally regulated by Kruppel-like factor 2. The results of our study may provide new insights for ccRCC basic research.Abbreviations: ccRCC: clear cell renal cell carcinoma; ChIP: chromatin immunoprecipitation; circRNA: circular RNA; EDU: 5-ethynyl-2'-deoxyuridine; EMT: epithelial-mesenchymal transition; FBS: fetal bovine serum; FISH: RNA fluorescent in situ hybridization; KLF2: Kruppel-like factor 2; NC: normal control; NK cell: natural killer cell; NOD/SCID: nonobese severe diabetic/severe combined immunodeficiency; PIM1: Pim-1 proto-oncogene, serine/threonine kinase; RCC: renal cell carcinoma; ZKSCAN1: zinc finger with KRAB and SCAN domains 1.
Collapse
Affiliation(s)
- Mingzi Li
- Department of Urology, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, Shanghai, China
| | - Mingxun Zhang
- Department of Pathology, the First Affiliated Hospital of Ustc, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.,Intelligent Pathology Institute, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Muling Chen
- Department of Urology, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, Shanghai, China
| | - Jiantao Xiao
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xingyu Mu
- Department of Urology, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, Shanghai, China
| | - Jingtao Peng
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jie Fan
- Department of Urology, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, Shanghai, China
| |
Collapse
|
37
|
Jia L, Liu M, An L, Wang H, Wang X. Circ_0000514 promotes the malignant biological behaviors of non-small cell lung cancer cells by modulating miR-330-5p and HMGA2. Pathol Res Pract 2022; 235:153913. [DOI: 10.1016/j.prp.2022.153913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/06/2022] [Accepted: 04/22/2022] [Indexed: 10/18/2022]
|
38
|
Jin M, Liu X, Wu Y, Lou Y, Li X, Huang G. Circular RNA EPB41 expression predicts unfavorable prognoses in NSCLC by regulating miR-486-3p/eIF5A axis-mediated stemness. Cancer Cell Int 2022; 22:219. [PMID: 35725615 PMCID: PMC9210757 DOI: 10.1186/s12935-022-02618-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 05/20/2022] [Indexed: 11/12/2022] Open
Abstract
Dysregulation of circular RNAs (circRNAs) has recently been found to play an important role in the progression and development of cancers such as non-small cell lung cancer (NSCLC). Yet the functions of many circRNAs in NSCLC remain unclear. In this study, the circRNA expression profiles in NSCLC tumor tissues and adjacent non-tumorous tissues were detected by high-throughput sequencing. Bioinformatics analyses, the dual-luciferase reporter system, fluorescence in situ hybridization (FISH) and miRNA/mRNA high-throughput sequencing were used to identify circ-EPB41 and its downstream target. The subcutaneous tumor/caudal vein transfer mouse model was used for tumor growth and invasion analysis. The results show that the circ-EPB41 was upregulated in NSCLC tissues and cell lines. Increased circ-EPB41 expression in NSCLC was significantly correlated with malignant characteristics, and positive to post-surgical overall survival of NSCLC patients. Reduced circ-EPB41 expression in NSCLC decreased cell proliferation and invasion in both in vitro and in vivo experiments. The miRNA/mRNA high-throughput sequencing suggested that downregulation of circ-EPB41 promoted microRNA (miR)-486-3p and suppressed eukaryotic translation initiation factor 5A (eIF5A) expression. Luciferase reporter experiments confirmed that miR-486-3p/eIF5A were downstream targets of circ-EPB41. In addition, we also found that downregulation of circ-EPB41 suppressed self-renewal and decreased expression of stemness markers SOX2, OCT-4, Nanog and CD133 by sponging miR-486-3p to enhance eIF5A expression. Taken togeter, these data revealed the important role of circ-EPB41 in regulating NSCLC cell invasion and proliferation by modifying miR-486-3p/eIF5A axis-mediated stemness. We believe our study provides a novel perspective regarding the role of circRNAs in NSCLC progression.
