1
|
Stenzinger A, Vogel A, Lehmann U, Lamarca A, Hofman P, Terracciano L, Normanno N. Molecular profiling in cholangiocarcinoma: A practical guide to next-generation sequencing. Cancer Treat Rev 2024; 122:102649. [PMID: 37984132 DOI: 10.1016/j.ctrv.2023.102649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 10/29/2023] [Indexed: 11/22/2023]
Abstract
Cholangiocarcinomas (CCA) are a heterogeneous group of tumors that are classified as intrahepatic, perihilar, or distal according to the anatomic location within the biliary tract. Each CCA subtype is associated with distinct genomic alterations, including single nucleotide variants, copy number variants, and chromosomal rearrangements or gene fusions, each of which can influence disease prognosis and/or treatment outcomes. Molecular profiling using next-generation sequencing (NGS) is a powerful technique for identifying unique gene variants carried by an individual tumor, which can facilitate their accurate diagnosis as well as promote the optimal selection of gene variant-matched targeted treatments. NGS is particularly useful in patients with CCA because between one-third and one-half of these patients have genomic alterations that can be targeted by drugs that are either approved or in clinical development. NGS can also provide information about disease evolution and secondary resistance alterations that can develop during targeted therapy, and thus facilitate assessment of prognosis and choice of alternative targeted treatments. Pathologists play a critical role in assessing the viability of biopsy samples for NGS, and advising treating clinicians whether NGS can be performed and which of the available platforms should be used to optimize testing outcomes. This review aims to provide clinical pathologists and other healthcare professionals with practical step-by-step guidance on the use of NGS for molecular profiling of patients with CCA, with respect to tumor biopsy techniques, pre-analytic sample preparation, selecting the appropriate NGS panel, and understanding and interpreting results of the NGS test.
Collapse
Affiliation(s)
- Albrecht Stenzinger
- Institute of Pathology Heidelberg (IPH), Center for Molecular Pathology, University Hospital Heidelberg, In Neuenheimer Feld 224, 69120 Heidelberg, Building 6224, Germany.
| | - Arndt Vogel
- Division of Gastroenterology and Hepatology, Toronto General Hospital Medical Oncology, Princess Margaret Cancer Centre, Schwartz Reisman Liver Research Centre, 200 Elizabeth Street, Office: 9 EB 236 Toronto, ON, M5G 2C4, Canada.
| | - Ulrich Lehmann
- Institute for Pathology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany.
| | - Angela Lamarca
- Department of Medical Oncology, Oncohealth Institute, Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Fundación Jiménez Díaz University Hospital, Av. de los Reyes Católicos, 2, 28040 Madrid, Spain; Department of Medical Oncology, The Christie NHS Foundation Trust, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| | - Paul Hofman
- Laboratory of Clinical and Experimental Pathology, FHU OncoAge, IHU RespirERA, Siège de l'Université: Grand Château, 28 Avenue de Valrose, 06103 Nice CEDEX 2, France.
| | - Luigi Terracciano
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini, 4, 20072 Pieve Emanuele, Milan, Italy; IRCCS Humanitas Research Hospital, Via Alessandro Manzoni, 56, 20089 Rozzano, Milan, Italy.
| | - Nicola Normanno
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori - IRCCS - Fondazione G. Pascale, Napoli, Italy.
| |
Collapse
|
2
|
Cai P, Yang B, Zhao J, Ye P, Yang D. Detection of KRAS mutation using plasma samples in non-small-cell lung cancer: a systematic review and meta-analysis. Front Oncol 2023; 13:1207892. [PMID: 37483491 PMCID: PMC10357383 DOI: 10.3389/fonc.2023.1207892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/20/2023] [Indexed: 07/25/2023] Open
Abstract
Background The aim of this study was to investigate the diagnostic accuracy of KRAS mutation detection using plasma sample of patients with non-small cell lung cancer (NSCLC). Methods Databases of Pubmed, Embase, Cochrane Library, and Web of Science were searched for studies detecting KRAS mutation in paired tissue and plasma samples of patients with NSCLC. Data were extracted from each eligible study and analyzed using MetaDiSc and STATA. Results After database searching and screening of the studies with pre-defined criteria, 43 eligible studies were identified and relevant data were extracted. After pooling the accuracy data from 3341 patients, the pooled sensitivity, specificity and diagnostic odds ratio were 71%, 94%, and 59.28, respectively. Area under curve of summary receiver operating characteristic curve was 0.8883. Subgroup analysis revealed that next-generation sequencing outperformed PCR-based techniques in detecting KRAS mutation using plasma sample of patients with NSCLC, with sensitivity, specificity, and diagnostic odds ratio of 73%, 94%, and 82.60, respectively. Conclusion Compared to paired tumor tissue sample, plasma sample showed overall good performance in detecting KRAS mutation in patients with NSCLC, which could serve as good surrogate when tissue samples are not available.
