1
|
Balaban E, Demir E, Çelebi Erdivanlı Ö, Mercantepe T, Gökçe FM, Tümkaya L, Dursun E. The effectiveness of concentrated growth factor in facial nerve crush injury. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2024; 126:102071. [PMID: 39277135 DOI: 10.1016/j.jormas.2024.102071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/07/2024] [Accepted: 09/08/2024] [Indexed: 09/17/2024]
Abstract
AIM To evaluate the effect of concentrated growth factor (CGF) on regeneration of facial nerve after crush injury. MATERIALS AND METHODS Fourteen rats were randomized into two groups. The control group (CG) (n = 7) received a crush injury to the right facial nerve. The CGF group (CGFG) (n = 7) received a crush injury to the right facial nerve and concentrated growth factor prepared from their own blood thereafter. Left facial nerves were used for functional comparison. Nerve function was evaluated using whisker movements and electromyography. Histologic properties were evaluated using hematoxylin and eosin and Masson-trichrome staining, and immunohistochemical properties were evaluated using Neurofilament-H and Anti-Tau degeneration markers. RESULTS In the CGFG, whisker functions began to recover earlier and recovered more quickly compared with the CG. The CG showed significantly prolonged latency and reduced amplitudes in the first week compared with the CGFG (p < 0.05). Recordings of 4th-week latency and amplitudes were similar to the preoperative period in the CGFG (p > 0.05), whereas recordings of the same week were significantly worse in the CG (p < 0.05). Edema and fibrosis were also more pronounced in the CG compared with the CGFG. Neurofilament-H and Anti-Tau were at significantly high levels in the CG (p < 0.05). CONCLUSION Concentrated growth factor promotes recovery in facial crush injury and may prove a cost-effective, practical, and effective treatment choice in peripheral nerve injury.
Collapse
Affiliation(s)
- Emre Balaban
- Recep Tayyip Erdogan University Faculty of Dentistry, Department of Oral and Maxillofacial Surgery, Rize, Turkey.
| | | | - Özlem Çelebi Erdivanlı
- Recep Tayyip Erdogan University Faculty of Medicine, Department of Otorhinolaryngology, Rize, Turkey
| | - Tolga Mercantepe
- Recep Tayyip Erdogan University Faculty of Medicine, Department of Histology and Embryology, Rize, Turkey
| | - Fatih Mehmet Gökçe
- Recep Tayyip Erdogan University Faculty of Medicine, Department of Physiology, Rize, Turkey
| | - Levent Tümkaya
- Recep Tayyip Erdogan University Faculty of Medicine, Department of Histology and Embryology, Rize, Turkey
| | - Engin Dursun
- Lokman Hekim University, Department of Otorhinolaryngology, Ankara, Turkey
| |
Collapse
|
2
|
Cao X, Zhang Y, Shi Y, Li Y, Gao L, Wang X, Sun L. Identification of critical mitochondrial hub gene for facial nerve regeneration. Biochem Cell Biol 2024; 102:179-193. [PMID: 38086039 DOI: 10.1139/bcb-2023-0224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024] Open
Abstract
Mitochondria play a critical role in nerve regeneration, yet the impact of gene expression changes related to mitochondria in facial nerve regeneration remains unknown. To address this knowledge gap, we analyzed the expression profile of the facial motor nucleus (FMN) using data obtained from the Gene Expression Omnibus (GEO) database (GSE162977). By comparing different time points in the data, we identified differentially expressed genes (DEGs). Additionally, we collected mitochondria-related genes from the Gene Ontology (GO) database and intersected them with the DEGs, resulting in the identification of mitochondria-related DEGs (MIT-DEGs). To gain further insights, we performed functional enrichment and pathway analysis of the MIT-DEGs. To explore the interactions among these MIT-DEGs, we constructed a protein-protein interaction (PPI) network using the STRING database and identified hub genes using the Degree algorithm of Cytoscape software. To validate the relevance of these genes to nerve regeneration, we established a rat facial nerve injury (FNI) model and conducted a series of experiments. Through these experiments, we confirmed three MIT-DEGs (Myc, Lyn, and Cdk1) associated with facial nerve regeneration. Our findings provide valuable insights into the transcriptional changes of mitochondria-related genes in the FMN following FNI, which can contribute to the development of new treatment strategies for FNI.