Collapse
Affiliation(s)
- Mingming Jin
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, 279 Zhouzhu Road, Pudong New Area, Shanghai, 201318, People's Republic of China.,Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Xiyu Liu
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, 279 Zhouzhu Road, Pudong New Area, Shanghai, 201318, People's Republic of China.,Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Yue Wu
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, 279 Zhouzhu Road, Pudong New Area, Shanghai, 201318, People's Republic of China.,Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Yuqing Lou
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, 279 Zhouzhu Road, Pudong New Area, Shanghai, 201318, People's Republic of China.,Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Xue Li
- Health School Attached to Shanghai University of Medicine and Health Sciences, Shanghai, 200237, People's Republic of China.
| | - Gang Huang
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, 279 Zhouzhu Road, Pudong New Area, Shanghai, 201318, People's Republic of China. .,Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China.
| |
Collapse
|
39
|
Xiao S, Zuo Y, Li Y, Huang Y, Fu S, Yuan D, Qiao X, Wang H, Wang J. Long Noncoding RNA HAGLROS Promotes the Malignant Progression of Bladder Cancer by Regulating the miR-330-5p/SPRR1B Axis. Front Oncol 2022; 12:876090. [PMID: 35664787 PMCID: PMC9159766 DOI: 10.3389/fonc.2022.876090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/01/2022] [Indexed: 11/13/2022] Open
Abstract
Bladder cancer (BC) is the most common genitourinary malignancy worldwide, and its aetiology and pathogenesis remain unclear. Accumulating evidence has shown that HAGLROS is closely related to the occurrence and progression of various cancers. However, the biological functions and underlying mechanisms of HAGLROS in BC remain unknown. In the present study, the expression of HAGLROS in BC was determined by public dataset analysis, transcriptome sequencing analysis, qRT–PCR and ISH assays. Gain- or loss-of-function assays were performed to study the biological roles of HAGLROS in BC cells and nude mouse xenograft model. Bioinformatic analysis, qRT–PCR, western blot, immunohistochemistry, FISH assays, subcellular fractionation assays and luciferase reporter assays were performed to explore the underlying molecular mechanisms of HAGLROS in BC. Here, we found that HAGLROS expression is significantly upregulated in BC tissues and cells, and elevated HAGLROS expression was related to higher pathologic grade and advanced clinical stage, which is significant for BC diagnosis. HAGLROS can enhance the growth and metastasis of BC in vitro and in vivo. Furthermore, miR-330-5p downregulation reversed the BC cells proliferation, migration and invasion inhibited by silencing HAGLROS. SPRR1B silencing restored the malignant phenotypes of BC cells promoted by miR-330--5p inhibitor. Mechanistically, we found that HAGLROS functions as a microRNA sponge to positively regulate SPRR1B expression by sponging miR-330-5p. Together, these results demonstrate that HAGLROS plays an oncogenic role and may serve as a potential biomarker for the diagnosis and treatment of BC.
Collapse
Affiliation(s)
- Shiwei Xiao
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Yunnan Institute of Urology, Kunming, China.,Department of Urology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Yigang Zuo
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Yunnan Institute of Urology, Kunming, China
| | - Yanan Li
- Department of Basic Chemistry, College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Yinglong Huang
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Yunnan Institute of Urology, Kunming, China
| | - Shi Fu
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Yunnan Institute of Urology, Kunming, China
| | - Dongbo Yuan
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Xuhua Qiao
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Yunnan Institute of Urology, Kunming, China
| | - Haifeng Wang
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Yunnan Institute of Urology, Kunming, China
| | - Jiansong Wang
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Yunnan Institute of Urology, Kunming, China
| |
Collapse
|
40
|
Sun JS, Wang L, Zhu X, Shen M. Hsa_circ_0006427 Suppresses Multiplication, Migration and Invasion of Non-Small Cell Lung Cancer Cells through miR-346/VGLL4 Pathway. CELL JOURNAL 2022; 24:245-254. [PMID: 35717572 PMCID: PMC9445522 DOI: 10.22074/cellj.2022.7795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 01/11/2021] [Indexed: 11/16/2022]
Abstract
Objective Circular RNAs (circRNAs) are identified as key modulators in cancer biology. Nonetheless, the role of circ_0006427 in non-small cell lung cancer (NSCLC) and its modulatory mechanism are undefined. This study aimed to investigate the potential function and mechanism of circ_0006427 in NSCLC. Materials and Methods In this experimental study, circ_0006427, miR-346 and vestigial like family member 4 (VGLL4) mRNA expressions were analyzed in NSCLC tissues and cells, using quantitative reverse transcription polymerase chain reaction (qRT-PCR). Multiplication, migration and invasion of NSCLC cells were examined using the CCK-8 method and Transwell experiment, respectively. Dual-luciferase reporter gene experiments were conducted to identify the paring relationship between circ_0006427 and miR-346. Western blot was employed to determine expressions of VGLL4 and epithelial-mesenchymal transition (EMT) markers on protein levels. Immuno-histochemistry (IHC) method was adopted to assess VGLL4 protein expression in NSCLC tissues. Results Circ_0006427 expression was down-regulated in NSCLC tissues and cells, and circ_0006427 suppressed multiplication, migration, invasion and EMT of NSCLC cells. miR-346 expression was upregulated in NSCLC tissues and cells, and miR-346 worked as a target of circ_0006427. VGLL4 was down-regulated in NSCLC tissues and cells, and knockdown of VGLL4 accelerated multiplication, migration, invasion and EMT of NSCLC cells. Circ_0006427 enhanced VGLL4 expression by competitively binding with miR-346. Conclusion Circ_0006427/miR-346/VGLL4 axis regulated NSCLC progression.