Collapse
Affiliation(s)
- Peiling Cai
- Department of Anatomy and Histology, School of Preclinical Medicine, Chengdu University, Chengdu, China
| | - Bofan Yang
- School of Clinical Medicine, Chengdu University, Chengdu, China
| | - Jiahui Zhao
- School of Clinical Medicine, Chengdu University, Chengdu, China
| | - Peng Ye
- Department of Anatomy and Histology, School of Preclinical Medicine, Chengdu University, Chengdu, China
| | - Dongmei Yang
- Clinical Laboratory & Clinical Research and Translational Center, Second People’s Hospital of Yibin City-West China Yibin Hospital, Sichuan University, Yibin, China
| |
Collapse
|
3
|
Roma C, Sacco A, Forgione L, Esposito Abate R, Lambiase M, Dotolo S, Maiello MR, Frezzetti D, Nasti G, Morabito A, De Luca A, Normanno N. Low Impact of Clonal Hematopoiesis on the Determination of RAS Mutations by Cell-Free DNA Testing in Routine Clinical Diagnostics. Diagnostics (Basel) 2022; 12:diagnostics12081956. [PMID: 36010306 PMCID: PMC9406879 DOI: 10.3390/diagnostics12081956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/04/2022] [Accepted: 08/09/2022] [Indexed: 11/23/2022] Open
Abstract
Targeted sequencing of circulating cell-free DNA (cfDNA) is used in routine clinical diagnostics for the identification of predictive biomarkers in cancer patients in an advanced stage. The presence of KRAS mutations associated with clonal hematopoiesis of indeterminate potential (CHIP) might represent a confounding factor. We used an amplicon-based targeted sequencing panel, covering selected regions of 52 genes, for circulating cell-free total nucleic acid (cfTNA) analysis of 495 plasma samples from cancer patients. The cfDNA test failed in 4 cases, while circulating cell-free RNA (cfRNA) sequencing was invalid in 48 cases. In the 491 samples successfully tested on cfDNA, at least one genomic alteration was found in 222 cases (45.21%). We identified 316 single nucleotide variants (SNVs) in 21 genes. The most frequently mutated gene was TP53 (74 variants), followed by KRAS (71), EGFR (56), PIK3CA (33) and BRAF (19). Copy number variations (CNVs) were detected in 36 cases, while sequencing of cfRNA revealed 6 alterations. Analysis with droplet digital PCR (ddPCR) of peripheral blood leukocyte (PBL)-derived genomic DNA did not identify any KRAS mutations in 39 cases that showed KRAS mutations at cfDNA analysis. These findings suggest that the incidence of CHIP-associated KRAS mutations is relatively rare in routine clinical diagnostics.