Collapse
Affiliation(s)
- Xiaofang Cao
- Department of Dentistry, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, Harbin Medical University, Harbin, China
| | - Yan Zhang
- Department of Dentistry, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Yu Shi
- Department of Dentistry, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Ying Li
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, Harbin Medical University, Harbin, China
- Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Li Gao
- Department of Dentistry, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Xiumei Wang
- Department of Dentistry, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Liang Sun
- Department of Human Anatomy, School of Basic Medicine, Harbin Medical University, Harbin, China
| |
Collapse
|
3
|
Yamahara K, Yamamoto N, Kuwata F, Nakagawa T. Neuroprotective role of insulin-like growth factor 1 in auditory and other nervous systems. Histol Histopathol 2022; 37:609-619. [PMID: 35170014 DOI: 10.14670/hh-18-437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Insulin-like growth factor 1 (IGF1) exerts an influence on almost every organ system in the body and plays an important role in growth, development, and metabolism. In the nervous system, IGF1 acts by promoting the development and growth of neurons and glial cells, differentiation of Schwann cells and their migration to axons, neurite outgrowth, and neuronal survival. The lack of IGF1 is associated with several pathological conditions, including severe prenatal growth retardation, postnatal growth failure, microcephaly, mental retardation, and bilateral sensorineural hearing loss. In addition to its physiological effects, based on the findings of in vivo and in vitro experiments and clinical trials, IGF1 is considered to play a potential role in the treatment of various types of neuronal damage. In this review, we discuss the potential use of IGF1 as a therapeutic molecule in the nervous system: (1) auditory system, including hair cells, cochlear ribbon synapses, auditory nerve, and central nervous systems, and (2) other peripheral nervous systems, especially the olfactory system and facial nerve. The role of IGF1 in the progression of age-related sensory deficits, especially hearing loss and olfactory dysfunction, is also discussed. Recent studies on IGF1 demonstrated that exogenous IGF1 can be applied in many fields, thus supporting the continued evaluation of IGF1 as a potential therapeutic molecule. Additional scientific investigations should be conducted to further supplement recent findings.
Collapse
Affiliation(s)
- Kohei Yamahara
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, Japan
| | - Norio Yamamoto
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, Japan
| | - Fumihiko Kuwata
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, Japan
| | - Takayuki Nakagawa
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, Japan.
| |
Collapse
|
4
|
Adler M, Pellett S, Sharma SK, Lebeda FJ, Dembek ZF, Mahan MA. Preclinical Evidence for the Role of Botulinum Neurotoxin A (BoNT/A) in the Treatment of Peripheral Nerve Injury. Microorganisms 2022; 10:microorganisms10050886. [PMID: 35630331 PMCID: PMC9148055 DOI: 10.3390/microorganisms10050886] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/29/2022] [Accepted: 04/17/2022] [Indexed: 01/27/2023] Open
Abstract
Traumatic peripheral nerve injuries tend to be more common in younger, working age populations and can lead to long-lasting disability. Peripheral nerves have an impressive capacity to regenerate; however, successful recovery after injury depends on a number of factors including the mechanism and severity of the trauma, the distance from injury to the reinnervation target, connective tissue sheath integrity, and delay between injury and treatment. Even though modern surgical procedures have greatly improved the success rate, many peripheral nerve injuries still culminate in persistent neuropathic pain and incomplete functional recovery. Recent studies in animals suggest that botulinum neurotoxin A (BoNT/A) can accelerate nerve regeneration and improve functional recovery after injury to peripheral nerves. Possible mechanisms of BoNT/A action include activation or proliferation of support cells (Schwann cells, mast cells, and macrophages), increased angiogenesis, and improvement of blood flow to regenerating nerves.