Collapse
Affiliation(s)
- Jiacheng Sun Sun
- Department of Thoracic Surgery, Pinghu First People's Hospital, Pinghu City, Jiaxing, Zhejiang, China
| | - Lei Wang
- Department of Anesthesiology, Pinghu First People's Hospital, Pinghu City, Jiaxing, Zhejiang, China
| | - Xinhai Zhu
- Department of Thoracic Surgery, Zhejiang Hospital, Xihu District, Hangzhou, Zhejiang, China,Department of Thoracic SurgeryZhejiang HospitalXihu DistrictHangzhouZhejiangChinaDepartment of Thoracic SurgeryPinghu First People's HospitalPinghu CityJiaxingZhejiangChina
Emails:,
| | - Molei Shen
- Department of Thoracic Surgery, Pinghu First People's Hospital, Pinghu City, Jiaxing, Zhejiang, China,Department of Thoracic SurgeryZhejiang HospitalXihu DistrictHangzhouZhejiangChinaDepartment of Thoracic SurgeryPinghu First People's HospitalPinghu CityJiaxingZhejiangChina
Emails:,
| |
Collapse
|
41
|
Wu Y, Fu L, Wang B, Li Z, Wei D, Wang H, Zhang C, Ma Z, Zhu T, Yu G. Construction of a prognostic risk assessment model for lung adenocarcinoma based on Integrin β family‐related genes. J Clin Lab Anal 2022; 36:e24419. [PMID: 35403268 PMCID: PMC9169214 DOI: 10.1002/jcla.24419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/25/2022] [Accepted: 03/27/2022] [Indexed: 12/13/2022] Open
Abstract
Background Integrin β (ITGB) superfamily plays an essential role in the intercellular connection and signal transmission. It was exhibited that overexpressing of ITGB family members promotes the malignant progression of lung adenocarcinoma (LUAD), but the relationship between ITGB superfamily and the LUAD prognosis remains unclear. Methods In this study, the samples were assigned to different subgroups utilizing non‐negative matrix factorization clustering according to the expression of ITGB family members in LUAD. Kaplan–Meier (K‐M) survival analysis revealed the significant differences in the prognosis between different ITGB subgroups. Subsequently, we screened differentially expressed genes among different subgroups and conducted univariate Cox analysis, random forest feature selection, and multivariate Cox analysis. 9‐feature genes (FAM83A, AKAP12, PKP2, CYP17A1, GJB3, TMPRSS11F, KRT81, MARCH4, and STC1) in the ITGB superfamily were selected to establish a prognostic assessment model for LAUD. Results In accordance with the median risk score, LUAD samples were divided into high‐ and low‐risk groups. The receiver operating characteristic (ROC) curve of LUAD patients’ survival was predicted via K‐M survival curve and principal component analysis dimensionality reduction. This model was found to have a favorable performance in LUAD prognostic assessment. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses of differentially expressed genes between groups and Gene Set Enrichment Analysis (GSEA) of intergroup samples confirmed that the high‐ and low‐risk groups had evident differences mainly in the function of extracellular matrix (ECM) interaction. Risk score and univariate and multivariate Cox regression analyses of clinical factors showed that the prognostic model could be applied as an independent prognostic factor for LUAD. Then, we draw the nomogram of 1‐, 3‐, and 5‐year survival of LUAD patients predicted with the risk score and clinical factors. Calibration curve and clinical decision curve proved the favorable predictive ability of nomogram. Conclusion We constructed a LUAD prognostic risk model based on the ITGB superfamily, which can provide guidance for clinicians on their prognostic judgment.