Collapse
Affiliation(s)
- Cristin Roma
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy
| | - Alessandra Sacco
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy
| | - Laura Forgione
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy
| | - Riziero Esposito Abate
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy
| | - Matilde Lambiase
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy
| | - Serena Dotolo
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy
| | - Monica Rosaria Maiello
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy
| | - Daniela Frezzetti
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy
| | - Guglielmo Nasti
- SSD Innovative Therapies for Abdominal Metastases, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy
| | - Alessandro Morabito
- Thoracic Medical Oncology, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy
| | - Antonella De Luca
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy
| | - Nicola Normanno
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy
- Correspondence:
| |
Collapse
|
4
|
Vav1 accelerates Ras-driven lung cancer and modulates its tumor microenvironment. Cell Signal 2022; 97:110395. [PMID: 35752351 DOI: 10.1016/j.cellsig.2022.110395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/13/2022] [Accepted: 06/20/2022] [Indexed: 11/23/2022]
Abstract
The potential impact of Vav1 on human cancer was only recently acknowledged, as it is detected as a mutant or an overexpressed gene in various cancers, including lung cancer. Vav1, which is normally and exclusively expressed in the hematopoietic system functions as a specific GDP/GTP nucleotide exchange factor (GEF), strictly regulated by tyrosine phosphorylation. To investigate whether Vav1 plays a causative or facilitating role in-vivo in lung cancer development and to examine whether it co-operates with other oncogenes, such as mutant K-Ras, we generated novel mouse strains that express: Vav1 or K-RasG12D in type II pneumocytes, as well as a transgenic mouse line that expresses both Vav1 and K-RasG12D in these cells. Coexpression of Vav1 and K-RasG12D in the lungs dramatically increased malignant lung cancer lesions, and did so significantly faster than K-RasG12D alone, strongly suggesting that these two oncogenes synergize to enhance lung tumor development. Vav1 expression alone had no apparent effects on lung tumorigenesis. The increase in lung cancer in K-RasG12D/Vav1 mice was accompanied by an increase in B-cell, T-cells, and monocyte infiltration in the tumor microenvironment. Concomitantly, ERK phosphorylation was highly elevated in the lungs of K-RasG12 D/Vav1 mice. Also, several cytokines such as IL-4 and IL-13 which play a significant role in the immune system, were elevated in lungs of Vav1 and K-RasG12 D/Vav1 mice. Our findings emphasize the contribution of Vav1 to lung tumor development through its signaling properties.
Collapse
|
5
|
Morabito A, Manzo A, Montanino A, Rachiglio AM, Sforza V, Pasquale R, Costanzo R, Maiello MR, Sandomenico C, Gallo M, Palumbo G, De Luca A, La Rocca A, Martucci N, De Cecio R, Picone C, Lastoria S, Normanno N. Liquid Biopsy Testing for the Management of Patient with Non-Small Cell Lung Cancer Carrying a Rare Exon-20 EGFR Insertion. Oncologist 2022; 27:7-12. [PMID: 35305107 PMCID: PMC8842466 DOI: 10.1093/oncolo/oyab002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 11/22/2021] [Indexed: 12/26/2022] Open
Abstract
Increasing evidence suggests that liquid biopsy might play a relevant role in the management of metastatic non-small cell lung cancer (NSCLC) patients. Here, we show how the Molecular Tumor Board (MTB) in our cancer center employed liquid biopsy to support therapeutic decisions in a patient with NSCLC carrying a rare EGFR mutation. A 44-year-old woman, never-smoker with an EGFR, ALK, and ROS1-negative lung adenocarcinoma and multiple brain metastases received systemic therapy and surgery before being referred to our Institute. The MTB suggested NGS testing of tumor biopsy that revealed a rare exon-20 EGFR insertion (p.His773dup; c.2315_2316insCCA) and EGFR amplification. The MTB recommended treatment with erlotinib and follow-up with liquid biopsy, by using both cell-free DNA (cfDNA) and circulating tumor cells (CTCs). An increase of EGFR mutation levels in cfDNA revealed resistance to treatment about 6 months before clinical progression. Extremely low levels of EGFR p.T790M were detected at progression. Based on preclinical data suggesting activity of osimertinib against EGFR exon-20 insertions, the MTB recommended treatment with brain and bone radiotherapy and osimertinib. A dramatic reduction of EGFR mutation levels in the cfDNA was observed after 4 weeks of treatment. The PET scan demonstrated a metabolic partial remission that was maintained for 9 months. This case supports the evidence that liquid biopsy can aid in the management of metastatic NSCLC. It also suggests that treatment with osimertinib might be a therapeutic option in patients with EGFR exon-20 insertions when a clinical trial is not available.