Collapse
Affiliation(s)
- Michael Adler
- Neuroscience Department, Medical Toxicology Division, U.S. Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Rd., Aberdeen Proving Ground, MD 21010, USA
- Correspondence: ; Tel.: +1-410-436-1913
| | - Sabine Pellett
- Department of Bacteriology, University of Wisconsin-Madison, 1550 Linden Drive, Madison, WI 53706, USA;
| | - Shashi K. Sharma
- Division of Microbiology, Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD 20740, USA;
| | - Frank J. Lebeda
- Biotechnology, Protein Bioinformatics, Zanvyl Krieger School of Arts & Sciences, Johns Hopkins University, Advanced Academic Programs, 9601 Medical Center Drive, Rockville, MD 20850, USA;
| | - Zygmunt F. Dembek
- Department of Military and Emergency Medicine, Uniformed Services University of Health Sciences, 3154 Jones Bridge Rd., Bethesda, MD 20814, USA;
| | - Mark A. Mahan
- Department of Neurosurgery, Clinical Neurosciences, University of Utah, 175 N Medical Drive East, Salt Lake City, UT 84132, USA;
| |
Collapse
|
5
|
Jessen KR, Mirsky R. The Role of c-Jun and Autocrine Signaling Loops in the Control of Repair Schwann Cells and Regeneration. Front Cell Neurosci 2022; 15:820216. [PMID: 35221918 PMCID: PMC8863656 DOI: 10.3389/fncel.2021.820216] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 12/30/2021] [Indexed: 12/12/2022] Open
Abstract
After nerve injury, both Schwann cells and neurons switch to pro-regenerative states. For Schwann cells, this involves reprogramming of myelin and Remak cells to repair Schwann cells that provide the signals and mechanisms needed for the survival of injured neurons, myelin clearance, axonal regeneration and target reinnervation. Because functional repair cells are essential for regeneration, it is unfortunate that their phenotype is not robust. Repair cell activation falters as animals get older and the repair phenotype fades during chronic denervation. These malfunctions are important reasons for the poor outcomes after nerve damage in humans. This review will discuss injury-induced Schwann cell reprogramming and the concept of the repair Schwann cell, and consider the molecular control of these cells with emphasis on c-Jun. This transcription factor is required for the generation of functional repair cells, and failure of c-Jun expression is implicated in repair cell failures in older animals and during chronic denervation. Elevating c-Jun expression in repair cells promotes regeneration, showing in principle that targeting repair cells is an effective way of improving nerve repair. In this context, we will outline the emerging evidence that repair cells are sustained by autocrine signaling loops, attractive targets for interventions aimed at promoting regeneration.
Collapse
Affiliation(s)
- Kristjan R. Jessen
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | | |
Collapse
|
6
|
Slavin BR, Sarhane KA, von Guionneau N, Hanwright PJ, Qiu C, Mao HQ, Höke A, Tuffaha SH. Insulin-Like Growth Factor-1: A Promising Therapeutic Target for Peripheral Nerve Injury. Front Bioeng Biotechnol 2021; 9:695850. [PMID: 34249891 PMCID: PMC8264584 DOI: 10.3389/fbioe.2021.695850] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/02/2021] [Indexed: 01/27/2023] Open
Abstract
Patients who sustain peripheral nerve injuries (PNIs) are often left with debilitating sensory and motor loss. Presently, there is a lack of clinically available therapeutics that can be given as an adjunct to surgical repair to enhance the regenerative process. Insulin-like growth factor-1 (IGF-1) represents a promising therapeutic target to meet this need, given its well-described trophic and anti-apoptotic effects on neurons, Schwann cells (SCs), and myocytes. Here, we review the literature regarding the therapeutic potential of IGF-1 in PNI. We appraised the literature for the various approaches of IGF-1 administration with the aim of identifying which are the most promising in offering a pathway toward clinical application. We also sought to determine the optimal reported dosage ranges for the various delivery approaches that have been investigated.