Collapse
Affiliation(s)
- Yuanlin Wu
- Department of Thoracic Surgery Shaoxing People's Hospital Shaoxing China
| | - Linhai Fu
- Department of Thoracic Surgery Shaoxing People's Hospital Shaoxing China
| | - Bin Wang
- Department of Thoracic Surgery Shaoxing People's Hospital Shaoxing China
| | - Zhupeng Li
- Department of Thoracic Surgery Shaoxing People's Hospital Shaoxing China
| | - Desheng Wei
- Department of Thoracic Surgery Shaoxing People's Hospital Shaoxing China
| | - Haiyong Wang
- Department of Thoracic Surgery Shaoxing People's Hospital Shaoxing China
| | - Chu Zhang
- Department of Thoracic Surgery Shaoxing People's Hospital Shaoxing China
| | - Zhifeng Ma
- Department of Thoracic Surgery Shaoxing People's Hospital Shaoxing China
| | - Ting Zhu
- Department of Thoracic Surgery Shaoxing People's Hospital Shaoxing China
| | - Guangmao Yu
- Department of Thoracic Surgery Shaoxing People's Hospital Shaoxing China
| |
Collapse
|
42
|
Liu Y, Ao X, Yu W, Zhang Y, Wang J. Biogenesis, functions, and clinical implications of circular RNAs in non-small cell lung cancer. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 27:50-72. [PMID: 34938606 PMCID: PMC8645422 DOI: 10.1016/j.omtn.2021.11.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Lung cancer (LC) is the leading cause of cancer-related deaths worldwide, with high morbidity and mortality. Non-small cell lung cancer (NSCLC) is a major pathological type of LC and accounts for more than 80% of all cases. Circular RNAs (circRNAs) are a large class of non-coding RNAs (ncRNAs) with covalently closed-loop structures, a high abundance, and tissue-specific expression patterns. They participate in various pathophysiological processes by regulating complex gene networks involved in proliferation, apoptosis, migration, and epithelial-to-mesenchymal transition (EMT), as well as metastasis. A growing number of studies have revealed that the dysregulation of circRNAs contributes to many aspects of cancer progression, such as its occurrence, metastasis, and recurrence, suggesting their great potential as efficient and specific biomarkers in the diagnosis, prognosis, and therapeutic targeting of NSCLC. In this review, we systematically elucidate the characteristics, biogenesis, and functions of circRNAs and focus on their molecular mechanisms in NSCLC progression. Moreover, we highlight their clinical implications in NSCLC treatment.
Collapse
Affiliation(s)
- Ying Liu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao 266021, China.,School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao 266071, China
| | - Xiang Ao
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao 266071, China
| | - Wanpeng Yu
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao 266071, China
| | - Yuan Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao 266021, China
| | - Jianxun Wang
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao 266071, China
| |
Collapse
|
43
|
Wang Y, Li X, Wang H, Zhang G. CircCAMSAP1 promotes non-small cell lung cancer proliferation and inhibits cell apoptosis by sponging miR-1182 and regulating BIRC5. Bioengineered 2022; 13:2428-2439. [PMID: 35132928 PMCID: PMC8974160 DOI: 10.1080/21655979.2021.2011639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Recently, various studies have suggested that circular RNAs (circRNAs) are ubiquitous in various malignant events, including non-small cell lung cancer (NSCLC) and are closely related to cell proliferation and apoptosis. Unfortunately, the molecular functions involved in this action still have little overlap. Therefore, this study aimed to identify a novel circCAMSAP1 role in NSCLC. Overexpression of circCAMSAP1 has been demonstrated in NSCLC lung tissues and cell lines. Sequencing and RNase R experiments were planned to determine whether circCAMSAP1 is looped and exists in NSCLC. We also found that downregulated circCAMSAP1 repressed cell proliferation and increased apoptosis of NSCLC cells in vitro and suppressed xenograft tumor growth in vivo. Furthermore, a luciferase assay revealed that circCAMSAP1 could regulate baculoviral inhibitor of apoptosis protein (IAP) repeat containing 5 (BIRC5, also known as survivin) expression by directly binding to miR-1182. However, BIRC5 without 3ʹ untranslated regions (3ʹUTR) could reverse the influence of downregulated circCAMSAP1 on proliferation and apoptosis in NSCLC. Together, our findings reveal a novel mechanism by which the circCAMSAP1/miR-1182/BIRC5 axis promotes NSCLC progression.