Collapse
Affiliation(s)
- Alessandro Morabito
- Thoracic Medical Oncology Unit, Istituto Nazionale Tumori - IRCCS - “Fondazione G. Pascale”, Napoli, Italy
| | - Anna Manzo
- Thoracic Medical Oncology Unit, Istituto Nazionale Tumori - IRCCS - “Fondazione G. Pascale”, Napoli, Italy
| | - Agnese Montanino
- Thoracic Medical Oncology Unit, Istituto Nazionale Tumori - IRCCS - “Fondazione G. Pascale”, Napoli, Italy
| | - Anna Maria Rachiglio
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori - IRCCS - “Fondazione G. Pascale”, Napoli, Italy
| | - Vincenzo Sforza
- Thoracic Medical Oncology Unit, Istituto Nazionale Tumori - IRCCS - “Fondazione G. Pascale”, Napoli, Italy
| | - Raffaella Pasquale
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori - IRCCS - “Fondazione G. Pascale”, Napoli, Italy
| | - Raffaele Costanzo
- Thoracic Medical Oncology Unit, Istituto Nazionale Tumori - IRCCS - “Fondazione G. Pascale”, Napoli, Italy
| | - Monica R Maiello
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori - IRCCS - “Fondazione G. Pascale”, Napoli, Italy
| | - Claudia Sandomenico
- Thoracic Medical Oncology Unit, Istituto Nazionale Tumori - IRCCS - “Fondazione G. Pascale”, Napoli, Italy
| | - Marianna Gallo
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori - IRCCS - “Fondazione G. Pascale”, Napoli, Italy
| | - Giuliano Palumbo
- Thoracic Medical Oncology Unit, Istituto Nazionale Tumori - IRCCS - “Fondazione G. Pascale”, Napoli, Italy
| | - Antonella De Luca
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori - IRCCS - “Fondazione G. Pascale”, Napoli, Italy
| | - Antonello La Rocca
- Thoracic Surgery Unit, Istituto Nazionale Tumori - IRCCS - “Fondazione G. Pascale”, Napoli, Italy
| | - Nicola Martucci
- Thoracic Surgery Unit, Istituto Nazionale Tumori - IRCCS - “Fondazione G. Pascale”, Napoli, Italy
| | - Rossella De Cecio
- Surgical Pathology Unit, Istituto Nazionale Tumori - IRCCS - “Fondazione G. Pascale”, Napoli, Italy
| | - Carmine Picone
- Radiology Unit, Istituto Nazionale Tumori - IRCCS - “Fondazione G. Pascale”, Napoli, Italy
| | - Secondo Lastoria
- Nuclear Medicine Unit, Istituto Nazionale Tumori - IRCCS - “Fondazione G. Pascale”, Napoli, Italy
| | - Nicola Normanno
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori - IRCCS - “Fondazione G. Pascale”, Napoli, Italy
| |
Collapse
|
6
|
Olmedillas-López S, Olivera-Salazar R, García-Arranz M, García-Olmo D. Current and Emerging Applications of Droplet Digital PCR in Oncology: An Updated Review. Mol Diagn Ther 2021; 26:61-87. [PMID: 34773243 DOI: 10.1007/s40291-021-00562-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2021] [Indexed: 12/14/2022]
Abstract
In the era of personalized medicine and targeted therapies for the management of patients with cancer, ultrasensitive detection methods for tumor genotyping, such as next-generation sequencing or droplet digital polymerase chain reaction (ddPCR), play a significant role. In the search for less invasive strategies for diagnosis, prognosis and disease monitoring, the number of publications regarding liquid biopsy approaches using ddPCR has increased substantially in recent years. There is a long list of malignancies in which ddPCR provides a reliable and accurate tool for detection of nucleic acid-based markers derived from cell-free DNA, cell-free RNA, circulating tumor cells, extracellular vesicles or exosomes when isolated from whole blood, plasma and serum, helping to anticipate tumor relapse or unveil intratumor heterogeneity and clonal evolution in response to treatment. This updated review describes recent developments in ddPCR platforms and provides a general overview about the major applications of liquid biopsy in blood, including its utility for molecular response and minimal residual disease monitoring in hematological malignancies or the therapeutic management of patients with colorectal or lung cancer, particularly for the selection and monitoring of treatment with tyrosine kinase inhibitors. Although plasma is the main source of genetic material for tumor genomic profiling, liquid biopsy by ddPCR is being investigated in a wide variety of biologic fluids, such as cerebrospinal fluid, urine, stool, ocular fluids, sputum, saliva, bronchoalveolar lavage, pleural effusion, mucin, peritoneal fluid, fine needle aspirate, bile or pancreatic juice. The present review focuses on these "alternative" sources of genetic material and their analysis by ddPCR in different kinds of cancers.