Collapse
Affiliation(s)
- Benjamin R Slavin
- Department of Plastic and Reconstructive Surgery, School of Medicine, Johns Hopkins University, Baltimore, MD, United States.,Division of Plastic and Reconstructive Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Karim A Sarhane
- Department of Plastic and Reconstructive Surgery, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Nicholas von Guionneau
- Department of Plastic and Reconstructive Surgery, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Phillip J Hanwright
- Department of Plastic and Reconstructive Surgery, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Chenhu Qiu
- Department of Materials Science and Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, United States.,Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, United States
| | - Hai-Quan Mao
- Department of Materials Science and Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, United States.,Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, United States.,Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD, United States.,Translational Tissue Engineering Center, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Ahmet Höke
- Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, MD, United States.,Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Sami H Tuffaha
- Department of Plastic and Reconstructive Surgery, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
7
|
Abstract
Biologic therapies have the ability to fundamentally change the management of hearing loss; clinicians need to familiarize themselves with their prospective applications in practice. This article reviews the current application of 4 categories of biological therapeutics-growth factors, apoptosis inhibitors, monoclonal antibodies, and gene therapy-in otology and their potential future directions and applications.
Collapse
Affiliation(s)
- Steven A Gordon
- Otolaryngology-Head & Neck Surgery, University of Utah Health, 50 North Medical Drive 3C120 SOM, Salt Lake City, UT 84132, USA
| | - Richard K Gurgel
- Otolaryngology-Head & Neck Surgery, University of Utah Health, 50 North Medical Drive 3C120 SOM, Salt Lake City, UT 84132, USA.
| |
Collapse
|
8
|
Yoo MC, Chon J, Jung J, Kim SS, Bae S, Kim SH, Yeo SG. Potential Therapeutic Strategies and Substances for Facial Nerve Regeneration Based on Preclinical Studies. Int J Mol Sci 2021; 22:ijms22094926. [PMID: 34066483 PMCID: PMC8124575 DOI: 10.3390/ijms22094926] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/23/2021] [Accepted: 04/27/2021] [Indexed: 12/14/2022] Open
Abstract
Despite advances in microsurgical technology and an improved understanding of nerve regeneration, obtaining satisfactory results after facial nerve injury remains a difficult clinical problem. Among existing peripheral nerve regeneration studies, relatively few have focused on the facial nerve, particularly how experimental studies of the facial nerve using animal models play an essential role in understanding functional outcomes and how such studies can lead to improved axon regeneration after nerve injury. The purpose of this article is to review current perspectives on strategies for applying potential therapeutic methods for facial nerve regeneration. To this end, we searched Embase, PubMed, and the Cochrane library using keywords, and after applying exclusion criteria, obtained a total of 31 qualifying experimental studies. We then summarize the fundamental experimental studies on facial nerve regeneration, highlighting recent bioengineering studies employing various strategies for supporting facial nerve regeneration, including nerve conduits with stem cells, neurotrophic factors, and/or other therapeutics. Our summary of the methods and results of these previous reports reveal a common feature among studies, showing that various neurotrophic factors arising from injured nerves contribute to a microenvironment that plays an important role in functional recovery. In most cases, histological examinations showed that this microenvironmental influence increased axonal diameter as well as myelination thickness. Such an analysis of available research on facial nerve injury and regeneration represents the first step toward future therapeutic strategies.