Collapse
Affiliation(s)
- Yunfei Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaobo Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Huaqi Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Guojun Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
44
|
Wang X, Lv J, He B, Zhou D. CircFBXW8 Acts an Oncogenic Role in the Malignant Progression of Non-small Cell Lung Carcinoma by miR-370-3p-Dependent Regulation of TRIM44. Biochem Genet 2022; 60:1313-1332. [PMID: 34988777 DOI: 10.1007/s10528-021-10177-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 12/06/2021] [Indexed: 12/24/2022]
Abstract
Non-small cell lung carcinoma (NSCLC) is an aggressive malignant tumor. Growing evidences have revealed that circular RNA (circRNA) is involved in NSCLC progression. This study aims to investigate the role of circular RNA F-box and WD repeat domain containing 8 (circFBXW8) in NSCLC progression and the underlying mechanism. The expression of circFBXW8, microRNA-370-3p (miR-370-3p) and tripartite motif containing 44 (TRIM44) mRNA was detected by quantitative real-time polymerase chain reaction (qRT-PCR). Protein expression was detected by western blot analysis or immunohistochemistry assay. Additionally, cell viability, colony-forming ability, proliferation and apoptosis were investigated by 3-(4,5-Dimethylthazol-2-yl)-2,5-diphenyltetrazolium bromide, cell colony formation, 5-Ethynyl-29-deoxyuridine and flow cytometry analysis assays, respectively. Cell migratory and invasive abilities were examined by wound-healing and transwell assays. The regulatory relationship between miR-370-3p and circFBXW8 or TRIM44 was identified by dual-luciferase reporter and RNA pull-down assays. Furthermore, xenograft experiment was employed to explain the effect of circFBXW8 silencing on tumor formation. CircFBXW8 and TRIM44 expression were upregulated, while miR-370-3p was downregulated in NSCLC tissues, cells and the exosomes from NSCLC cells compared with respective controls. CircFBXW8 depletion repressed NSCLC cell proliferation, migration and invasion, but promoted cell apoptosis. CircFBXW8 acted as a sponge of miR-370-3p and regulated NSCLC cell malignancy by binding to miR-370-3p. Additionally, miR-370-3p repressed NSCLC cell processes by regulating TRIM44. CircFBXW8 knockdown inhibited tumor formation in vivo. Further, circFBXW8 secretion was mediated by exosomes. CircFBXW8 modulated NSCLC progression by increasing TRIM44 expression through sponging miR-370-3p, which provided a new direction for studying the therapy of NSCLC.
Collapse
Affiliation(s)
- Xia Wang
- Second Department of Oncology, Beibei Traditional Chinese Medical Hospital, No. 93 Beixia Road, Beibei District, Chongqing, 400700, People's Republic of China
| | - Jian Lv
- School of Mechanical Engineering, Southeast University, Nanjing, Jiangsu, China
| | - Bin He
- Second Department of Oncology, Beibei Traditional Chinese Medical Hospital, No. 93 Beixia Road, Beibei District, Chongqing, 400700, People's Republic of China
| | - Deqi Zhou
- Second Department of Oncology, Beibei Traditional Chinese Medical Hospital, No. 93 Beixia Road, Beibei District, Chongqing, 400700, People's Republic of China.
| |
Collapse
|
45
|
Xia S, Zhang Z. Circular RNA hsa_circ_0000317 inhibits non-small cell lung cancer progression through regulating microRNA-494-3p/phosphatase and tensin homolog deleted on chromosome 10 axis. Clinics (Sao Paulo) 2022; 77:100086. [PMID: 35917658 PMCID: PMC9344349 DOI: 10.1016/j.clinsp.2022.100086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 12/07/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Circular RNA (circRNA), a group of non-coding RNA, is pivotal in the progression of various cancers, including Non-Small Cell Lung Cancer (NSCLC). Some circRNAs have been reported to be implicated in the progression of NSCLC, however, the function and molecular mechanism of hsa_circ_0000317 (circ_0000317) in NSCLC have not been fully understood. METHODS The significantly differentially expressed circRNA in NSCLC tissues, circ_0000317, was screened out by microarray. Circ_0000317, microRNA(miR)-494-3p and Phosphatase and Tensin Homolog Deleted on Chromosome 10 (PTEN) expressions in NSCLC tissues were respectively probed by quantitative real-time polymerase chain reaction and western blot assay. MTT and Transwell assays were adopted to examine the growth, migration, and invasion of NSCLC cells. Bioinformatics, luciferase reporter gene assay, RNA immunoprecipitation, and RNA pull-down assay were conducted to probe the relationships among circ_0000317, miR-494-3p, and PTEN. RESULTS Circ_0000317 expression level was reduced in NSCLC tissues and cell lines. Circ_0000317 expression in NSCLC patients was associated with TNM stage and lymphatic metastasis. Circ_0000317 overexpression restrained the proliferation, migration, and invasion of NSCLC cells, but co-transfection of miR-494-3p mimics partially reversed this effect. In addition, circ_0000317, was identified as a competitive endogenous RNA, which could sponge miR-494-3p to increase PTEN expression and activate PI3K/AKT pathway. CONCLUSION Circ_0000317, inhibits NSCLC progression via modulating miR-494-3p/PTEN/PI3K/AKT pathway.