Collapse
Affiliation(s)
- Susana Olmedillas-López
- New Therapies Laboratory, Health Research Institute-Fundación Jiménez Díaz University Hospital (IIS-FJD), Avda. Reyes Católicos, 2, 28040, Madrid, Spain.
| | - Rocío Olivera-Salazar
- New Therapies Laboratory, Health Research Institute-Fundación Jiménez Díaz University Hospital (IIS-FJD), Avda. Reyes Católicos, 2, 28040, Madrid, Spain
| | - Mariano García-Arranz
- New Therapies Laboratory, Health Research Institute-Fundación Jiménez Díaz University Hospital (IIS-FJD), Avda. Reyes Católicos, 2, 28040, Madrid, Spain.,Department of Surgery, School of Medicine, Universidad Autónoma de Madrid (UAM), 28029, Madrid, Spain
| | - Damián García-Olmo
- New Therapies Laboratory, Health Research Institute-Fundación Jiménez Díaz University Hospital (IIS-FJD), Avda. Reyes Católicos, 2, 28040, Madrid, Spain.,Department of Surgery, School of Medicine, Universidad Autónoma de Madrid (UAM), 28029, Madrid, Spain.,Department of Surgery, Fundación Jiménez Díaz University Hospital (FJD), 28040, Madrid, Spain
| |
Collapse
|
7
|
Rodak O, Peris-Díaz MD, Olbromski M, Podhorska-Okołów M, Dzięgiel P. Current Landscape of Non-Small Cell Lung Cancer: Epidemiology, Histological Classification, Targeted Therapies, and Immunotherapy. Cancers (Basel) 2021; 13:4705. [PMID: 34572931 PMCID: PMC8470525 DOI: 10.3390/cancers13184705] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 02/07/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) is a subtype of the most frequently diagnosed cancer in the world. Its epidemiology depends not only on tobacco exposition but also air quality. While the global trends in NSCLC incidence have started to decline, we can observe region-dependent differences related to the education and the economic level of the patients. Due to an increasing understanding of NSCLC biology, new diagnostic and therapeutic strategies have been developed, such as the reorganization of histopathological classification or tumor genotyping. Precision medicine is focused on the recognition of a genetic mutation in lung cancer cells called "driver mutation" to provide a variety of specific inhibitors of improperly functioning proteins. A rapidly growing group of approved drugs for targeted therapy in NSCLC currently allows the following mutated proteins to be treated: EGFR family (ERBB-1, ERBB-2), ALK, ROS1, MET, RET, NTRK, and RAF. Nevertheless, one of the most frequent NSCLC molecular sub-types remains without successful treatment: the K-Ras protein. In this review, we discuss the current NSCLC landscape treatment focusing on targeted therapy and immunotherapy, including first- and second-line monotherapies, immune checkpoint inhibitors with chemotherapy treatment, and approved predictive biomarkers.
Collapse
Affiliation(s)
- Olga Rodak
- Department of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (M.O.); (P.D.)
| | - Manuel David Peris-Díaz
- Department of Chemical Biology, Faculty of Biotechnology, University of Wroclaw, F. Joliot-Curie 14a, 50-383 Wroclaw, Poland;
| | - Mateusz Olbromski
- Department of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (M.O.); (P.D.)
| | - Marzenna Podhorska-Okołów
- Department of Ultrastructural Research, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland;
| | - Piotr Dzięgiel
- Department of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (M.O.); (P.D.)