Collapse
Affiliation(s)
- Myung Chul Yoo
- Department of Physical Medicine & Rehabilitation, College of Medicine, Kyung Hee University, Seoul 02447, Korea; (M.C.Y.); (J.C.)
| | - Jinmann Chon
- Department of Physical Medicine & Rehabilitation, College of Medicine, Kyung Hee University, Seoul 02447, Korea; (M.C.Y.); (J.C.)
| | - Junyang Jung
- Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, Seoul 02447, Korea;
| | - Sung Su Kim
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Korea;
| | - Seonhwan Bae
- Department of Otorhinolaryngology, Head & Neck Surgery, College of Medicine, Kyung Hee University, Seoul 02447, Korea; (S.B.); (S.H.K.)
| | - Sang Hoon Kim
- Department of Otorhinolaryngology, Head & Neck Surgery, College of Medicine, Kyung Hee University, Seoul 02447, Korea; (S.B.); (S.H.K.)
| | - Seung Geun Yeo
- Department of Otorhinolaryngology, Head & Neck Surgery, College of Medicine, Kyung Hee University, Seoul 02447, Korea; (S.B.); (S.H.K.)
- Correspondence: ; Tel.: +82-2-958-8980; Fax: +82-2-958-8470
| |
Collapse
|
9
|
Haney NM, Talwar S, Akula PK, Reddy AG, Pema GS, Ninh TV, Rezk BM, Heidari Z, Bouljihad MT, Sikka SC, John V, Abdel-Mageed AB, Hellstrom WJG. Insulin-Like Growth Factor-1-Loaded Polymeric Poly(Lactic-Co-Glycolic) Acid Microspheres Improved Erectile Function in a Rat Model of Bilateral Cavernous Nerve Injury. J Sex Med 2020; 16:383-393. [PMID: 30846112 DOI: 10.1016/j.jsxm.2018.12.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 12/20/2018] [Accepted: 12/22/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Previous studies have documented improvement in erectile function after bilateral cavernous nerve injury (BCNI) in rats with the use of pioglitazone. Our group determined this improvement to be mediated by the insulin-like growth factor-1 (IGF-1) pathway. AIM To eliminate the systemic effects of pioglitazone and evaluate the local delivery of IGF-1 by polymeric microspheres after BCNI in the rat. METHODS Male Sprague-Dawley rats aged 10-12 weeks were assigned at random to 3 groups: sham operation with phosphate buffered saline (PBS)-loaded microspheres (sham group), crush injury with PBS-loaded microspheres (crush group), and crush injury with IGF-1-loaded microspheres (IGF-1 group). Poly(lactic-co-glycolic) acid microspheres were injected underneath the major pelvic ganglion (MPG). IGF-1 was released at approximately 30 ng/mL/day per MPG per rat. OUTCOMES Functional results were demonstrated by maximal intracavernosal pressure (ICP) normalized to mean arterial pressure (MAP). Protein-level analysis data of IGF-1 receptor (IGF-1R), extracellular signal-regulated kinase (ERK)-1/2, and neuronal nitric oxide synthase (nNOS) were obtained using Western blot analysis and immunohistochemistry for both the cavernosal tissue and the MPG and cavernous nerve (CN). RESULTS At 2 weeks after nerve injury, animals treated with IGF-1 demonstrated improved erectile functional recovery (ICP/MAP) at all voltages compared with BCNI (2.5V, P = .001; 5V, P < .001; 7.5V, P < .001). Western blot results revealed that up-regulation of the IGF-1R and ERK-1/2 in both the nervous and erectile tissue was associated with improved erectile function recovery. There were no significant between-group differences in nNOS protein levels in cavernosal tissue, but there was an up-regulation of nNOS in the MPG and CN. Immunohistochemistry confirmed these trends. CLINICAL TRANSLATION Local up-regulation of the IGF-1R in the neurovascular bed at the time of nerve injury may help men preserve erectile function after pelvic surgery, such as radical prostatectomy, eliminating the need for systemic therapy. STRENGTHS & LIMITATIONS This study demonstrates that local drug delivery to the MPG and CN can affect the CN tissue downstream, but did not investigate the potential effects of up-regulation of the growth factor receptors on prostate cancer tissue. CONCLUSION Stimulating the IGF-1R at the level of the CN has the potential to mitigate erectile dysfunction in men after radical prostatectomy, but further research is needed to evaluate the safety of this growth factor in the setting of prostate cancer. Haney NM, Talwar S, Akula PK, et al. Insulin-Like Growth Factor-1-Loaded Polymeric Poly(Lactic-Co-Glycolic) Acid Microspheres Improved Erectile Function in a Rat Model of Bilateral Cavernous Nerve Injury. J Sex Med 2019;16:383-393.