Collapse
Affiliation(s)
- Shihui Xia
- Department of Cardiothoracic Surgery, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Hubei, China
| | - Zengwang Zhang
- Department of Cardiothoracic Surgery, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Hubei, China.
| |
Collapse
|
46
|
Jafarzadeh A, Paknahad MH, Nemati M, Jafarzadeh S, Mahjoubin-Tehran M, Rajabi A, Shojaie L, Mirzaei H. Dysregulated expression and functions of microRNA-330 in cancers: A potential therapeutic target. Biomed Pharmacother 2021; 146:112600. [PMID: 34968919 DOI: 10.1016/j.biopha.2021.112600] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/16/2021] [Accepted: 12/23/2021] [Indexed: 12/21/2022] Open
Abstract
As small non-coding RNAs, MicroRNAs (miRNAs) bind to the 3' untranslated region (3'-UTR) of mRNA targets to control gene transcription and translation. The gene of miR-330 has two miRNA products, including miR-330-3p and miR-330-5p, which exhibit anti-tumorigenesis and/or pro-tumorigenesis effects in many kinds of malignancies. In cancers, miR-330-3p and miR-330-5p aberrant expression can influence many malignancy-related processes such as cell proliferation, migration, invasion, apoptosis and epithelial-mesenchymal transition, as well as angiogenesis and responsiveness to treatment. In many cancer types (such as lung, prostate, gastric, breast, bladder, ovarian, colorectal, and pancreatic cancer, and osteosarcoma), miR-330-5p acts as an anti-tumor agent. These cancers have low levels of miR-330-5p that leads to the upregulation of the tumor promotor target genes leading to tumor progression. Here, overexpression of miR-330-5p using miRNA inducers can prevent tumor development. Dual roles of miR-330-5p have been also indicated in the thyroid, liver and cervical cancers. Moreover, miR-330-3p exhibits pro-tumorigenesis effects in lung cancer, pancreatic cancer, osteosarcoma, bladder cancer, and cervical cancer. Here, downregulation of miR-330-3p using miRNA inhibitors can prevent tumor development. Demonstrated in breast and liver cancers, miR-330-3p also has dual roles. Importantly, the activities of miR-330-3p and/or miR-330-5p are regulated by upstream regulators long non-coding RNAs (lncRNAs), including circular and linear lncRNAs. This review comprehensively explained miR-330-3p and miR-330-5p role in development of cancers, while highlighting their downstream target genes and upstream regulators as well as possible therapeutic strategies.