- Department of Physiotherapy, University School of Physical Education, 51-612 Wroclaw, Poland
| |
Collapse
|
8
|
Bekaii-Saab TS, Bridgewater J, Normanno N. Practical considerations in screening for genetic alterations in cholangiocarcinoma. Ann Oncol 2021; 32:1111-1126. [PMID: 33932504 DOI: 10.1016/j.annonc.2021.04.012] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/06/2021] [Accepted: 04/18/2021] [Indexed: 12/14/2022] Open
Abstract
Cholangiocarcinoma (CCA) encompasses diverse epithelial tumors historically associated with poor outcomes due to an aggressive disease course, late diagnosis, and limited benefit of standard chemotherapy for advanced disease. Comprehensive molecular profiling has revealed a diverse landscape of genomic alterations as oncogenic drivers in CCA. TP53 mutations, CDKN2A/B loss, and KRAS mutations are the most common genetic alterations in CCA. However, intrahepatic CCA (iCCA) and extrahepatic CCA (eCCA) differ substantially in the frequency of many alterations. This includes actionable alterations, such as isocitrate dehydrogenase 1 (IDH1) mutations and a large variety of FGFR2 rearrangements, which are found in up to 29% and ∼10% of patients with iCCA, respectively, but are rare in eCCA. FGFR2 rearrangements are currently the only genetic alteration in CCA for which a targeted therapy, the fibroblast growth factor receptor 1-3 inhibitor pemigatinib, has been approved. However, favorable phase III results for IDH1-targeted therapy with ivosidenib in iCCA have been published, and numerous other alterations are actionable by targeted therapies approved in other indications. Recent advances in next-generation sequencing (NGS) have led to the development of assays that allow comprehensive genomic profiling of large gene panels within 2-3 weeks, including in vitro diagnostic tests approved in the United States. These assays vary regarding acceptable source material (tumor tissue or peripheral whole blood), genetic source for library construction (DNA or RNA), target selection technology, gene panel size, and type of detectable genomic alterations. While some large commercial laboratories offer rapid and comprehensive genomic profiling services based on proprietary assay platforms, clinical centers may use commercial genomic profiling kits designed for clinical research to develop their own customized laboratory-developed tests. Large-scale genomic profiling based on NGS allows for a detailed and precise molecular diagnosis of CCA and provides an important opportunity for improved targeted treatment plans tailored to the individual patient's genetic signature.
Collapse
Affiliation(s)
| | - J Bridgewater
- University College London Cancer Institute, London, UK
| | - N Normanno
- Istituto Nazionale Tumori 'Fondazione Giovanni Pascale' IRCCS, Naples, Italy
| |
Collapse
|
9
|
Esposito Abate R, Frezzetti D, Maiello MR, Gallo M, Camerlingo R, De Luca A, De Cecio R, Morabito A, Normanno N. Next Generation Sequencing-Based Profiling of Cell Free DNA in Patients with Advanced Non-Small Cell Lung Cancer: Advantages and Pitfalls. Cancers (Basel) 2020; 12:E3804. [PMID: 33348595 PMCID: PMC7766403 DOI: 10.3390/cancers12123804] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/11/2020] [Accepted: 12/15/2020] [Indexed: 12/12/2022] Open
Abstract
Lung cancer (LC) is the main cause of death for cancer worldwide and non-small cell lung cancer (NSCLC) represents the most common histology. The discovery of genomic alterations in driver genes that offer the possibility of therapeutic intervention has completely changed the approach to the diagnosis and therapy of advanced NSCLC patients, and tumor molecular profiling has become mandatory for the choice of the most appropriate therapeutic strategy. However, in approximately 30% of NSCLC patients tumor tissue is inadequate for biomarker analysis. The development of highly sensitive next generation sequencing (NGS) technologies for the analysis of circulating cell-free DNA (cfDNA) is emerging as a valuable alternative to assess tumor molecular landscape in case of tissue unavailability. Additionally, cfDNA NGS testing can better recapitulate NSCLC heterogeneity as compared with tissue testing. In this review we describe the main advantages and limits of using NGS-based cfDNA analysis to guide the therapeutic decision-making process in advanced NSCLC patients, to monitor the response to therapy and to identify mechanisms of resistance early. Therefore, we provide evidence that the implementation of cfDNA NGS testing in clinical research and in the clinical practice can significantly improve precision medicine approaches in patients with advanced NSCLC.