Collapse
Affiliation(s)
- Nora M Haney
- Department of Urology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Sudha Talwar
- Department of Urology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Prasad K Akula
- Department of Urology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Amit G Reddy
- Department of Urology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Geoffroy Sanga Pema
- Department of Natural Sciences, Southern University at New Orleans, New Orleans, LA, USA
| | - Thien V Ninh
- Department of Urology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Bashir M Rezk
- Department of Urology, Tulane University School of Medicine, New Orleans, LA, USA; Department of Natural Sciences, Southern University at New Orleans, New Orleans, LA, USA
| | - Zahra Heidari
- Department of Biochemical Engineering, Tulane University, New Orleans, LA, USA
| | - Mostafa T Bouljihad
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, USA
| | - Suresh C Sikka
- Department of Urology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Vijay John
- Department of Biochemical Engineering, Tulane University, New Orleans, LA, USA
| | - Asim B Abdel-Mageed
- Department of Urology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Wayne J G Hellstrom
- Department of Urology, Tulane University School of Medicine, New Orleans, LA, USA.
| |
Collapse
|
10
|
Li L, Cai J, Yuan Y, Mao Y, Xu L, Han Y, Li J, Wang H. Platelet-rich plasma can release nutrient factors to promote facial nerve crush injury recovery in rats. Saudi Med J 2019; 40:1209-1217. [PMID: 31828272 PMCID: PMC6969627 DOI: 10.15537/smj.2019.12.24747] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 11/11/2019] [Indexed: 11/16/2022] Open
Abstract
To evaluate the effects of platelet-rich plasma (PRP) on promoting neural repair after facial nerve compression in rats and the mechanism by which this occurs. Methods: Adult Wistar rats (n=100) were divided into 3 groups: healthy controls, surgery-only, and surgery+PRP groups. The rats underwent nerve crush injury to establish a facial palsy model. The blood from the rats was used to prepare the PRP for application to the injury site. The evaluation methods included vibrissae movement, eyelid closure, and electrophysiology. Electron microscopy, immunohistochemistry, and real-time polymerase chain reaction (PCR) were used to detect nutrient factor expression in the brain and nerve sections. This study was conducted in Shandong Provincial ENT Hospital Affiliated to Shandong University, Shandong, China between January and November 2018. Results: Platelet-rich plasma promotes the recovery of vibrissae movement, eyelid closure, and electrophysiological function in a rat model of nerve crush injury. Hematoxylin and eosin staining, toluidine blue staining, and electron microscopy showed significant recovery of Schwann cells and axons in the PRP group. Polymerase chain reaction results showed that PRP releases growth factors, which include nerve growth factor and brain-derived neurotrophic factor. Immunohistochemistry also demonstrated higher levels of S-100 protein expression in the PRP group compared to the other groups. Conclusions: Platelet-rich plasma releases nutrient factors in the brainstem, and the use of PRP can promote injury recovery.