Collapse
Affiliation(s)
- Abdollah Jafarzadeh
- Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran; Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| | - Mohammad Hossein Paknahad
- Department of Cardiology, Chamran Cardiovascular Research Education Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maryam Nemati
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Haematology and Laboratory Sciences, School of Para-Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Sara Jafarzadeh
- Student Research Committee, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Maryam Mahjoubin-Tehran
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Rajabi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Layla Shojaie
- Research center for Liver diseases, Keck school of medicine, Department of Medicine, University of Southern California, Los angeles, CA, USA.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
47
|
Xi SJ, Cai WQ, Wang QQ, Peng XC. Role of circular RNAs in gastrointestinal tumors and drug resistance. World J Clin Cases 2021; 9:10400-10417. [PMID: 35004973 PMCID: PMC8686142 DOI: 10.12998/wjcc.v9.i34.10400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/26/2021] [Accepted: 08/05/2021] [Indexed: 02/06/2023] Open
Abstract
The incidence of gastrointestinal cancers has increased significantly over the past decade and gastrointestinal malignancies now rank among the leading causes of mortality globally. Although newer therapeutic strategies such as targeted therapies have greatly improved patient outcomes, their clinical success is limited by drug resistance, treatment failure and recurrence of metastatic disease. Therefore, there is an urgent need for further research identifying accurate and reliable biomarkers for precise treatment strategies. Circular RNAs (circRNAs) exhibit a covalently closed structure, high stability and biological conservation, and their expression is associated with the occurrence and development of gastrointestinal tumors. Moreover, circRNAs may significantly influence drug resistance of gastrointestinal cancers. In this article, we review the role of circRNAs in the occurrence and development of gastrointestinal cancer, their association with drug resistance, and potential application for early diagnosis, treatment and prognosis in gastrointestinal malignancies. Furthermore, we summarize characteristics of circRNA, including mechanism of formation and biological effects via mRNA sponging, chromatin replication, gene regulation, translational modification, signal transduction, and damage repair. Finally, we discuss whether circRNA-related noninvasive testing may be clinically provided in the future. This review provides new insights for the future development of diagnostics and therapeutics based on circRNAs in gastrointestinal tumors.
Collapse
Affiliation(s)
- Shi-Jun Xi
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, Hubei Province, China
| | - Wen-Qi Cai
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, Hubei Province, China
| | - Qin-Qi Wang
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, Hubei Province, China
| | - Xiao-Chun Peng
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, Hubei Province, China
| |
Collapse
|
48
|
Lu N, Ren L. TTK (threonine tyrosine kinase) regulates the malignant behaviors of cancer cells and is regulated by microRNA-582-5p in ovarian cancer. Bioengineered 2021; 12:5759-5768. [PMID: 34516342 PMCID: PMC8806697 DOI: 10.1080/21655979.2021.1968778] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/11/2021] [Accepted: 08/11/2021] [Indexed: 12/27/2022] Open
Abstract
There is growing evidence that threonine tyrosine kinase (TTK) dysregulation is linked to the progression of multiple malignancies. Nonetheless, the role of TTK in ovarian cancer (OC) remains unclear. The GEO2R method was employed to screen out the mRNAs that were abnormally expressed between OC tissues and normal ovarian tissues using three datasets from the Gene Expression Omnibus (GEO) database: GSE14407, GSE18520, and GSE36668. Moreover, the Kaplan-Meier plotter was utilized to investigate the association between TTK expression and OC patients' prognosis. Furthermore, quantitative real-time PCR (qRT-PCR) was applied to examine miR-582-5p expression and TTK mRNA expression in OC tissues and cells. Additionally, immunohistochemistry (IHC) experiment and Western blot were executed to examine TTK protein expression in OC tissues and cells, respectively. In addition, Cell Counting Kit-8 (CCK-8), transwell, and flow-cytometry experiments were performed to examine the multiplication, migration, and apoptosis of OC cells, respectively. In addition, dual-luciferase reporter gene tests were executed to validate the targeting relationship between miR-582-5p and TTK. We demonstrated that TTK expression was up-regulated in OC tissues and cells, and its overexpression was found to be associated with an adverse prognosis in OC patients. TTK overexpression enhanced OC cell multiplication and migration, and repressed apoptosis. Mechanistically, TTK was a downstream target of miR-582-5p. Furthermore, miR-582-5p overexpression impeded OC cell multiplication and migration, while TTK overexpression reversed this phenomenon. These data suggest that miR-582-5p and TTK are promising targets for OC diagnosis and therapy.