Collapse
Affiliation(s)
- Riziero Esposito Abate
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (R.E.A.); (D.F.); (M.R.M.); (M.G.); (R.C.); (A.D.L.)
| | - Daniela Frezzetti
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (R.E.A.); (D.F.); (M.R.M.); (M.G.); (R.C.); (A.D.L.)
| | - Monica Rosaria Maiello
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (R.E.A.); (D.F.); (M.R.M.); (M.G.); (R.C.); (A.D.L.)
| | - Marianna Gallo
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (R.E.A.); (D.F.); (M.R.M.); (M.G.); (R.C.); (A.D.L.)
| | - Rosa Camerlingo
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (R.E.A.); (D.F.); (M.R.M.); (M.G.); (R.C.); (A.D.L.)
| | - Antonella De Luca
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (R.E.A.); (D.F.); (M.R.M.); (M.G.); (R.C.); (A.D.L.)
| | - Rossella De Cecio
- Department of Pathology, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy;
| | - Alessandro Morabito
- Department of Thoracic Medical Oncology, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy;
| | - Nicola Normanno
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (R.E.A.); (D.F.); (M.R.M.); (M.G.); (R.C.); (A.D.L.)
| |
Collapse
|
10
|
Sacco A, Forgione L, Carotenuto M, De Luca A, Ascierto PA, Botti G, Normanno N. Circulating Tumor DNA Testing Opens New Perspectives in Melanoma Management. Cancers (Basel) 2020; 12:E2914. [PMID: 33050536 PMCID: PMC7601606 DOI: 10.3390/cancers12102914] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/06/2020] [Accepted: 10/08/2020] [Indexed: 12/21/2022] Open
Abstract
Malignant melanoma accounts for about 1% of all skin cancers, but it causes most of the skin cancer-related deaths. Circulating tumor DNA (ctDNA) testing is emerging as a relevant tool for the diagnosis and monitoring of cancer. The availability of highly sensitive techniques, including next generation sequencing (NGS)-based panels, has increased the fields of application of ctDNA testing. While ctDNA-based tests for the early detection of melanoma are not available yet, perioperative ctDNA analysis in patients with surgically resectable melanoma offers relevant prognostic information: i) the detection of ctDNA before surgery correlates with the extent and the aggressiveness of the disease; ii) ctDNA testing after surgery/adjuvant therapy identifies minimal residual disease; iii) testing ctDNA during the follow-up can detect a tumor recurrence, anticipating clinical/radiological progression. In patients with advanced melanoma, several studies have demonstrated that the analysis of ctDNA can better depict tumor heterogeneity and provides relevant prognostic information. In addition, ctDNA testing during treatment allows assessing the response to systemic therapy and identifying resistance mechanisms. Although validation in prospective clinical trials is needed for most of these approaches, ctDNA testing opens up new scenarios in the management of melanoma patients that could lead to improvements in the diagnosis and therapy of this disease.
Collapse
Affiliation(s)
- Alessandra Sacco
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (A.S.); (L.F.); (M.C.); (A.D.L.)
| | - Laura Forgione
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (A.S.); (L.F.); (M.C.); (A.D.L.)
| | - Marianeve Carotenuto
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (A.S.); (L.F.); (M.C.); (A.D.L.)
| | - Antonella De Luca
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (A.S.); (L.F.); (M.C.); (A.D.L.)
| | - Paolo A. Ascierto
- Department of Melanoma, Cancer Immunotherapy and Development Therapeutics, Istituto Nazionale Tumori IRCCS Fondazione Pascale, 80131 Napoli, Italy;
| | - Gerardo Botti
- Scientific Direction, Istituto Nazionale Tumori IRCCS Fondazione Pascale, 80131 Napoli, Italy;
| | - Nicola Normanno
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (A.S.); (L.F.); (M.C.); (A.D.L.)
| |
Collapse
|