Collapse
Affiliation(s)
- Liheng Li
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital Affiliated to Shandong University, Jinan, People Republic of China. E-mail.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Alvites R, Rita Caseiro A, Santos Pedrosa S, Vieira Branquinho M, Ronchi G, Geuna S, Varejão AS, Colette Maurício A. Peripheral nerve injury and axonotmesis: State of the art and recent advances. COGENT MEDICINE 2018. [DOI: 10.1080/2331205x.2018.1466404] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Rui Alvites
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
| | - Ana Rita Caseiro
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
- Departamento de Engenharia Metalúrgica e Materiais, Faculdade de Engenharia, Universidade do Porto (REQUIMTE/LAQV), R. Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Sílvia Santos Pedrosa
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
| | - Mariana Vieira Branquinho
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
| | - Giulia Ronchi
- Departamento de Ciências Veterinárias, Universidade de Trás-os-Montes e Alto Douro, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Stefano Geuna
- Departamento de Ciências Veterinárias, Universidade de Trás-os-Montes e Alto Douro, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Artur S.P. Varejão
- CECAV, Centro de Ciência Animal e Veterinária, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
- Department of Clinical and Biological Sciences, and Cavalieri Ottolenghi Neuroscience Institute, University of Turin, Ospedale San Luigi, 10043 Orbassano, Turin, Italy
| | - Ana Colette Maurício
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
| |
Collapse
|
12
|
Bianchi VE, Locatelli V, Rizzi L. Neurotrophic and Neuroregenerative Effects of GH/IGF1. Int J Mol Sci 2017; 18:ijms18112441. [PMID: 29149058 PMCID: PMC5713408 DOI: 10.3390/ijms18112441] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/06/2017] [Accepted: 11/09/2017] [Indexed: 12/12/2022] Open
Abstract
Introduction. Human neurodegenerative diseases increase progressively with age and present a high social and economic burden. Growth hormone (GH) and insulin-like growth factor-1 (IGF-1) are both growth factors exerting trophic effects on neuronal regeneration in the central nervous system (CNS) and peripheral nervous system (PNS). GH and IGF-1 stimulate protein synthesis in neurons, glia, oligodendrocytes, and Schwann cells, and favor neuronal survival, inhibiting apoptosis. This study aims to evaluate the effect of GH and IGF-1 on neurons, and their possible therapeutic clinical applications on neuron regeneration in human subjects. Methods. In the literature, we searched the clinical trials and followed up studies in humans, which have evaluated the effect of GH/IGF-1 on CNS and PNS. The following keywords have been used: “GH/IGF-1” associated with “neuroregeneration”, “amyotrophic lateral sclerosis”, “Alzheimer disease”, “Parkinson’s disease”, “brain”, and “neuron”. Results. Of the retrieved articles, we found nine articles about the effect of GH in healthy patients who suffered from traumatic brain injury (TBI), and six studies (four using IGF-1 and two GH therapy) in patients with amyotrophic lateral sclerosis (ALS). The administration of GH in patients after TBI showed a significantly positive recovery of brain and mental function. Treatment with GH and IGF-1 therapy in ALS produced contradictory results. Conclusions. Although strong findings have shown the positive effects of GH/IGF-1 administration on neuroregeneration in animal models, a very limited number of clinical studies have been conducted in humans. GH/IGF-1 therapy had different effects in patients with TBI, evidencing a high recovery of neurons and clinical outcome, while in ALS patients, the results are contradictory. More complex clinical protocols are necessary to evaluate the effect of GH/IGF-1 efficacy in neurodegenerative diseases. It seems evident that GH and IGF-1 therapy favors the optimal recovery of neurons when a consistent residual activity is still present. Furthermore, the effect of GH/IGF-1 could be mediated by, or be overlapped with that of other hormones, such as estradiol and testosterone.
Collapse
Affiliation(s)
- Vittorio Emanuele Bianchi
- Endocrinology and Metabolism, Clinical Center Stella Maris, Strada Rovereta, 42-47891 Falciano, San Marino.
| | - Vittorio Locatelli
- School of Medicine and Surgery, University of Milano-Bicocca via Cadore, 48-20900 Monza Brianza, Italy.
| | - Laura Rizzi
- Molecular Biology, School of Medicine and Surgery, University of Milano-Bicocca, via Cadore, 48-20900 Monza Brianza, Italy.
| |
Collapse
|