Collapse
Affiliation(s)
- Na Lu
- Department of Gynecology, Shanxi Provincial Cancer Hospital, Taiyuan, Shanxi China
| | - Lixin Ren
- Department of General Surgery, Shanxi Provincial Cancer Hospital, Taiyuan, Shanxi China
| |
Collapse
|
49
|
Ishola AA, Chien CS, Yang YP, Chien Y, Yarmishyn AA, Tsai PH, Chen JCY, Hsu PK, Luo YH, Chen YM, Liang KH, Lan YT, Huo TI, Ma HI, Chen MT, Wang ML, Chiou SH. Oncogenic circRNA hsa_circ_0000190 modulates EGFR/ERK pathway in promoting NSCLC. Cancer Res 2021; 82:75-89. [PMID: 34753774 DOI: 10.1158/0008-5472.can-21-1473] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 09/28/2021] [Accepted: 11/05/2021] [Indexed: 12/24/2022]
Abstract
Lung cancers (LC) are the leading cause of cancer-related mortality worldwide, and the majority of LC are non-small cell lung carcinoma (NSCLC). Overexpressed or activated EGFR has been associated with a poor prognosis in NSCLC. We previously identified a circular non-coding RNA, hsa_circ_0000190 (C190), as a negative prognostic biomarker of LC. Here we attempted to dissect the mechanistic function of C190 and test the potential of C190 as a therapeutic target in NSCLC. C190 was upregulated in both NSCLC clinical samples and cell lines. Activation of the EGFR pathway increased C190 expression through a MAPK/ERK-dependent mechanism. Transient and stable overexpression of C190 induced ERK1/2 phosphorylation, proliferation, and migration in vitro and xenograft tumor growth in vivo. RNA sequencing and Expression2Kinases (X2K) analysis indicated that kinases associated with cell cycle and global translation are involved in C190-activated networks, including CDKs and p70S6K, which were further validated by immunoblotting. CRISPR/Cas13a-mediated knockdown of C190 decreased proliferation and migration of NSCLC cells in vitro and suppressed tumor growth in vivo. TargetScan and CircInteractome databases predicted that C190 targets CDKs by sponging miR-142-5p. Analysis of clinical LC samples showed that C190, CDK1, and CDK6 expression were significantly higher in advanced-stage LC than in early-stage LC. In summary, C190 is directly involved in EGFR-MAPK-ERK signaling and may serve as a potential therapeutic target for the treatment of NSCLC.
Collapse
Affiliation(s)
| | - Chian-Shiu Chien
- Department of Medical Research, Taipei Veterans General Hospital
| | - Yi-Ping Yang
- Department of Medical Research, Taipei Veterans General Hospital
| | - Yueh Chien
- Department of Medical Research, Taipei Veterans General Hospital
| | | | - Ping-Hsing Tsai
- Department of Medical Research, Taipei Veterans General Hospital
| | | | - Po-Kuei Hsu
- Department of Surgery, Taipei Veterans General Hospital
| | | | | | - Kung-Hao Liang
- Liver Research Center, Department of Hepato-Gastroenterology, Chang Gung Memorial Hospital
| | | | - Teh-Ia Huo
- Department of Medical Research, Taipei Veterans General Hospital
| | - Hsin-I Ma
- Department of Neurological Surgery, Tri-Service General Hospital and National Defense Medical Center
| | - Ming-Teh Chen
- Department of Neurosurgery, Taipei Veterans General Hospital
| | - Mong-Lien Wang
- Department of Medical Research, National Yang Ming University
| | - Shih-Hwa Chiou
- Department of Medical Research, Taipei Veterans General Hospital
| |
Collapse
|
50
|
Lai Q, Wang M, Hu C, Tang Y, Li Y, Hao S. Circular RNA regulates the onset and progression of cancer through the mitogen-activated protein kinase signaling pathway. Oncol Lett 2021; 22:817. [PMID: 34671431 PMCID: PMC8503804 DOI: 10.3892/ol.2021.13078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/27/2021] [Indexed: 01/04/2023] Open
Abstract
The rapid increase in cancer morbidity and mortality worldwide is a major challenge for public health providers. Therefore, there is an urgent need to explore the molecular mechanism of tumorigenesis and identify potential diagnostic biomarkers and therapeutic methods. Circular RNA (circRNA) is characterized by a stable structure and tissue-specific expression; these features are useful in medical research and clinical applications. In recent years, with the development of high-throughput sequencing technology, the potential use of circRNA in cancer prognosis and treatment has been extensively explored. Abnormal circRNA expression interferes with specific signaling pathways such as the MAPK pathway; this phenomenon may provide potential diagnostic biomarkers and new therapeutic targets. The present article discusses the research progress on the regulatory roles of MAPK/ERK pathway-related circRNA molecules in the development and progression of different types of tumors. This review may provide insight into the development of circRNA-based cancer management strategies.
Collapse
Affiliation(s)
- Qun Lai
- Department of Hematology and Oncology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Min Wang
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Chunmei Hu
- Department of Hematology and Oncology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Yan Tang
- Department of Hematology and Oncology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Yarong Li
- Department of Hematology and Oncology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Shuhong Hao
- Department of Hematology and Oncology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| |
Collapse
|